
Chapter 2

Reduction to Separable Equations*

Purpose: To learn how to convert several types of differential equations into separable equa-
tions and solve them. The material in this chapter is not covered on the AP Calculus exam.

Separation of variables is one of the basic techniques for solving differential equations. In this
chapter we are going to learn several types of differential equations that are not directly separable,
but can be reduced to separable equations by simple mathematical manipulations. Although the
content of this chapter is not a requirement of the AP Calculus exam, you are encouraged to read
this chapter to enhance your skills of solving differential equations.

Homogeneous Equations

Homogeneous differential equations in the form ofdy
dx

= f (x, y) have the property thatf (tx, ty) =

f (x, y). For example, in the equationdy
dx

= x+y
2y

, f (x, y) = x+y
2y

. Sincef (tx, ty) = tx+ty
2ty

=

f (x, y), the equation is homogeneous. A homogeneous equation can be transformed into a sep-
arable equation by making the substitution:y = vx, wherev is a function ofx. Thus,

dy

dx
= x

dv

dx
+ v

I TIP
A simple way to check whether an equation is homogeneous is to make sure that all the terms in
f (x, y) have the same degree.

Example 2.1
Solve the differential equationdy

dx
= x2+y2

2xy
.

Solution:
Sincef (tx, ty) = t2x2+t2y2

2txty
= f (x, y), the equation is homogeneous (notice that all the terms

in x2+y2

2xy
have degree 2). Make the substitutiony = vx thenv = y

x
, and dy

dx
= v + x dv

dx
. So the

original equation becomes:

v + x
dv

dx
=

x2 + x2v2

2x2v

x
dv

dx
=

1 + v2

2v
− v =

1− v2

2v

The above equation can be solved by separating the variablesv andx and integrating both sides:∫
2vdv

1− v2
=

∫
dx

x

− ln
∣∣1− v2

∣∣ = ln |x|+ C
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∣∣1− v2
∣∣ =

C1

|x|
(C1 = e−C)

To get rid of the absolute value signs on both sides of the equation, we need to assume there are
two cases:1− v2 = C1

x
and1− v2 = −C1

x
, therefore

1− v2 = ±C1

x

Substitutev = y
x

into the above equation:

1− y2

x2
= ±C1

x

y2 = x2 ∓ C1x

To verify the solution, differentiate both sides of it with respect tox:

2y
dy

dx
= 2x∓ C1

Thereforedy
dx

= 2x∓C1

2y
and x2+y2

2xy
= x2+x2∓C1x

2xy
= 2x∓C1

2y
= dy

dx

Linear Fractional Equations

A linear fractional equation has the formdy
dx

= a1x+b1x+c1
a2x+b2x+c2

, wherea1, b1, a2, andb2 are non-
zero constants. A special case of the equation is whena1

a2
= b1

b2
= k. Under this condition,

linear fractional equations can be reduced to separable equations by making the substitution
v = a1x + b2y. Sincea2 = a1

k
andb2 = b1

k
, we havea2x + b2x = 1

k
(a1x + b1x) = v

k
, and also

dv
dx

= a1 + b1
dy
dx

or dy
dx

= 1
b1

(
dv
dx
− a1

)
.

Example 2.2
Solve the differential equationdy

dx
= 2x+3y+5

4x+6y−3
.

Solution:
Make the substitutionv = 2x + 3y, thendv

dx
= 2 + 3 dy

dx
, or dy

dx
= 1

3

(
dv
dx
− 2
)
. Substitute these into

the original equation:
1

3

(
dv

dx
− 2

)
=

v + 5

2v − 3

dv

dx
=

3 (v + 5)

2v − 3
+ 2 =

7v + 9

2v − 3∫
2v − 3

7v + 9
dv =

∫
dx

8



Since2v−3
7v+9

= 7(2v−3)
7(7v+9)

= 14v−21+(18−18)
7(7v+9)

= (14v+18)−(21+18)
7(7v+9)

= 2
7
− 39

7(7v+9)
,∫ (

2

7
− 39

7 (7v + 9)

)
dv =

∫
dx

2

7
v − 39

49
ln |7v + 9| = x + C

Substitutev = 2x + 3y back into the above equation to get an implicit solution ofy:

14 (2x + 3y)− 39 ln |7 (2x + 3y) + 9| = 49x + C1 (C1 = 49C)

I TIP
Sometimes it is unnecessary or even impossible to find an explicit expression for the solution.
An implicit solution is acceptable as long as it is reasonably simplified.

Linear First-Order Differential Equations

A first-order linear differential equation can be generally expressed asdy
dx

+ p (x) y = q (x). This
equation is not directly separable, but can be converted into a separable equation by multiplying
both sides by anintegrating factor I (x). Then the equation becomes

I (x) y′ + p (x) I (x) y = q (x) I (x)

To find I (x), first notice thatd
dx

(I (x) y) = I ′ (x) y + I (x) y′, which resembles the left side of
the previous equation. Let

I ′ (x) y + I (x) y′ = I (x) y′ + p (x) I (x) y

I ′ (x) y = p (x) I (x) y

d

dx
I (x) = p (x) I (x)

d (I (x))

I (x)
= p (x) dx

Integrating both sides,

ln |I (x)| =
∫

p (x) dx

SinceI (x) is used as an integrating factor, there is no need to add a constantC here.

I (x) = e
∫

p(x)dx

So the original equation with the integrating factor becomes

y′e
∫

p(x)dx + p (x) ye
∫

p(x)dx = q (x) e
∫

p(x)dx
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or
d

dx

(
ye

∫
p(x)dx

)
= q (x) e

∫
p(x)dx

which can be separated and solved analytically to obtain

y = e−
∫

p(x)dx

(∫
q (x) e

∫
p(x)dxdx + C

)
I NOTE
The purpose of multiplying the integrating factorI (x) is to make the left side of the equation a
derivative with respect tox. Although it is generally quite difficult or even impossible to find an
integration factor for a differential equation, you do not have to struggle every time with a linear
first-order differential equation; you can directly apply the general solution formula to solve it.

Example 2.3
Solve the differential equationdy

dx
+ x2y = x2

Solution:

In the above equation,p (x) = q (x) = x2, andI (x) = e
∫

x2dx = e
x3

3 . So the solution can be
directly calculated as

y = e−
x3

3

(∫
x2e

x3

3 dx + C

)
y = e−

x3

3

(∫
eudu + C

)
(u = x3

3
anddu = x2dx)

y = e−
x3

3

(
e

x3

3 + C
)

= 1 + Ce−
x3

3

Example 2.4
Solve the differential equationdy

dx
+ 2y cot x + sin 2x = 0.

Solution:
In the above equation,p (x) = 2 cot x, q (x) = − sin 2x, andI (x) = e

∫
2 cot xdx. Letting u =

sin x anddu = cos xdx, I (x) = e2
∫

1
u

du = e2 ln|sin x| = sin2 x. So the solution is

y =
1

sin2 x

(∫
− sin 2x sin2 xdx + C

)

y =
1

sin2 x

(∫
−2 sin x cos x sin2 xdx + C

)
y =

1

sin2 x

(
−
∫

udu + C

)
(u = sin2 x anddu = 2 sin x cos xdx)
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y =
1

sin2 x

(
−sin4 x

2
+ C

)
= −sin2 x

2
+

C

sin2 x

Practice problem set 2
Solve the following differential equations.

1. y2dx− x2dy = 0

2. dy
dx

= 2x−y
x

3. (x3 + y3) dx− 3xy2dy = 0

4. xdy − ydx−
√

x2 − y2dx = 0

5. dy
dx

= 2x+6y+3
x+3y−9

6. dy
dx

+ 2xy = 6x

7. (x− 2) dy
dx

= y + 4 (x− 2)3

8. dy
dx

+ 2xy = 2x3; y (0) = 1

9. dy
dx

+ y cot x = 5ecos x; whenx = π
2
, y = −4

10. xy′ = y (1− x tan x) + 2x2 cos x
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Answers to Practice Problems
Practice Problem Set 1 (Chapter 1)

1. y = C (1 + x2) 2. y
3
2 = 9x

1
2 + C

3. (x− 1)2 − (y + 1)2 + 2 ln
∣∣∣x+1

y−1

∣∣∣ = C 4. sin2 y = C x−1
x+1

5. t3y2 = Cey 6. sin x + y2 = 1

7. y2 + 2 ln |y| = x2 − 4x + 5 8. 2ex2
+ y4 − 4y = 10

9. y = ln
∣∣∣ (x−3)2(x+1)

9

∣∣∣ 10. If y > a or y < 0, y = Caeax

Ceax−1
;

If 0 < y < a, y = Caeax

Ceax+1

Practice Problem Set 2 (Chapter 2)

1. y = x + Cxy 2. y = x− C
x

3. x3 − 2y3 = Cx 4. Cx = earcsin y
x

5. (x + 3y)− 9 ln |x + 3y| = 7x + C 6. y = 3 + Ce−x2

7. y = 2 (x− 2)3 + C (x− 2) 8. y = 2e−x2
+ x2 − 1

9. y sin x + 5ecos x = 1 10. y = 2x2 cos x + Cx cos x

Practice Problem Set 3 (Chapter 3)

1. 120
(

1
2

) 50
74 ≈ 75 grams 2. 3ln 25

13

/
ln 13

6
≈ 2.54 hours

3. 400 (2)5 = 12800 cells 4. 10 ln 0.5
ln 0.32

≈ 6.08 grams

5. ln 2/0.0525 ≈ 13.2 years 6. 100
(

1
2

) 3400
5730 ≈ 66.3 %

7. 20 (0.7)
20
3 ≈ 1.86 candelas 8. ln 2/0.05 ≈ 13.9 (In the 14th year)

9. 5 ln 2
ln 2.5

≈ 3.78 (In the fourth year) 10. 2.5 = 5e−t/20, t ≈ 13.9 minutes

11. 1.15 seconds 12. I = 10e−0.4t, I ≈ 0.15A

Practice Problem Set 4 (Chapter 4)

1.
12 ln 1

3

ln 13
15

≈ 92 days 2. 50
(
1−

(
3
5

) 30
15

)
= 32 words

3. 27− 20
(

5
6

) 10
5 ≈ 13◦C 4. 45 = K (1− e−5r),

80 = K (1− e−10r), 202.5 m/s

5. 5 ln 0.001
ln 12−ln 35

≈ 32.3 minutes 6. 5 ln 0.75
ln 0.8

≈ 6.45 minutes

7. 3 ln
(

98.6−65
72−65

)/
ln
(

7
15

)
≈ −6.17 hours

Therefore, 6.17 hours ago from now is
approximately 8:49 AM

8. dP
dt

= (0.097− 0.047) P − 30000

9. v (t) = 4 (1− e−2.45t) m/s 10. Q (t) = 80− 78e−
t
20 lbs.

11. 143µC 12. 21.2 seconds
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