Matrices

A matrix is a method of writing a set of numbers using rows and columns.

	$\begin{bmatrix} 3 & 2 \\ 1 & -5 \\ 7 & 2 \\ 5 & 4 \end{bmatrix}$		0	_	107
$\begin{bmatrix} 1 & 2 \end{bmatrix}$	1 -5	2	0	-5	10
$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$		12	8	4	9
[3 4]		25	0 8 -30	1	-1
		_			_

Reading Information from a Matrix

• Cells in a matrix can be refe	renced in the form	·	
3 -4 6 5	State the value for	or each of the following	
7 2 0 1	(2, 3) =	(1, 4) =	
$\begin{bmatrix} 3 & -4 & 6 & 5 \\ 7 & 2 & 0 & 1 \\ 5 & 9 & 13 & -2 \\ -10 & -1 & 4 & 3 \end{bmatrix}$	State the location	n of each of the following	
	4 –1 =	1 =	

Matrix Addition & Subtraction

• To add matrices, they must be ______.

$\begin{bmatrix} 2 & 1 \\ 4 & 7 \end{bmatrix} + \begin{bmatrix} 3 & 12 \\ 5 & -2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} - \begin{bmatrix} 10 & 3 & 2 \\ -5 & 1 & -1 \end{bmatrix}$	$\begin{bmatrix} 1\\2\\4 \end{bmatrix} + \begin{bmatrix} 5 & 2 & 14 \end{bmatrix}$
---	--

Scalar Multiplication & Division

$5 \times \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	-7]	6	-8	$\begin{bmatrix} 24 \end{bmatrix}$
3×3	4	_18	22	$\begin{bmatrix} 24 \\ -4 \end{bmatrix} \div 2$

- The number of ______ in the 1st matrix must equal the number of ______ in the 2nd matrix.
- $\begin{bmatrix} 3 & 5 & 1 \\ 2 & 8 & 4 \end{bmatrix} \times \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \times \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} \times \begin{bmatrix} 3 & 5 & 1 \\ 2 & 8 & 4 \end{bmatrix} \qquad \begin{bmatrix} 2 & 8 \\ 3 & 4 \\ 1 & 0 \\ 6 & 5 \end{bmatrix} \times \begin{bmatrix} 10 & 3 \\ 2 & 5 \end{bmatrix}$

Zero Matrix

• All entries in the matrix are _____. $\begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 \\ 5 \\ -1 \\ 3 \end{bmatrix}$

• When multiplying by the identi	ty matrix, the original m	natrix	.•
$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	
$\begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$			

Inverse Matrix

When a matrix is multiplied by the inverse, the result is an identity matrix ٠

Determine which of the following is the inverse of the matrix $\begin{bmatrix} 3 & 8 \\ 1 & 3 \end{bmatrix}$:

 $\begin{bmatrix} 3 & -8 \\ -1 & 3 \end{bmatrix} \qquad \begin{bmatrix} 2 & 8 \\ 1 & 2 \end{bmatrix}$ $\begin{bmatrix} 8 & 3 \\ 3 & 1 \end{bmatrix}$

- You can multiply/divide the rows of an equation matrix by a constant
- You can add/subtract rows to eliminate entries

Find the inverse of the following matrices:

 $\begin{bmatrix} 3 & 8 \\ 1 & 3 \end{bmatrix}$

 $\begin{bmatrix} 6 & 3 \\ 4 & 1 \end{bmatrix}$

Equations of Lines in 2-Dimensions

Туре	Scalar/Cartesian	Vector	
Format			
Example	Find the equation of the line that has a slope of -3 and a y-intercept of 2.	Find the equation of the line that passes through the point (-1, 5) and has the same direction as the vector $\vec{a} = (2, -6)$.	

Туре	Parametric	Symmetric
Format		
Example	Find the equation of the line that passes through the point (-1, 5) and has the same direction as the vector $\vec{a} = (2, -6)$.	Find the equation of the line that passes through the point (-1, 5) and has the same direction as the vector $\vec{a} = (2, -6)$.

State the **direction vector** and **one point** on each of the following lines.

Equation	$\vec{r} = (2,5) + t(-3,1)$	x = 5 + 3t $y = 10 - 2t$	$\frac{x-3}{7} = \frac{y+5}{3}$	2x + 3y = 12
Direction Vector				
Point				

Find the **direction vector** for each of the following:

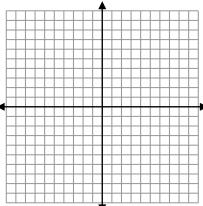
a)	A line pa	ssing throug	gh (4, 5) and (-2, 1)	b)	A vertical line
			(\cdot, \cdot)	ς,	

c) A horizontal line d) A line parallel to y = 4x - 2

e) A line perpendicular to y = 4x - 2 f) A line with a normal vector $\vec{N} = (2,7)$

Does the point (1, -7) lie on the line $\vec{r} = (3, 6) + t(2, -5)$?

Find the scalar, vector, parametric, and symmetric equations of the line that passes through the points A (3, 0) and B (9, -4).



Determine whether the following vectors are parallel, perpendicular, or neither:

Equations of Lines in 3 Dimensions

Vector
Symmetric

1. Find the vector, parametric, and symmetric equations of the line that passes through (2, 1, -3) and (5, -7, 4).

2. Find the parametric equation of the line that passes through (8, -10, 5) and is parallel to the line $\vec{r} = (5, -7, 4) + t(2, 1, -1)$.

3. Find the symmetric equation of the line that passes through (2, -1, 5) and has a direction vector of (12, 4, -1).

Vector Equation of a Plane

A plane is a flat surface that extends infinitely in all directions.

Vector Equation of a Plane

To find the equation of a plane we need:

•

Write the vector, parametric and symmetric equations of the plane that contains the lines $\vec{r} = (3,10,-4) + t(4,0,1)$ and $\vec{r} = (-6,6,7) + t(11,-3,-2)$.

Write the vector and parametric equations of the plane that passes through the point A(2, 5, 3) and contains the line $\vec{r} = (-2, 4, 7) + t(1, 4, -5)$.

Find the vector equation of a plane that passes through the points A(1, 2, 1), B(4, 5, 1) and C(4, 0, 1).

Scalar Equations of Planes

$$\mathbf{0} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} + \mathbf{C}\mathbf{z} + \mathbf{D}$$

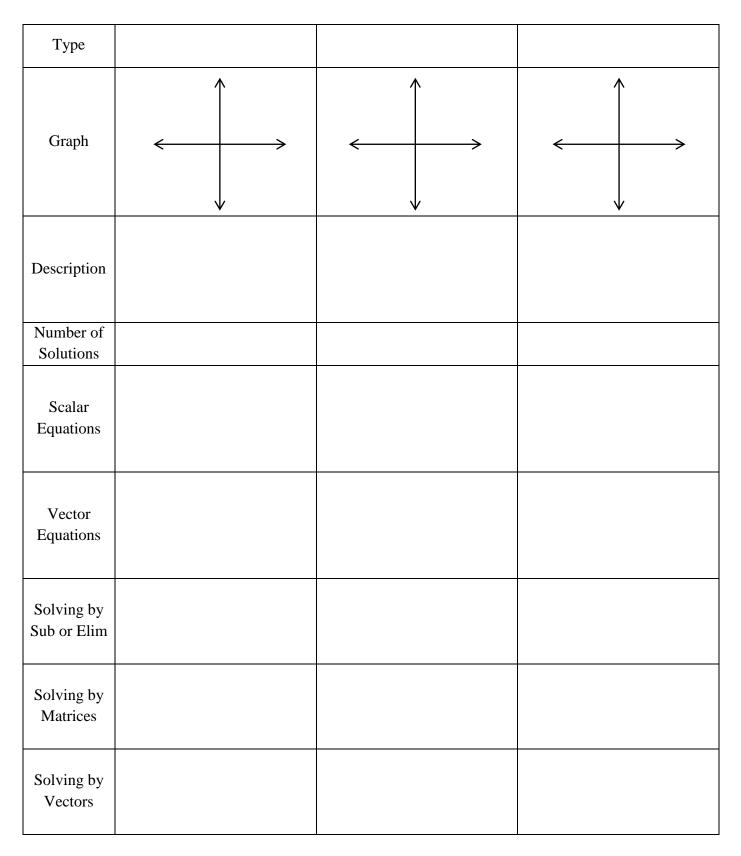
Normal = (A, B, C)

Find the scalar equation of the plane $\vec{r} = (2, -1, 7) + t(3, 1, 4) + s(1, 0, -4)$.

Find the scalar equation of the plane that passes through the points A(5, 14, -3), B(2, 1, -2), C(0, 4, -1).

Intersection of 2 Lines (2D)

Types of Intersection/Solutions



Scalar Equations

• To determine the intersection point of two lines, you can solve by **substitution**, **elimination** or **matrices**.

Solve: 3x + 2y + 5 = 0x - y - 10 = 0

Method 1: Substitution

Method 2: Elimination

Method 3: Matrices

Vector Equations

Solve:
$$\vec{r} = (2, 3) + t(-1, 4)$$

 $\vec{r} = (-10, 7) + s(9, 8)$

Intersection of a Line and a Plane

Determine the intersection of the following lines with the plane 4x + 3y - 2z - 5 = 0.

a) $\vec{r} = (5, 1, -3) + t(2, -4, 1)$

b)
$$\vec{r} = (-2, 3, 1) + t(-3, 4, 0)$$

c)
$$\vec{r} = (1, 3, 4) + t(-1, -2, -5)$$

Intersection of 2 Lines (3D)

Types of Intersection/Solutions

Туре		
Graph		
Description		
Number of Solutions		
Vector Equations		
Solving		

Solve:

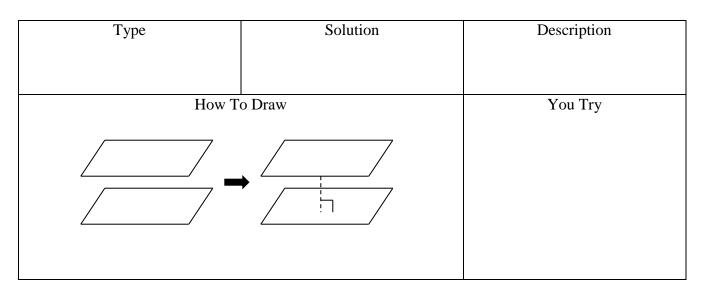
 $\vec{r} = (2, 4, -1) + t(2, 1, -1)$ $\vec{r} = (4, 5, 7) + s(-2, -1, 1)$ Solve: $\vec{r} = (10, -3, 1) + t(1, 1, -1)$ $\vec{r} = (7, -6, 4) + s(2, 2, -2)$

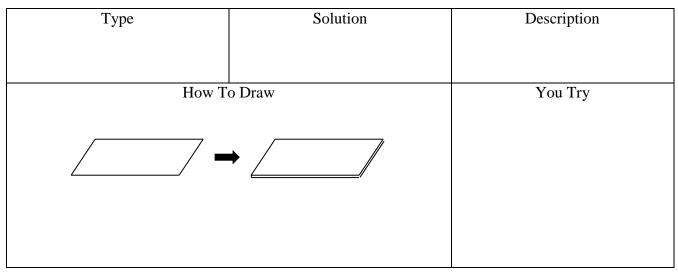
Solve:
$$\vec{r} = (4, 2, -1) + t(3, 0, 1)$$

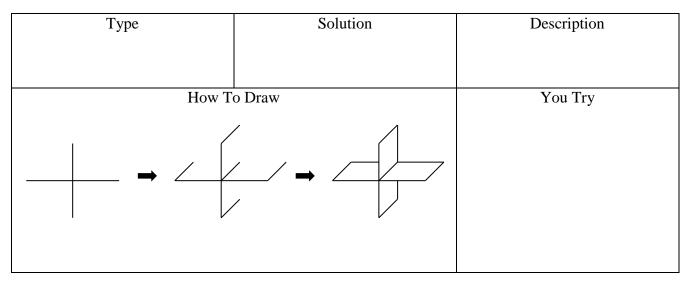
 $\vec{r} = (-3, 3, -7) + s(1, -1, 4)$

Solve:
$$\frac{x-1}{4} = \frac{y-3}{3} = \frac{z-3}{1}$$
 $\frac{x-2}{3} = \frac{y-2}{3} = \frac{z-10}{2}$

Intersection of Planes – 2 Planes



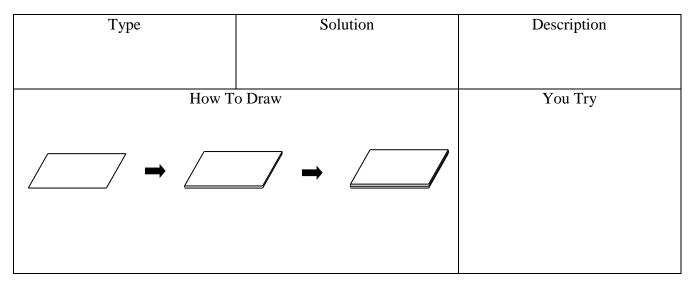


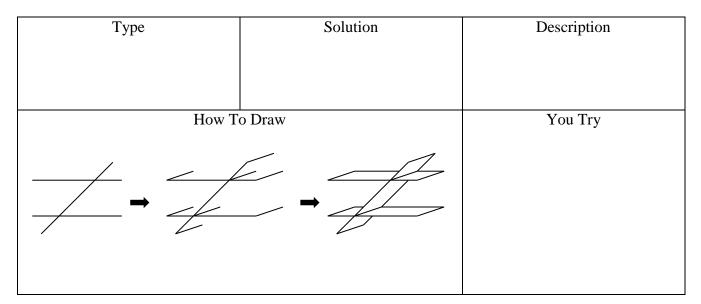


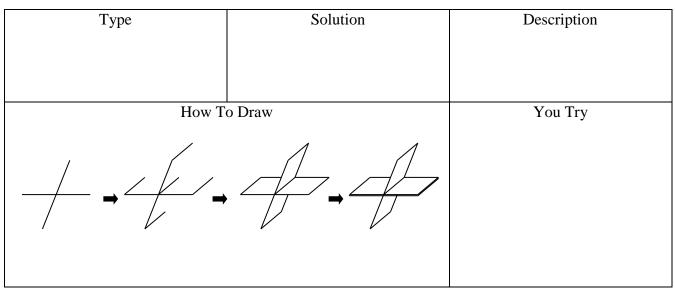
Intersection of Planes – 3 Planes

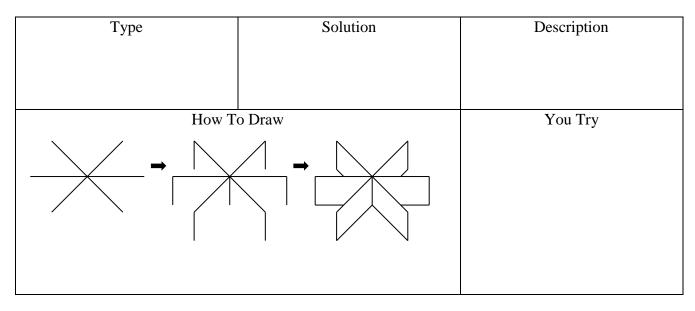
Туре	Solution	Description
How Te	o Draw	You Try

Туре	Solution	Description
How T	o Draw	You Try









Туре	Solution	Description
How T	o Draw	You Try
How To Draw \rightarrow		Tou Try

Туре	Solution	Description
How To Draw		You Try

Configurations of Planes

To determine whether or not planes intersect, they need to be written in ______ form.

Helpful Information				
Parallel Planes	Coincident Planes	Intersecting Planes		
The are the same or scalar multiples 2x + 5y - 3z + 10 = 0	The are the same or scalar multiples 2x + 5y - 3z + 10 = 0	The are different. 2x + 5y - 3z + 10 = 0		

Determine the configuration of each of the following sets of planes and state the solution. Draw a geometric representation of each.

a) 4x - 2y + z - 3 = 08x - 4y + 2z - 3 = 0

b) 10x - 6y + 4z - 8 = 015x - 9y + 6z - 12 = 0

c) 3x + 5y - 2z + 1 = 02x + 5y + z - 6 = 0 d) 2x + 3y + 5z - 4 = 04x + 6y + 10z + 3 = 010x + 15y + 25z - 7 = 0

e) 5x + 3y - 4z + 2 = 0 5x + 3y - 4z + 10 = 035x + 21y - 28z + 14 = 0

f) x - y + 7z - 3 = 0 2x - 2y + 14z - 6 = 010x - 10y + 70z - 30 = 0

g) 9x - 3y + 12z + 6 = 0x - y + 3z + 2 = 015x - 5y + 20z - 10 = 0

h) x - 7y - 10z + 9 = 03x + 4y - z + 4 = 018x + 24y - 6z + 24 = 0

Solving For The Intersection of 2 & 3 Planes

Solving means finding the _____, ____, or _____, or ____, or _____, or ____, or ___, or ____, or ___, or ____, or ___, or ____, or ___, or __, or ___, or __, or ___, or __, or ___, or __, or ___, or __, or ___, or __, or ___, or ___, or ___, or __, or ___, or ___, or ___, or __, or ___, or ___, or ___, or ___, or __, or __, or __, or __, or __, or __,

1. Determine the **point** of intersection of the following planes. Include a geometric representation.

3x + y + 4z + 3 = 02x - 5y + 3z + 13 = 05x + 3y - 2z + 11 = 0

2. Determine the equation of the **plane** of intersection of the following planes. Include a geometric representation.

2x - 7y + 4z - 3 = 04x - 14y + 8z - 6 = 010x - 35y + 20z - 15 = 0 3. Determine the equation of the **line** of intersection of the following planes. Include a geometric representation.

2x + 10y - 3z + 1 = 02x - 8y + 3z - 5 = 0 4. Determine the equation of the **line** of intersection of the following planes. Include a geometric representation.

 $\begin{array}{l} x+4y+3z-6=0\\ 3x+2y-z+2=0\\ 3x+14y+11z-22=0 \end{array}$

5. Solve the following. Include a geometric representation.

 $\begin{array}{l} 10x-3y-7z+18=0\\ 12x-11y-z+66=0\\ 22x-14y-8z+158=0 \end{array}$

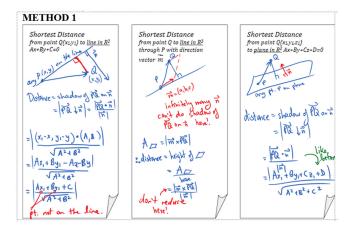
Plane Practice

Solve for the intersection of the following planes. Draw a geometric representation of each.

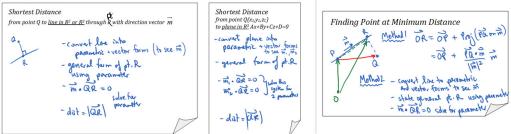
a) 5x + 3y - 2z + 1 = 02x + 4y + 2z - 8 = 04x + 3y - z + 5 = 0

b)
$$\pi_1$$
: $x + 7y - 6z + 17 = 0$
 π_2 : $\vec{p} = (7, -2, 3) + s(1, 1, 2) + t(9, -5, -3)$
 π_3 : $\begin{cases} x = 2 + 4s + t \\ y = 4 + s + 9t \\ z = 4 - 2s + 3t \end{cases}$

Distances



METHOD 2:



b. Find the distance from point Q(5,8) to the line 7x + y - 23 = 0 using METHOD 1 & 2

c. Calculate the distance between the two parallel planes 2x - y + 2z + 4 = 0 and 2x - y + 2z + 16 = 0

d. Determine the distance between point Q(-2,1,0) and line $\vec{r} = (0,1,0) + t(1,1,2), t \in R$

e. For question d. determine point R on the line at which minimum distance occurs (use METHOD 1 &2 then check if your answer in d. is correct).