ReviewSol (not full solutions)

Solutions:

1. $(-2,3,1)$
2. Answers May Vary
a) $[\mathrm{x}, \mathrm{y}, \mathrm{z}]=[1,4,2]+\mathrm{t}[2,-1,0]$
b) $(3,3,2),(5,2,2),(7,1,2)$
c) $x=1+2 t$ and $y=4-t$ and $z=2$
d) Nosymenotrie cquations $\frac{x-1}{2}=\frac{y-4}{-1}, z=2$
3. Parts a and b
4. Answers may vary $[x, y, z]=[1,2,3]+t[-4,5,3]$
5. $\begin{array}{lll}\text { a) } 4 x-y+9 z=0 & \text { b) } x-17 y+3 z-1=0 & \text { c) } 3 x+y-z-6=0\end{array}$
6. $8 x-y-2 z+29=0$
7. $x+6 y+z-16=0$
8. $(-2,1,5)$ and 27^{0}
9. b) $2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}-4=0$ and $2 \mathrm{x}+\mathrm{y}+2 \mathrm{z}+8=0$
10. $[\mathrm{x}, \mathrm{yz}]=[0,0,0]+\mathrm{t}[4,-7,-2] ; \frac{x}{4}=\frac{y}{-7}=\frac{z}{-2}$
11. A) $y-z-4=0$
b) $x+8 y-7 z-25=0$
12. $(1,2,-3)$
13. $x=1$ and $y=-2$
14. $x=-1, y=0, z=2$
15. Two vectors that are parallel or collinear with two skew lines are necessarily non-collinear vectors that uniquely determine a plane.
16. a) Answers may vary. One possible answer is $(2,2,1)$.
b) $\frac{3}{\sqrt{89}} \doteq 0.318$
c) The magnitude is the distance from the point A to the plane.
17. a) parallel lines
b) skew lines
18. $\pi_{1}: 3 x+10 y-14 z+19=0$
$\pi_{2}: 7 x-14 y+18 z-11-0-5 x-14 y+18 z-13=0$
19. a) The 3 planes form a triangular prism, that is, one plane intersecting the other 2 forming 3 parallel lines and no common point of intersection.
b) The 3 planes intersect at a point.
c) 2 parallel planes intersected by a 3rd plane forming 2 parallel lines and no common point of intersection
d) 3 distinct planes intersecting in a common line
20. a) $(47,40.25,-14.375)$
b) $\left(-\frac{17}{24},-\frac{95}{8}, \frac{2}{3}\right)$
21. $\pm \frac{1}{\sqrt{3}}[1,-1,1]$
22. a) $g=19-\frac{1}{3} b, w=38-\frac{2}{3} b$
b) $w=30, g=15, b=12$
23. $2 x-5 y+29=0$
24. $\frac{23}{\sqrt{53}} \doteq 3.2$
25. $\left(-\frac{5}{3}, \frac{5}{6}, \frac{5}{6}\right)$
26. $y=k$, where k is a constant.
27. a) $(-1,3,-2)$
b) The intersection is the given line.
28. a) $69.5^{\circ} \quad 0^{\circ} \quad 90^{\circ}$
b) $\pi_{1} / / \pi_{3}$ and $\pi_{1} \perp \pi_{4}$.
c) $\pi_{1} \cap \pi_{2}:(x, y, z)=\left(-\frac{32}{3},-\frac{22}{3}, 0\right)+t\left(-\frac{11}{3},-\frac{7}{3}, 1\right) \quad t \in \mathbb{R} \quad \pi_{1} \cap \pi_{3}: \varnothing$

$$
\pi_{1} \cap \pi_{4}:(x, y, z)=\left(\frac{54}{7}, \frac{13}{7}, 0\right)+t\left(\frac{11}{7}, \frac{2}{7}, 1\right) \quad t \in \mathbb{R}
$$

d) $\pi_{1} / / \pi_{3}$ and distinct, all other pairs are intersecting, with

$$
\begin{aligned}
& \pi_{1} \cap \pi_{2}:(x, y, z)=\left(-\frac{32}{3},-\frac{22}{3}, 0\right)+t(11,7,-3), \pi_{1} \cap \pi_{4}:(x, y, z)=\left(\frac{54}{7}, \frac{13}{7}, 0\right)+t(11,2,7), \\
& \pi_{2} \cap \pi_{3}:(x, y, z)=\left(\frac{1}{3}, \frac{11}{3}, 0\right)+t(11,7-3), \pi_{2} \cap \pi_{4}:(x, y, z)=\left(\frac{11}{5}, \frac{83}{15}, 0\right)+t(0,4,3), \\
& \pi_{3} \cap \pi_{4}:(x, y, z)=(3,5,0)+t(11,2,7)
\end{aligned}
$$

e) $\frac{2 \sqrt{6}}{3} \quad \frac{5 \sqrt{34}}{34} \quad \frac{7 \sqrt{6}}{6} \quad \frac{\sqrt{29}}{29}$
g) $A \in \pi_{2} \quad B \in \pi_{1}$ and $B \in \pi_{2}$
h) $\left(\frac{19}{6}, \frac{-1}{3}, \frac{-1}{6}\right) \quad\left(\frac{7}{34}, \frac{163}{34}, \frac{16}{17}\right) \quad\left(\frac{4}{3}, \frac{10}{3}, \frac{5}{3}\right)$
$\frac{1-x}{3}=\frac{y-2}{3}=\frac{-z-3}{4}$
f) $\frac{11 \sqrt{6}}{6}$
C is not on any of the planes
$\left(\frac{59}{29}, \frac{161}{29}, \frac{-2}{29}\right)$
$x-1=\frac{2-y}{2}-z-3 \quad \frac{x-1}{2}=\frac{y-2}{3}=\frac{-z-3}{4}$
30. a) $P(2,-1,3)$
b) $2 \sqrt{35}$
c) $\frac{x-8}{6}=\frac{y-9}{10}=\frac{z+1 \underline{2}}{2}$

