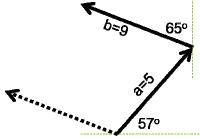

Vectors UNIT A INTRODUCTION TO VECTORS – journal

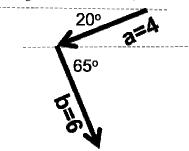
ODUCTION TO VECTORS – journal


Summarize everything you need to know about these topics. Use examples and concise (not long – but with enough detail) explanations. Include definitions and diagrams if necessary

1. INTRODUCTION TO VECTORS

- a. Distinguish between vector and scalar, give examples
- b. Copy/Paste the following

d. Find magnitude and direction (relative to tail of original vectors) of the resultant *difference* a - b using SineCosine METHOD

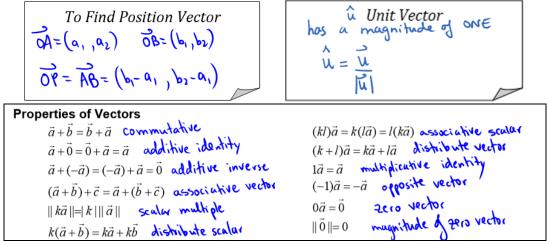

2. VECTORS in R^2 and R^3

d.

- a. Record all formulas for 2D and 3D
- b. Draw a position vector of the point P(-3, 7) and express it in polar form. Then state the unit vector in same direction as the position vector in component form.
- c. Express as a vector in component form

i.
$$\vec{a} = (12, 330^{\circ})$$
, in R²

ii. |u| = 8, $\alpha = 60^{\circ}$, $\beta = 150^{\circ}$ in R³ Explain how one can find the 3rd direction angle if given only two of them in R³ Find magnitude and direction (relative to tail of original vectors) of the resultant *sum* using COMPONENTS METHOD



3. VECTOR PROPERTIES & PROOFS

a. Copy/Paste the following

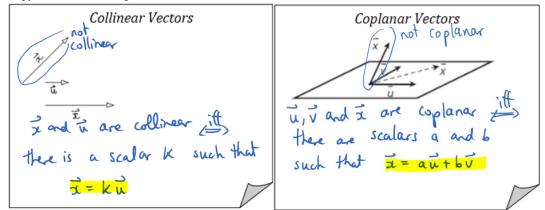
Opposite Vectors RULE \overrightarrow{AB} is opposite of \overrightarrow{BA} $\left(\overrightarrow{AB}\right) = \left(\overrightarrow{BA}\right)$ $\overrightarrow{AB} = -\overrightarrow{BA}$ Sugar letters + make regative	Adding Vectors RULE if you have both vectors positive and the inside letter matches then you can "collapse". Ac = AX + XC "short ut"
swap letters + make negative	can "collapse". Ac = AX + XC "shore cut

NAME:

b. Show a proof using vectors for:

If side BC of $\triangle ABC$ is trisected by points P and Q, show that

$$\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AP} + \overrightarrow{AQ}$$


- c. Prove the following using cosine law (DO NOT FOIL, can't until we learn about how to multiply vectors by dot and cross products) $\|\vec{a} + \vec{b}\|^2 + \|\vec{a} - \vec{b}\|^2 = 2\|\vec{a}\|^2 + 2\|\vec{b}\|^2$
- d. Redo the same question from assignment(below) using the above property without any rounding, compare with what you did in the assignment pg4.

Given $\|\vec{a}\|=10$, $\|\vec{b}\|=15$, and $\|\vec{a}+\vec{b}\|=20$, find $\|\vec{a}-\vec{b}\|$.

4. OPERATIONS WITH VECTORS

Clarify for yourself when position vectors must be added or and when they are subtracted (use the following examples to explain)

- a. Given pt A and pt B, find AB
- b. Given parallelogram OAPB and points A and B, find point P (Notice one point of parallelogram is origin here)
- 5. SPANNING SETS
 - a. Explain Spanning Sets for lines, planes and 3-D space.
 - b. Copy/Paste the following

c. Do the following question and talk about what the vectors can span. Prove that the vectors $\vec{a} = (-1,2,-3)$, $\vec{b} = (2,0,-1)$, and $\vec{a} = (-1,2,-3)$

 $\vec{c} = (-7,6,-7)$ are linear dependant. \mathcal{R}