TECHNIQUES OF
INTEGRATION

Simpson’s Rule estimates
integrals by approximating

graphs with parabolas.

Because of the Fundamental Theorem of Calculus, we can integrate a function if we know
an antiderivative, that is, an indefinite integral. We summarize here the most important
integrals that we have learned so far.

n+l1

J‘x"dx:n+l+c (n# —1) [—dax=m|x| +c
fe"dx: e+ C Ja"dx= lg; +
fsinxdx=fcosx+C fcosxdx=sinx+C
fseczxdx =tanx + C fcsczxdx = —cotx + C
J~secxtanxdx=secx+C J~cscxcotxdx=—cscx+C
fsinhxdx=coshx+C fcoshxdx=sinhx+C
t[tanxdx=ln|secx|+C t[cotxdx=ln|sinx|+C

1 1 X 1 —an[ X
fmdx—atan <a>+C jmdx—sm <a>+C

In this chapter we develop techniques for using these basic integration formulas to obtain
indefinite integrals of more complicated functions. We learned the most important method of
integration, the Substitution Rule, in Section 5.5. The other general technique, integration by
parts, is presented in Section 7.1. Then we learn methods that are special to particular classes
of functions, such as trigonometric functions and rational functions.

Integration is not as straightforward as differentiation; there are no rules that absolutely
guarantee obtaining an indefinite integral of a function. Therefore we discuss a strategy for
integration in Section 7.5.




7.1

INTEGRATION BY PARTS

Every differentiation rule has a corresponding integration rule. For instance, the Substi-
tution Rule for integration corresponds to the Chain Rule for differentiation. The rule that
corresponds to the Product Rule for differentiation is called the rule for integration by
parts.

The Product Rule states that if f and g are differentiable functions, then

[/ 0g0] = (g ) + gLy

In the notation for indefinite integrals this equation becomes

[ g () + gr (0 dx = f(x)g(x)

or [ F@g' ax + [ g(0r ') dx = g0

We can rearrange this equation as

1] [ F(g') dx = F(g(x) — [ gLf () dx

Formula 1 is called the formula for integration by parts. It is perhaps easier to remem-
ber in the following notation. Let u = f(x) and v = g(x). Then the differentials are
du = f'(x) dx and dv = g'(x) dx, so, by the Substitution Rule, the formula for integration
by parts becomes

[2] fudv=uv—fvdu

EXAMPLE | Find f x sin x dx.

SOLUTION USING FORMULA | Suppose we choose f(x) = x and ¢g'(x) = sin x. Then f'(x) = 1
and g(x) = —cos x. (For g we can choose any antiderivative of g'.) Thus, using Formula
1, we have

[ xsin xdx = £(x)g(x) — [ g(0f'(x) dx
— x(—cos x) — j (—cos x) dx
— —xcosx + fcosxdx
= —xcosx +sinx + C

It’s wise to check the answer by differentiating it. If we do so, we get x sin x, as
expected.
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SOLUTION USING FORMULA 2 Let

It is helpful to use the pattern: u=x dv = sin x dx
u=101 dv =1
du=H v=0 Then du = dx v = —Ccosx

and so

u dv u v v du
-~ —— —

jxsinxdx = f x sinxdx = x (—cosx) — j(—cosx) dx

= —xcosx+fcosxdx

= —xcosx +sinx + C [ |

Our aim in using integration by parts is to obtain a simpler integral than the one
we started with. Thus in Example 1 we started with f x sin x dx and expressed it in terms
of the simpler integral J cos x dx. If we had instead chosen u = sin x and dv = x dx, then
du = cos x dx and v = x?/2, so integration by parts gives

2
1
stinxdx= (sinx)x?—gszcosxdx

Although this is true, | x?cos x dx is a more difficult integral than the one we started with.
In general, when deciding on a choice for u and dv, we usually try to choose u = f(x) to
be a function that becomes simpler when differentiated (or at least not more complicated)
as long as dv = g'(x) dx can be readily integrated to give v.

7 EXAMPLE 2 Evaluate f In x dx.

SOLUTION Here we don’t have much choice for u and dv. Let

u=Inx dv = dx
1

Then du = —dx V=X
X

Integrating by parts, we get

dx
flnxdx=xlnx - fx—
X
It's customary to write | 1 dx as [ dx. =xlnx — f dx
Check the answer by differentiating it. =xlnx—-—x+C

Integration by parts is effective in this example because the derivative of the function
f(x) = In x is simpler than f. |



An easier method, using complex numbers, is
given in Exercise 50 in Appendix H.
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2 EXAMPLE 3 Find j t2e' dt.

SOLUTION Notice that #* becomes simpler when differentiated (whereas e’ is unchanged
when differentiated or integrated), so we choose

u=r* dv = e'dt
Then du = 2tdt v=oc¢
Integration by parts gives

[3] f tPe'dt =t — 2 f te'dt

The integral that we obtained, | te' dt, is simpler than the original integral but is still not
obvious. Therefore, we use integration by parts a second time, this time with # = ¢ and
dv = e'dt. Then du = dt, v = €', and

fte’dt= te' — je’dl =te'—e' + C
Putting this in Equation 3, we get
jtze’dt =t — the’dt
=t — 2te' — ' + C)
= te' — 2te' + 2¢' + C, where C, = —2C [ |
i1 EXAMPLE 4 Evaluate f e*sin x dx.

SOLUTION Neither e* nor sin x becomes simpler when differentiated, but we try choosing
u = e" and dv = sin x dx anyway. Then du = e*dx and v = —cos x, so integration by
parts gives

[4] je"sinxdx = —e¢'cos x + j e*cos x dx

The integral that we have obtained, | e”*cos x dx, is no simpler than the original one, but
at least it’s no more difficult. Having had success in the preceding example integrating
by parts twice, we persevere and integrate by parts again. This time we use u = ¢* and
dv = cos x dx. Then du = e*dx, v = sin x, and

[5] Jexcosxdx=e"sinx—fe"sinxdx

At first glance, it appears as if we have accomplished nothing because we have arrived at
f e’ sin x dx, which is where we started. However, if we put the expression for f e*cos x dx
from Equation 5 into Equation 4 we get

je"sinxdx = —e'cos x + e*sin x — f e*sin x dx
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Figure 1 illustrates Example 4 by show-
ing the graphs of f(x) = e* sin x and
F(x) = 3e*(sin x — cos x). As a visual check
on our work, notice that f(x) = 0 when F has
a maximum or minimum.

12

FIGURE 1

Since tan~'x = 0 for x = 0, the integral in
Example 5 can be interpreted as the area of the
region shown in Figure 2.

y=tan 'x

FIGURE 2

This can be regarded as an equation to be solved for the unknown integral. Adding
| " sin x dx to both sides, we obtain

Zf e'sin xdx = —e*cos x + e"sin x
Dividing by 2 and adding the constant of integration, we get

. 1wy -
fe'”sm xdx = ze*(sinx — cos x) + C ]

If we combine the formula for integration by parts with Part 2 of the Fundamental
Theorem of Calculus, we can evaluate definite integrals by parts. Evaluating both sides of
Formula 1 between @ and b, assuming f’ and g’ are continuous, and using the Fundamental
Theorem, we obtain

€ [ 9@ dx = £, — [ g0 dx

1
EXAMPLE 5 Calculate fO tan”x dx.

SOLUTION Let

u = tan 'x dv = dx
d
Then du = _xz v=x
1+x

So Formula 6 gives

jl tan 'xdx = x tan’]x]1 - fl —_dx
0 0 o1+ x?

Poan 1= 0 tan 10 — [~ dx
o1+ x

o 1 X
=TT

To evaluate this integral we use the substitution # = 1 + x? (since u has another meaning
in this example). Then df = 2x dx, so xdx = % dt. When x = 0, ¢t = 1; when x = 1,
t = 2;s0

=ln2—-Il)=1im2

In2
Therefore Ll tan " x dx = % - fol %dx = % — nT m
X



Equation 7 is called a reduction formula
because the exponent n has been reduced to

n—landn — 2.

7.1 | EXERCISES
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EXAMPLE 6 Prove the reduction formula

. 1 - n—1p¢
f sin"x dx = ——cos x sin" 'x + f sin" %x dx
n n

where n = 2 is an integer.

SOLUTION Let u = sin""'x dv = sin x dx
Then du = (n — 1) sin" *x cos x dx v = —CcoSXx
so integration by parts gives
j sin"x dx = —cos xsin" 'x + (n — 1) f sin""%x cos’x dx
Since cos*x = 1 — sin’x, we have
f sin"xdx = —cos xsin" 'x + (n — 1) f sin"*xdx — (n — 1) f sin"x dx

As in Example 4, we solve this equation for the desired integral by taking the last term
on the right side to the left side. Thus we have

nj sin"x dx = —cos xsin" " 'x + (n — 1) f sin" %x dx
s n 1 con—1 n— 1 s n—2
or sin"x dx = ——cos xsin"” 'x + sin" “x dx |
n n

The reduction formula (7) is useful because by using it repeatedly we could eventually
express | sin"x dx in terms of [ sin x dx (if n is odd) or [ (sin x)°dx = [ dx (if n is even).

I-2 Evaluate the integral using integration by parts with the 1. j arctan 4¢ dt 2. f pSlnpdp

indicated choices of u and dv.

1. flenxdx; u=1Inx, dv=x>dx

2. J’0cos9d9; u=0, dv = cosdf

3-32 Evaluate the integral.

(3. f X cos 5x dx
5. J re”* dr
7. f x?sin x dx

9. fln(zx + 1) dx

4, jxe’)‘ dx
6. Jtsin 2t dt
8. sz cos mx dx

10. jsin"xdx

13. j tsec? 2t dt
[15] j (In x)*dx

f ¢ sin 39 d6
19. jo” f sin 3¢ dt

21. J:zcoshtdt

ol
23. jf LA

X2

14. stx ds
16. f ¢ sinh mt dt
18. fe"’cos 260d6
1
fo (x* + e *dx

9Iny
22. L Tydy

24. foﬁxS cos x dx
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1y V3
25. L ;dy 26. J.I arctan(1/x) dx

1 2
28. f(nf) dx

27. [1/2 cos 'x dx
Jo x

. 73

29. f cos x In(sin x) dx 30. Jol ﬁ
-

dr

31. flz x*(In x)? dx 32. J‘O’ e’ sin(t — s) ds

33-38 First make a substitution and then use integration by parts
to evaluate the integral.

33. fcos\/;dx

34. J e’ dt
'\/; T cost -
B5) Jm 0% cos(6?) d6 36. jo e“*'sin 2t dt

37. f xIn(1 + x) dx 38. j sin(In x) dx

ﬁ 39-42 Evaluate the indefinite integral. Illustrate, and check that

your answer is reasonable, by graphing both the function and its
antiderivative (take C = 0).

39. J(Zx + 3)e“dx 40. J.xm In x dx

41. fx3\/1 + x2 dx

4. j x? sin 2x dx

(b) Use part (a) to evaluate JOT/ 2

(c) Use part (a) to show that, for odd powers of sine,

sin’x dx and [ sin’x dx.

A 7 Ded e -n 2
d_
J " sin® e 3-57---Qn+ 1)

46. Prove that, for even powers of sine,

3:5-----@2n-D 7w
D46 - -2n 2

/2 .
f sin?"x dx =
0

47-50 Use integration by parts to prove the reduction formula.

J. (Inx)"dx = x(Inx)" — n j (In x)" 'dx

48. (x”e"dx =x"e* —n f x" et dx

n—1

tan" 'x 5
49. tan"x dx = T J tan" *xdx (n# 1)
" —
tan x sec” > -2
50. jsec”x dx = al Lz [sec”’zx dx (n#1)
n—1 n—11/

43. (a) Use the reduction formula in Example 6 to show that

sin 2
f sinxdx = — — al
2 4

+C

(b) Use part (a) and the reduction formula to evaluate
| sin'x dx.
44. (a) Prove the reduction formula

1 _ . n _
f cos"x dx = —cos" 'x sin x + f cos"2x dx
n

(b) Use part (a) to evaluate ‘ cos’x dx.
(¢) Use parts (a) and (b) to evaluate | cos*x dx.

45. (a) Use the reduction formula in Example 6 to show that

2 . n—1 ptap .
J sin"x dx = f sin"2x dx
o n o Jo

where n = 2 is an integer.

51. Use Exercise 47 to find [ (In x)’ dx.
52. Use Exercise 48 to find [ x*e* dx.

53-54 Find the area of the region bounded by the given curves.

0.4x

53. y=xe ™, y=0, x=5
54. y=5lnx, y=xlnx

55-56 Use a graph to find approximate x-coordinates of the

points of intersection of the given curves. Then find (approxi-
mately) the area of the region bounded by the curves.

55. y=xsinx, y=(x — 2)

56. y = arctan 3x, y = %x

57-60 Use the method of cylindrical shells to find the volume
generated by rotating the region bounded by the given curves
about the specified axis.

y = cos(mx/2), y=0, 0 <x<1; about the y-axis

X

58. y=¢, y=¢*, x=1; about the y-axis

X

59. y=¢% y=0,x=—1, x=0; aboutx =1

60. y =e*, x =0, y=m; about the x-axis




61. Find the average value of f(x) = x?In x on the interval [1, 3].

62. A rocket accelerates by burning its onboard fuel, so its mass
decreases with time. Suppose the initial mass of the rocket at
liftoff (including its fuel) is m, the fuel is consumed at rate r,
and the exhaust gases are ejected with constant velocity v.
(relative to the rocket). A model for the velocity of the rocket
at time 7 is given by the equation

m —rt

v(t) = —gt — veln

where g is the acceleration due to gravity and ¢ is not too
large. If g = 9.8 m/s%, m = 30,000 kg, r = 160 kg/s, and
v. = 3000 m/s, find the height of the rocket one minute
after liftoff.

A particle that moves along a straight line has velocity
v(t) = t*¢" meters per second after ¢ seconds. How far will
it travel during the first 7 seconds?

64. 1f £(0) = g(0) = 0 and f" and g " are continuous, show that
Laf (x)g"(x) dx = fla)g'(a) — f(@)g(a) + f:f”(x)g(x) dx

65. Suppose that (1) = 2, f(4) =7, f'(1) = 5, f'(4) = 3, and
f"is continuous. Find the value of [} xf"(x) dx.

(a) Use integration by parts to show that

[ 1o dx = xro = [ ') ax

(b) If f and g are inverse functions and f” is continuous,
prove that

[ £ dx = bf®) — atl@) ~ [ g3 ay

f

[Hint: Use part (a) and make the substitution y = f(x).]
(c) In the case where f and g are positive functions and
b > a > 0, draw a diagram to give a geometric interpre-
tation of part (b).
(d) Use part (b) to evaluate [f In x dx.

67. We arrived at Formula 6.3.2, V = |’ 2mx f(x) dx, by using
cylindrical shells, but now we can use integration by parts to
prove it using the slicing method of Section 6.2, at least for
the case where f is one-to-one and therefore has an inverse
function g. Use the figure to show that

V = wb’d — ma’c — Jj w[g(y)]*dy

Make the substitution y = f(x) and then use integration by

SECTION 7.1 INTEGRATION BY PARTS |[||| 459

parts on the resulting integral to prove that

V= Jﬁb 27rx f(x) dx

68. Let I, = :(;T/Z sinx dx.

(a) Show that I,+7 < L,+1 < b,.
(b) Use Exercise 46 to show that

Ly 2n+1
Izn 2n + 2

(c) Use parts (a) and (b) to show that

2n + 1 DLyt
= =
2n + 2 L,

and deduce that lim, . Ly+1/L, = 1.
(d) Use part (c) and Exercises 45 and 46 to show that

.2 2 4 4 6 6
im—+—¢«—+— ¢ — ¢ — 0 o
3 3 5 5 7

n—o |

2n 2n _m
2n—1 2n+1 2

This formula is usually written as an infinite product:

_2
1

vy

2.4, 466
335 5 7

and is called the Wallis product.

(e) We construct rectangles as follows. Start with a square of
area 1 and attach rectangles of area 1 alternately beside or
on top of the previous rectangle (see the figure). Find the
limit of the ratios of width to height of these rectangles.

F—— g —— L

L
|
|
1]
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7.2

TRIGONOMETRIC INTEGRALS

Figure 1 shows the graphs of the integrand
sin’x cos*x in Example 2 and its indefinite inte-
gral (with C = 0). Which is which?

0.2

—-0.2

FIGURE 1

In this section we use trigonometric identities to integrate certain combinations of trigo-
nometric functions. We start with powers of sine and cosine.

EXAMPLE | Evaluate f cos’x dx.

SOLUTION Simply substituting # = cos x isn’t helpful, since then du = —sin x dx. In order
to integrate powers of cosine, we would need an extra sin x factor. Similarly, a power of
sine would require an extra cos x factor. Thus here we can separate one cosine factor and
convert the remaining cos’x factor to an expression involving sine using the identity
sin’x + cos’x = 1:

cos’x = cos?x - cos x = (1 — sin’) cos x
We can then evaluate the integral by substituting # = sin x, so du = cos x dx and
j cos’x dx = f cos’x * cos x dx = j (1 — sin*x) cos x dx
Zf(l —uZ)du=u—5u3+C

. 1 .
= sin x — 3sin’x + C [ |

In general, we try to write an integrand involving powers of sine and cosine in a form
where we have only one sine factor (and the remainder of the expression in terms of
cosine) or only one cosine factor (and the remainder of the expression in terms of sine).
The identity sin*x + cos*x = 1 enables us to convert back and forth between even powers
of sine and cosine.

7 EXAMPLE 2 Find j sin’x cos’x dx.
SOLUTION We could convert cos’x to 1 — sin’x, but we would be left with an expression in
terms of sin x with no extra cos x factor. Instead, we separate a single sine factor and
rewrite the remaining sin“x factor in terms of cos x:

sin’x cos®x = (sin’x)? cos®x sin x = (1 — cosx)? cos*x sin x
Substituting u = cos x, we have du = —sin x dx and so

f sin’x cos’x dx = f (sin’x)* cos®x sin x dx
= f (1 — cos*x)*cos®x sin x dx
= f (1 — u®)*u?(—du) = —j w? — 2u* + u®)du

u’ u> ou’
A A e
3 5 7

1 2 1
= —zcos’x + scos’x —5cos’x + C [ |



Example 3 shows that the area of the region
shown in Figure 2 is /2.

1.5
e R\
y=sin’x
0 T
o J
-0.5
FIGURE 2
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In the preceding examples, an odd power of sine or cosine enabled us to separate a
single factor and convert the remaining even power. If the integrand contains even powers
of both sine and cosine, this strategy fails. In this case, we can take advantage of the fol-
lowing half-angle identities (see Equations 17b and 17a in Appendix D):

sin’x = (1 — cos 2x) and cos’x = 3(1 + cos 2x)

7 EXAMPLE 3 Evaluate foﬁ sin’x dx.

SOLUTION If we write sin®x = 1 — cos’x, the integral is no simpler to evaluate. Using the
half-angle formula for sint, however, we have

JOW sin’x dx = %joﬂ (1 — cos 2x) dx = [1(x — Lsin 2x)];
Z%(ﬂ'— %sin277) - %(O - %sinO) =37

Notice that we mentally made the substitution # = 2x when integrating cos 2x. Another
method for evaluating this integral was given in Exercise 43 in Section 7.1. |

EXAMPLE 4 Find f sinx dx.
SOLUTION We could evaluate this integral using the reduction formula for f sin"x dx

(Equation 7.1.7) together with Example 3 (as in Exercise 43 in Section 7.1), but a better
method is to write sin*x = (sin’x)? and use a half-angle formula:

f sin‘x dx = j (sin’x)*dx

1 - 2x \?
_ j‘ < CcoS x> dx
2
= ij (1 — 2cos2x + cos?*2x) dx
Since cos?2x occurs, we must use another half-angle formula

cos?2x = 3(1 + cos 4x)

This gives

jsin4xdx= ﬁJ [1 — 2cos2x + 3(1 + cos 4x)] dx
=£J(% — 2 cos 2x +%cos4x)dx

=1(Bx —sin2x + §sin4x) + C [

To summarize, we list guidelines to follow when evaluating integrals of the form
f sin”x cos"x dx, where m = 0 and n = 0 are integers.
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STRATEGY FOR EVALUATING ‘ sin”x cos"x dx

(a) If the power of cosine is odd (n = 2k + 1), save one cosine factor and use
cos’x = 1 — sin’x to express the remaining factors in terms of sine:

f sin”x cos**lx dx = f sin”x (cosx)* cos x dx
= f sin”x (1 — sin’x)*cos x dx

Then substitute u = sin x.

(b) If the power of sine is odd (m = 2k + 1), save one sine factor and use
sinx = 1 — cos’x to express the remaining factors in terms of cosine:

f sin**x cos”"x dx = f (sinx)*cos"x sin x dx
= f (1 — cos*)*cos"x sin x dx

Then substitute # = cos x. [Note that if the powers of both sine and cosine are
odd, either (a) or (b) can be used.]

(c) If the powers of both sine and cosine are even, use the half-angle identities
sin’x = (1 — cos 2x) cos’x = 2(1 + cos 2x)
It is sometimes helpful to use the identity

. 1 .
sin x cos x = 5 sin 2x

We can use a similar strategy to evaluate integrals of the form f tan"x sec”x dx. Since
(d/dx) tan x = sec’x, we can separate a sec’x factor and convert the remaining (even)
power of secant to an expression involving tangent using the identity sec’x = 1 + tan*x.
Or, since (d/dx) sec x = sec x tan x, we can separate a sec x tan x factor and convert the
remaining (even) power of tangent to secant.

7 EXAMPLE 5 Evaluate f tan®x sec*x dx.

SOLUTION If we separate one sec’x factor, we can express the remaining sec’x factor in
terms of tangent using the identity sec*x = 1 + tan’x. We can then evaluate the integral
by substituting # = tan x so that du = sec’x dx:

f tan®x sec*x dx = j tan®x sec’x sec’x dx
= j tan®x (1 + tan’x) sec’x dx

= [ul + wydu = [ @+ u®)du

l/t7 9

- L+ 4c
79

= tan’x + §tan’x + C [ |
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EXAMPLE 6 Find f tan’@ sec’6 dé.

SOLUTION If we separate a sec’6 factor, as in the preceding example, we are left with

a sec”@ factor, which isn’t easily converted to tangent. However, if we separate a

sec 6 tan 0 factor, we can convert the remaining power of tangent to an expression
involving only secant using the identity tan*§ = sec’0 — 1. We can then evaluate the
integral by substituting u = sec 6, so du = sec 6 tan 0 d6:

ftanSG sec’0do = ftan“e sec®® sec 6 tan 0 d6
= f (sec’6 — 1)*sec®d sec O tan 6 d6
= f w? — 1)*u®du

= f @ — 2u® + u®)du

Sy,
11 9 7
= Lsec"'d — 2sec’d + 2 sec’d + C [ |

The preceding examples demonstrate strategies for evaluating integrals of the form
f tan"x sec”x dx for two cases, which we summarize here.

STRATEGY FOR EVALUATING ‘ tan"x sec"x dx

(a) If the power of secant is even (n = 2k, k = 2), save a factor of sec’x and use
sec’x = 1 + tan’x to express the remaining factors in terms of tan x:

j tan"x sec**x dx = f tan"x (sec’x)* 'sec’x dx
= f tan”x (1 + tan*x)* 'sec’x dx
Then substitute # = tan x.

(b) If the power of tangent is odd (m = 2k + 1), save a factor of sec x tan x and
use tan’x = sec’x — 1 to express the remaining factors in terms of sec x:

f tan**'x sec'x dx = f (tan*x)*sec” 'x sec x tan x dx

= f (sec®x — 1)fsec" x sec x tan x dx

Then substitute u = sec x.

For other cases, the guidelines are not as clear-cut. We may need to use identities, inte-
gration by parts, and occasionally a little ingenuity. We will sometimes need to be able to
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integrate tan x by using the formula established in (5.5.5):

ftanxdx=ln\secx] +C

We will also need the indefinite integral of secant:

1] jsecxdx=ln|secx+tanx]+c

We could verify Formula 1 by differentiating the right side, or as follows. First we multi-
ply numerator and denominator by sec x + tan x:

sec x + tan x
jsecxdx =jsecx—
sec x + tan x

sec’x + sec x tan x
= f dx

sec x + tan x

If we substitute u = sec x + tan x, then du = (sec x tan x + sec’x) dx, so the integral
becomes | (1/u) du = In |u| + C. Thus we have

Jsecxdx=ln|secx+tanx] +C

EXAMPLE 7 Find f tan>x dx.

SOLUTION Here only tan x occurs, so we use tan’x = sec’x — 1 to rewrite a tan’x factor in
terms of sec’x:

j tan’x dx = f tan x tan’x dx = f tan x (sec’x — 1) dx

= f tan x sec’x dx — f tan x dx

tan’x
= —In|secx| + C
2
In the first integral we mentally substituted # = tan x so that du = sec*x dx. |

If an even power of tangent appears with an odd power of secant, it is helpful to express
the integrand completely in terms of sec x. Powers of sec x may require integration by
parts, as shown in the following example.

EXAMPLE 8 Find f sec’x dx.

SOLUTION Here we integrate by parts with
u = sec x dv = sec’x dx

du = sec x tan x dx v = tan x
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Then f sec’x dx = sec x tan x — f sec x tan’x dx

sec x tan x — f sec x (sec’x — 1) dx
= sec X tan x — f sec’x dx + f sec x dx
Using Formula 1 and solving for the required integral, we get

fsec3xdx=%(secxtanx+ln|secx+tanx])+C [ |

Integrals such as the one in the preceding example may seem very special but they
occur frequently in applications of integration, as we will see in Chapter 8. Integrals of
the form J cot”x csc"x dx can be found by similar methods because of the identity
1 + cot’x = csc’x.

Finally, we can make use of another set of trigonometric identities:

[2] To evaluate the integrals (a) [ sin mx cos nx dx, (b) | sin mx sin nx dx, or
(©) J cos mx cos nx dx, use the corresponding identity:

. _ l . _ .
These product identities are discussed in (a) sinA cos B = 3[sin(A — B) + sin(A + B)]

Appendix D. (b) sinA sin B = 5[cos(A — B) — cos(A + B)]

(c) cos A cos B =1[cos(A — B) + cos(A + B)]

EXAMPLE 9 Evaluate J sin 4x cos S5x dx.

SOLUTION This integral could be evaluated using integration by parts, but it’s easier to use
the identity in Equation 2(a) as follows:

j sin 4x cos 5x dx = j H[sin(—x) + sin 9x] dx

= %f (—sin x + sin 9x) dx

=1(cos x — §cos9x) + C |
| 7.2 | EXERCISES
1-49 Evaluate the integral. .
9. | sin‘(31) dr 10. ["cos"0.df
1. f sin®x cos’x dx 2. f sinx cos’x dx
1. | (1 + cos 6)*d6 12. | x cos’x dx
[3.] F " sin’x cosx dx 4, j cos3x dx j j
/2
L 2 2 4
5 (sinz(wx) cos* () dx . J [13. [0 sin’x cos’x dx 14, J sin’t cos*t dt
B cos’a .
f " 0520 dO 8. j sin%(20) d I5. j 16. Jcos@cosS(sm 0) de
0



466 |||| CHAPTER 7 TECHNIQUES OF INTEGRATION

17. [COSZX tan>x dx J cot’0 sin*H d6
cos x + sin 2x
19. J,idx 20. f cos’x sin 2x dx
sin x
21. fseczx tan x dx 22. f sec(t/2) dt
ftanzx dx 24. f (tan’x + tan*x) dx
25. fsecﬁt dt 26. fﬂw/A sec*d tan*0 do
27. foﬂm tan’x sec’x dx 28. ftan3(2x) sec(2x) dx
(/3
[ tan’x sec x dx 30. Jo tan’x sec®x dx
31. Jtansx dx 32. ftanﬁ(ay) dy
tan’6 s
33. f " 34. f tan“x sec x dx
cos*f
sin ¢
35. fxsecx tan x dx 36. f cos' do
37. [”/2 cot?x dx 38. J cot’x dx
Ja/6
39. J cot’a csc’a da 40. f csc*x cot®x dx
41. fcscxdx 42. f csc’x dx
f sin 8x cos Sx dx 44. f cos mx cos 4ax dx
i i cos x + sin x
45. J sin 56 sin 6 d6 46. f x
sin 2x
1 —t
47. f an’x 48. f
sec’x cosx — 1

49. ftsecZ(zz) tan*(¢?) dt

53. f sin 3x sin 6x dx 54. f sec* % dx

[55.] Find the average value of the function f(x) = sin’x cos®x on
the interval [—r, 7).

56. Evaluate f sin x cos x dx by four methods:
(a) the substitution u = cos x
(b) the substitution # = sin x
(c) the identity sin 2x = 2 sin x cos x
(d) integration by parts

Explain the different appearances of the answers.

57-58 Find the area of the region bounded by the given curves.

57. y =sin’x, y =cos’x, —w/4<x<m/4

58. y =sin’x, y=cos’x, w/4<x<>5m/4

59-60 Use a graph of the integrand to guess the value of the

integral. Then use the methods of this section to prove that your
guess is correct.

59. J.OZ” cos’x dx 60. JOZ sin 27x cos S7x dx

61-64 Find the volume obtained by rotating the region bounded
by the given curves about the specified axis.

y=sinx, y=0, m/2 <x < a; about the x-axis
62. y =sin’x, y =0, 0 < x < 7r; about the x-axis
63. y=sinx, y=cosx, 0 <x < 7w/4; abouty =1

64. y =secx, y=-cosx, 0 <x < 7/3; abouty= —1

50. If 1”/ * tan®x sec x dx = I, express the value of

f’T/4 tan®x sec x dx in terms of 1.

51-54 Evaluate the indefinite integral. Illustrate, and check that

your answer is reasonable, by graphing both the integrand and its
antiderivative (taking C = 0).

51. fx sin?(x?) dx 52. f sin’x cos*x dx

65. A particle moves on a straight line with velocity function
() = sin wt cos’wt. Find its position function s = f ()
if £(0) = 0.

66. Household electricity is supplied in the form of alternating
current that varies from 155 V to —155 V with a frequency
of 60 cycles per second (Hz). The voltage is thus given by
the equation

E(t) = 155 sin(12071)

where ¢ is the time in seconds. Voltmeters read the RMS

(root-mean-square) voltage, which is the square root of the

average value of [E(#)]* over one cycle.

(a) Calculate the RMS voltage of household current.

(b) Many electric stoves require an RMS voltage of 220 V.
Find the corresponding amplitude A needed for the volt-
age E(r) = A sin(1207r1).



67-69 Prove the formula, where m and n are positive integers.

67. ‘w sin mx cos nxdx = 0

0 if m#n

68. J” sin mx sinnxdx={ .
—7 T if m=n

0 if m#n

69. r COS mx COs nxdx={ .
—m 7 if m=n

SECTION 7.3 TRIGONOMETRIC SUBSTITUTION  ||||

70. A finite Fourier series is given by the sum

N
f(x) =D a,sinnx
n=1

=qa;sinx + a,sin2x + - -+ + aysin Nx

Show that the mth coefficient a,, is given by the formula

1 (=
an = fj f(x) sin mx dx
ar J—-m

7.3 | TRIGONOMETRIC SUBSTITUTION
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In finding the area of a circle or an ellipse, an integral of the form [ /a? — x? dx arises,
where a > 0. If it were [ xy/a?> — x? dx, the substitution u = a* — x> would be effective

but, as it stands, | va? — x? dx is more difficult. If we change the variable from x to 6 by
the substitution x = a sin 6, then the identity 1 — sin*0 = cos”@ allows us to get rid of the

root sign because

Va? — x2 = \Ja* — a*sin?0 = /a*(1 — sin20) = \/a?cos* = a|cos 0|

Notice the difference between the substitution # = a? — x? (in which the new variable is
a function of the old one) and the substitution x = a sin 6 (the old variable is a function of

the new one).

In general we can make a substitution of the form x = g(r) by using the Substitution
Rule in reverse. To make our calculations simpler, we assume that g has an inverse func-
tion; that is, g is one-to-one. In this case, if we replace u by x and x by ¢ in the Substitution
Rule (Equation 5.5.4), we obtain

[ 10 dx = [ (g0 g () ar

This kind of substitution is called inverse substitution.

We can make the inverse substitution x = a sin 6 provided that it defines a one-to-one
function. This can be accomplished by restricting 6 to lie in the interval [ —/2, 7/2].

In the following table we list trigonometric substitutions that are effective for the given
radical expressions because of the specified trigonometric identities. In each case the restric-
tion on 6 is imposed to ensure that the function that defines the substitution is one-to-one.
(These are the same intervals used in Section 1.6 in defining the inverse functions.)

TABLE OF TRIGONOMETRIC SUBSTITUTIONS

Expression

Substitution Identity

va*r — x?

T 37
a sec 0, 0§()<5 or T 0<—

. T T L 5
asin, ——=60<=— 1 — sin“6 = cos“6
2 2
T T 5 ,
a tan 0, *3 <0< ? 1 + tan“0 = sec”0

sec’d — 1 = tan*0
2
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7 EXAMPLE | Evaluate

fgx—_zxzdx.

SOLUTION Let x = 3 sin 0, where —7r/2 < 0 < 7r/2. Then dx = 3 cos 6 df and

V9 — x2 = /9 — 95sin20 = /9 cos26 = 3|cos 8] = 3 cos

(Note that cos § = 0 because —7/2 < 6 < 77/2.) Thus the Inverse Substitution Rule

gives
V9 — x? 3 cos 6
J o

) 95in%0

3cos 6dO

2
0
= j Cf)sz do = f cot’0 df
sin“0

J‘ (csc*0 — 1) do

= —cot — 0+ C
Since this is an indefinite integral, we must return to the original variable x. This can be
3 done either by using trigonometric identities to express cot 6 in terms of sin § = x/3 or
x by drawing a diagram, as in Figure 1, where 6 is interpreted as an angle of a right tri-
) angle. Since sin 6 = x/3, we label the opposite side and the hypotenuse as having lengths x
. and 3. Then the Pythagorean Theorem gives the length of the adjacent side as v/9 — x2,
Vo—x so we can simply read the value of cot 6 from the figure:
FIGURE 1 m
sin 9=~ coth =——
3 X

(Although 6 > 0 in the diagram, this expression for cot 6 is valid even when 6 < 0.)
Since sin 8 = x/3, we have 6 = sin"!(x/3) and so

J‘de:_T_Sln ?

+C

i1 EXAMPLE 2 Find the area enclosed by the ellipse

X2

2

2
Yy _
P +F—1

SOLUTION Solving the equation of the ellipse for y, we get

x? a’*— x* +b
(0,b) —=1l-—=— or y=_;

B
2
S
)
2
N

Because the ellipse is symmetric with respect to both axes, the total area A is four times
‘/ Y the area in the first quadrant (see Figure 2). The part of the ellipse in the first quadrant is
given by the function

—
S~

b
y=—4ya*— x? O0sx<a
a
FIGURE 2
2 2

ab
LI A and so iA=j0;\/a2—x2dx

a® b?
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To evaluate this integral we substitute x = a sin 6. Then dx = a cos 6 d6. To change
the limits of integration we note that when x = 0, sin § = 0, so § = 0; when x = a,
sin 0 = 1,s0 6 = /2. Also

Va? — x* = \Ja* — a?sin?0 = \/a? cos?0 = a|cos 6| = a cos 0

since 0 < 0 < 7r/2. Therefore

b (a b rn
A=4—j Ja?r — x? dx=4—j /2acosf)-acos 0do
a Jo a Jo

—4abf cos’0dO = 4a br/ 2(1 + cos 26) do

— 2ab[0 + Lsin26]] = 2ab<g +0- o> — mab

We have shown that the area of an ellipse with semiaxes a and b is wab. In particular,
taking a = b = r, we have proved the famous formula that the area of a circle with

radius r is 7r. [ ]

NOTE | Since the integral in Example 2 was a definite integral, we changed the limits
of integration and did not have to convert back to the original variable x.

1
I EXAMPLE 3 Find j 2—dx'
x°\/x2+ 4

SOLUTION Letx = 2tan 6, —7/2 < 0 < /2. Then dx = 2 sec’0 df and

VX2 + 4 = /4(tan?0 + 1) = /4 sec?0 = 2|sec O] = 2 sec 0

Thus we have

f dx _ 2 sec’0db f sec 0
x/x2+ 4 4tan’0- 2sec 4 tan20
To evaluate this trigonometric integral we put everything in terms of sin 6 and cos 6:

sec 1 cos’0  cos 0

tan’0  cos O sin’0  sin’f

Therefore, making the substitution u = sin 6, we have

0 1 d
v N e R b

1 1
u sin
x>+ 4
x __csch e
9 4
2 We use Figure 3 to determine that csc § = \/x2 + 4 /x and so
FIGURE 3
Y f dx _ Vxr+ 4 s -
tan 6= 2 x/x2 + 4 4x
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X
EXAMPLE 4 Find f —F—dx.
Vxr+4

SOLUTION It would be possible to use the trigonometric substitution x = 2 tan 6 here (as in
Example 3). But the direct substitution u = x? + 4 is simpler, because then du = 2x dx
and

X 1 du
f—;mdx=5j‘ﬁ=\/;+c=\/m+c |

NOTE | Example 4 illustrates the fact that even when trigonometric substitutions are
possible, they may not give the easiest solution. You should look for a simpler method first.

dx
—— > 0.
EXAMPLE 5 Evaluate j m N where a 0

SOLUTION | We let x = a sec §, where 0 < 0 < 7/2 or m < 0 < 37r/2. Then
dx = a sec 0 tan 0 df and

Vx? —a? = \Ja*(sec?0 — 1) = yJa*tan’0 = a|tan 6| = atan @

Therefore

dx a sec 0 tan 0
j\/ﬁ—az_j atan 0 a0
=jsec(9d0=ln|sec€+tan6|+€

X"—a

The triangle in Figure 4 gives tan 6 = y/x? — a? /a, so we have

/x2 — 612

a

X
=+ +C
a

dx
FIGURE 4 f,/xz — a2 =In
_x
sec@—a =ln‘x+m’—lna+c

Writing C, = C — In a, we have

E] J‘—,xzdi—az=ln|x+\/m|+(:1

SOLUTION 2 For x > 0 the hyperbolic substitution x = a cosh ¢ can also be used. Using the
identity cosh?y — sinh?y = 1, we have

Vx? — a? = Ja*(cosh’t — 1) = \/a? sinh?t = a sinh ¢

Since dx = a sinh t dt, we obtain

j\/xzdi a? :ja;isr.lilrlﬂift :jdt:t+ ¢

Since cosh t = x/a, we have t = cosh™!(x/a) and

dx X
—_—_— = h*l —_ +
[2] f — 7 ¢S <a> C
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Although Formulas 1 and 2 look quite different, they are actually equivalent by
Formula 3.11.4. |

As Example 5 illustrates, hyperbolic substitutions can be used in place of trigo-
nometric substitutions and sometimes they lead to simpler answers. But we usually use
trigonometric substitutions because trigonometric identities are more familiar than hyper-
bolic identities.

NeTz) x?

(4x? + 9)*2

SOLUTION First we note that (4x> + 9)¥? = (/4x2 + 9 )* so trigonometric substitution

is appropriate. Although +/4x? + 9 is not quite one of the expressions in the table of
trigonometric substitutions, it becomes one of them if we make the preliminary substitu-
tion # = 2x. When we combine this with the tangent substitution, we have x = % tan 6,
which gives dx = 3 sec’0 df and

EXAMPLE 6 Find f dx.
0

VAx2+9 = ,/9tan?0 + 9 = 3 sec 6

When x = 0, tan 6 = 0, so@=0;whenx=3\/3/2,tan0=\/3_,sot9= /3.

313/2 x? (3 %tan30 3,
jo (4x? + 9)* dr = fo 27 sec’f 2°C 0.
5 (/3 tan’@ 5 (/3 sin’6
_s R
o jo sec 6 ©Jo cos®6
=3 1 — cos’6
:%j /3—2sin 0do
0 cos-6
Now we substitute # = cos 6 so that du = —sin 6 d6. When 6 = 0, u = 1; when
0 = /3, u = 1. Therefore
f}ﬁ/z x3 e — _ifl/z 1 — u? dy — if]/z (- u)d
0 (4x? + 9)* * o0 u? e ) " "

[w

1/2
=1»[u+ﬂ =i+ -a+nl=y =

o

EXAMPLE 7 Evaluate j %d&
—2x —x

SOLUTION We can transform the integrand into a function for which trigonometric substitu-
tion is appropriate by first completing the square under the root sign:

3-2x—x*=3-(x"+2x)=3+1—-(x*+2x+1)
=4 —(x+1)7
This suggests that we make the substitutionu = x + 1. Thendu = dxandx = u — 1, so

u—1

| === =
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Figure 5 shows the graphs of the integrand We now substitute u = 2 sin 6, giving du = 2 cos 6 df and /4 — u?> = 2 cos 6, so

in Example 7 and its indefinite integral (with
C = 0). Which is which?

B 2

FIGURE 5

7.3 | EXERCISES

2sin6— 1

3 f 3——2x—x2 —j > cos 0 2 cos 0dO

=j(2sino— 1) do
= —2cosh— 6+ C

=—J4—u? - sin“(%) +C

+1
- 3-2x—x° —sin'(xz >+c m

-3 Evaluate the integral using the indicated trigonometric sub-
stitution. Sketch and label the associated right triangle.

1
I. [mdx; x = 3secl

2. J.x3\/9 —x2dx; x=23sin8

x=3tan 6

x3
3] J. Vx2+9 dx;

4-30 Evaluate the integral.

23 .X3 d
Jo V16 — x2 x
2 1 roA/x2—1
5. jﬁiﬁ —di 6 | ——dx

1 x?

7 [ |
L e el 8 | o &
dx £
| e o |
. [ VT=42ax 12 [ xyx? ¥ 4 dx
sz g, [—2
J. ) J u~\/5 — u?

a2 PN 2/3 L
15. [ x2Va? = x? dx L e
X " dx
J = ) T~ 577
V1 + x? t
19. [ —dx 20. fmdt

0.6 xZ 1
-t 2
2. [ [ VaT+Tax
d
23. J‘\/5+4x—x2 dx 24. J‘ﬁ
( X x2
25. J Vit x+1 dx 26. j (3 + 4x — 4x?)*? dx
241
27. f\/xz + 2xdx 28. jﬁdx
X™ — ZX
29. fx\/l — x4 dx 30. J‘(JW/Z%SZinztdl

[31.] (a) Use trigonometric substitution to show that

dx
f7m=ln(x+m)+c

(b) Use the hyperbolic substitution x = a sinh # to show that

fm—s1nh < >+c

These formulas are connected by Formula 3.11.3.

32. Evaluate

~ xz
J > + a2 )" dx

(a) by trigonometric substitution.
(b) by the hyperbolic substitution x = a sinh ¢.

33. Find the average value of f(x) = x2 — I/x, 1 <x<7.

34. Find the area of the region bounded by the hyperbola
9x% — 4y? = 36 and the line x = 3.



A 3.

35.

38.

SECTION 7.4 INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS

Prove the formula A = %rz() for the area of a sector of

a circle with radius r and central angle 6. [Hint: Assume

0 < 6 < /2 and place the center of the circle at the origin
so it has the equation x> + y? = r% Then A is the sum of the
area of the triangle POQ and the area of the region POR in
the figure.]

0‘ Q0 R «x
Evaluate the integral
f dx
xty/x2 =2

Graph the integrand and its indefinite integral on the same
screen and check that your answer is reasonable.

. Use a graph to approximate the roots of the equation

x*y/4 — x2 = 2 — x. Then approximate the area bounded by
the curve y = x?/4 — x2 and the line y = 2 — x.

A charged rod of length L produces an electric field at point
P(a, b) given by

L—a

EP) = | L

—a 4meg(x? + b))

where A is the charge density per unit length on the rod and
& 1s the free space permittivity (see the figure). Evaluate the
integral to determine an expression for the electric field E(P).

74

39.

40.

41.

43.
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(a) Use trigonometric substitution to verify that
jx Va? — 12 dr = 3a®sin"\(x/a) + 1x/a? — x?
0

(b) Use the figure to give trigonometric interpretations of
both terms on the right side of the equation in part (a).

a y= [a?— 12

The parabola y = 3x? divides the disk x> + y® < 8 into two
parts. Find the areas of both parts.

Find the area of the crescent-shaped region (called a [une)
bounded by arcs of circles with radii » and R. (See the figure.)

o
7

. A water storage tank has the shape of a cylinder with diam-

eter 10 ft. It is mounted so that the circular cross-sections
are vertical. If the depth of the water is 7 ft, what percentage
of the total capacity is being used?

A torus is generated by rotating the circle
x*> 4+ (y — R)*> = r? about the x-axis. Find the volume
enclosed by the torus.

INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS

In this section we show how to integrate any rational function (a ratio of polynomials) by
expressing it as a sum of simpler fractions, called partial fractions, that we already know
how to integrate. To illustrate the method, observe that by taking the fractions 2/(x — 1)
and 1/(x + 2) to a common denominator we obtain

x+5
2+ x—2

2 1

x—1

2 +2)—(x—1)
x+2  (-Dkx+2

If we now reverse the procedure, we see how to integrate the function on the right side of



474

[[|| CHAPTER 7 TECHNIQUES OF INTEGRATION

X’+x +2
x—1)x° +x
xP—x?
x>+ x
xX2—x
2x
2x—12

this equation:

x+5 2 1
fz—dejv — dx
x“+x—2 x—1 x+2

=2In|x— 1| —Injx+2|+C

To see how the method of partial fractions works in general, let’s consider a rational
function
P(x)
0(x)

where P and Q are polynomials. It’s possible to express f as a sum of simpler fractions
provided that the degree of P is less than the degree of Q. Such a rational function is called
proper. Recall that if

fx) =

P()C) = anxn + an*l-xrkI + 0+ ax + ag

where a, # 0, then the degree of P is n and we write deg(P) = n.

If f is improper, that is, deg(P) = deg(Q), then we must take the preliminary step
of dividing Q into P (by long division) until a remainder R(x) is obtained such that
deg(R) < deg(Q). The division statement is

Plx) _ R(x)
o 59" 00

[1] fx) =

where S and R are also polynomials.
As the following example illustrates, sometimes this preliminary step is all that is
required.

x4+ x

dx.
1

7 EXAMPLE | Find j
-

SOLUTION Since the degree of the numerator is greater than the degree of the denominator,
we first perform the long division. This enables us to write

2
dx=j<x2+x+2+ )dx
x—1

x X
=?+7+2x+ 2In|x - 1|+ C [ ]

jx3+x
x—1

The next step is to factor the denominator Q(x) as far as possible. It can be shown that
any polynomial Q can be factored as a product of linear factors (of the form ax + b)
and irreducible quadratic factors (of the form ax? + bx + ¢, where b> — 4ac < 0). For
instance, if Q(x) = x* — 16, we could factor it as

0x)=(x*—4x*+4) =x—-2)(x+2)(x*+4)

The third step is to express the proper rational function R(x)/Q(x) (from Equation 1) as
a sum of partial fractions of the form

A or Ax + B
(ax + b) (ax* + bx + ¢)’



Another method for finding A, B, and C
is given in the nate after this example.
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A theorem in algebra guarantees that it is always possible to do this. We explain the details
for the four cases that occur.

CASE | The denominator Q(x) is a product of distinct linear factors.

This means that we can write
0(x) = (a1x + bi)(axx + by) - - - (arx + bi)

where no factor is repeated (and no factor is a constant multiple of another). In this case
the partial fraction theorem states that there exist constants Ay, A, ..., A, such that

R(x) _ A] Az Lot Ak
O(x) aix + b a>x + b, aix + by

2]

These constants can be determined as in the following example.

mEXAMPLEZEltf Sk Sal d
valuate U e——— 2
2x% + 3x% — 2x

SOLUTION Since the degree of the numerator is less than the degree of the denominator, we
don’t need to divide. We factor the denominator as

2x3 +3x2 = 2x=x(2x*+ 3x — 2) =x(2x — D(x + 2)

Since the denominator has three distinct linear factors, the partial fraction decomposition
of the integrand (2) has the form

P +2x—1 A B C
==+ +
x2x — DH(x +2) X 2x — 1 x+2

3]

To determine the values of A, B, and C, we multiply both sides of this equation by the
product of the denominators, x(2x — 1)(x + 2), obtaining

[4] X2+ 2x—1=A2x — D(x +2) + Bx(x +2) + Cx(2x — 1)

Expanding the right side of Equation 4 and writing it in the standard form for polyno-
mials, we get

(5] X +2x—1=QA+B+20)x>+ (3A+2B— C)x —2A
The polynomials in Equation 5 are identical, so their coefficients must be equal. The
coefficient of x? on the right side, 2A + B + 2C, must equal the coefficient of x* on the
left side—namely, 1. Likewise, the coefficients of x are equal and the constant terms are
equal. This gives the following system of equations for A, B, and C:
2A+ B+2C=1
3A+2B— C=2

—24A = -1
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Solving, we get A =3, B =1, and C = — 15, and so
We could check our work by taking the terms x2+2x —1 11 1 1 1 1
; i ——————dx = —— + = - — X
to a common denominator and adding them. 253 + 3x% — 2x 2 x 5 2% — 1 10 x + 2
Figure 1 shows the graphs of the integrand - %ln |x| + %ln |2x -1 | _ %ln |x + 2| + K

in Example 2 and its indefinite integral (with
K = 0). Which is which?

In integrating the middle term we have made the mental substitution # = 2x — 1, which
2 gives du = 2 dx and dx = du/?2. [}

Q NOTE | We can use an alternative method to find the coefficients A, B, and C in
-3 J 3

Example 2. Equation 4 is an identity; it is true for every value of x. Let’s choose values of
m x that simplify the equation. If we put x = 0 in Equation 4, then the second and third terms
-2

on the right side vanish and the equation then becomes —2A4 = —1, or A = ;. Likewise,
x =3 gives 5B/4 = ; and x = —2 gives 10C = —1, s0 B =t and C = —1;. (You may object
that Equation 3 is not valid for x = 0, 3, or —2, so why should Equation 4 be valid for those
FIGURE | values? In fact, Equation 4 is true for all values of x, even x = 0, 5, and —2. See Exercise 69
for the reason.)

dx
EXAMPLE 3 Find f ———, where a # 0.
xX*—a

SOLUTION The method of partial fractions gives

1 1 __A B
x*—a*> (x—alx+a) x—a x+a
and therefore Ax+a)+Blx —a)=1

Using the method of the preceding note, we put x = a in this equation and get
ARa) = 1,50 A = 1/(2a). If we put x = —a, we get B(—2a) = 1,0 B = —1/(2a).

Thus
dx 1 1 1
S - d
fxz—a2 2aj<x—a x+a>x

1
=—(n|x—a|—In|x+al])+C
2a

Since In x — Iny = In(x/y), we can write the integral as

dx 1 xX—a
—=—1n +C
(€] j x*—a* 2a |x+a
See Exercises 55-56 for ways of using Formula 6. |
CASE 11 O(x) is a product of linear factors, some of which are repeated.

Suppose the first linear factor (a,x + b;) is repeated r times; that is, (a;x + b;)" occurs in
the factorization of Q(x). Then instead of the single term A,/(a,x + b;) in Equation 2, we



Another method for finding the coefficients:
Putx=1in(8): B = 2.
Putx=—-1: C= —1.
Ptx=0A=B+C=1.

SECTION 7.4 INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS |||| 477

would use

A As A,
+ 3 + .« e + s —
a|x + b] (a]x + b|) (a.x + b])r

[7]

By way of illustration, we could write

ﬁ—x+l_é4"§+ C b _E
x*(x —1)° x x x—-1 (-1 -1

but we prefer to work out in detail a simpler example.

xt=2x2+4x + 1
=xr—x+1

EXAMPLE 4 Findf X.

SOLUTION The first step is to divide. The result of long division is

xt=2x?+4x + 1 4x
3 3 =x+ 1+ 3 3
x> —x"—x+1 x’—x"—x+1

The second step is to factor the denominator Q(x) = x* — x> — x + 1. Since Q(1) = 0,
we know that x — 1 is a factor and we obtain

X=x—x+1l=x-DE*-1D=x—-Dx—-Dkx+1)
= (x— DAx + 1)
Since the linear factor x — 1 occurs twice, the partial fraction decomposition is

Ax A, B, .C
x=—1D(x+1) x—-1 (x—-1* x+1

Multiplying by the least common denominator, (x — 1)*(x + 1), we get
4x =A(x— )(x+ 1) +Bx+ 1)+ Clx — 1)
=A+C)x*+B-2C)x+(-A+ B+ C)
Now we equate coefficients:
A + C=0
B—-2C=4
~A+B+ C=0
Solving, we obtain A = 1, B=2,and C = —1, so

xt—=2x2+4x + 1 1 2 1
f 7 3 dx = x+ 1+ + >~ dx
x—x*—x+1 x—1 x—1) x+1

x? 2
=—+x+hjlx—1|-——-In|x+ 1| +K
2 x—1

x?2 2
=—+x— + In
2 x—1

x—1
x+1

+ K |
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CASE 111 Q(x) contains irreducible quadratic factors, none of which is repeated.

If Q(x) has the factor ax® + bx + ¢, where b*> — 4ac < 0, then, in addition to the partial
fractions in Equations 2 and 7, the expression for R(x)/Q(x) will have a term of the form

Ax + B
ax®>+ bx + ¢

[9]
where A and B are constants to be determined. For instance, the function given by
f(x) = x/[(x — 2)(x* + 1)(x* + 4)] has a partial fraction decomposition of the form

X A +Bx+C+Dx+E
x=—2x*+1Dx*+4) x—-2  x*+1 x>+ 4

The term given in (9) can be integrated by completing the square and using the formula

dx 1 o x
—_— — - R +
j)cz—ka2 " <a> ¢
2x2—x+4
I EXAMPLE 5 Evaluate f 3—dx.
x> + 4x

SOLUTION Since x° + 4x = x(x? + 4) can’t be factored further, we write

2x2—x+4_£ Bx + C
x(x? + 4) X x*+4

Multiplying by x(x* + 4), we have
2x* —x+4=AK*+4) + Bx+ O)x
=(A+ B)x’+ Cx + 4A
Equating coefficients, we obtain
A+B=2 Cc=-1 4A =4

Thus A= 1,B=1,and C = —1 and so

2x2—x + 4 1 x—1
[T = | -+ ) ar
x° + 4x X x°+ 4

In order to integrate the second term we split it into two parts:

—1 1
f;2+4dx=fx214dx_jx2+4dx

We make the substitution u = x> + 4 in the first of these integrals so that du = 2x dx.
We evaluate the second integral by means of Formula 10 with a = 2:

2 _
j%dx=j%dx+jx2i4dx—j

xz+4dx

=In|x| +5In(x*> + 4) — stan"'(x/2) + K [ |
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EXAMPLE 6 Evaluat 4x2_3x+2d
valuate — s dax.
4x* —4x + 3

SOLUTION Since the degree of the numerator is not less than the degree of the denominator,
we first divide and obtain
4x* = 3x + 2 x—1
— o =1l t
4x*—4x + 3 4x—4x + 3
Notice that the quadratic 4x* — 4x + 3 is irreducible because its discriminant is
b? — 4ac = —32 < 0. This means it can’t be factored, so we don’t need to use the

partial fraction technique.
To integrate the given function we complete the square in the denominator:

4x* —4x +3=02x— 1)+ 2

This suggests that we make the substitution u = 2x — 1. Then, du = 2 dx and
x=1(u+1),s0

4x* —3x + 2 x— 1
Tt =1 +—=——— 4
Ax? —dx+3 j( 4x2—4x+3>x

R

1 u 1 1
=x+ﬁfmd”‘ﬁfmd”

1 1
=x+zhn@ +2) ——- —tanl<L) +C

s Zm I\
v (%)” "

NOTE | Example 6 illustrates the general procedure for integrating a partial fraction of
the form

x + §In(4x® — 4x + 3) —

Ax + B

——————  where b’ — 4ac <0
ax~+ bx + ¢

We complete the square in the denominator and then make a substitution that brings the
integral into the form

fi“:D cf du+DfTadu

Then the first integral is a logarithm and the second is expressed in terms of tan™"'.

CASE IV ® Q(x) contains a repeated irreducible quadratic factor.

If Q(x) has the factor (ax”> + bx + ¢)’, where b? — 4ac < 0, then instead of the single
partial fraction (9), the sum

A|)C + B] Azx + Bz A,x + Br
ax* + bx + ¢ (ax® + bx + ¢)? (ax* + bx + ¢

m
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It would be extremely tedious to work out by
hand the numerical values of the coefficients in
Example 7. Most computer algebra systems,
however, can find the numerical values very
quickly. For instance, the Maple command

convert(f, parfrac, x)
or the Mathematica command
Apart[f]
gives the following values:

A=-1, B=3, C=D=—1,

In the second and fourth terms we made the
mental substitution u = x* + 1.

occurs in the partial fraction decomposition of R(x)/Q(x). Each of the terms in (11) can be
integrated by first completing the square.

EXAMPLE 7 Write out the form of the partial fraction decomposition of the function

X+t
x(x = D>+ x + D>+ 1)°

SOLUTION

x4+ x4
x(x = D>+ x + D>+ 1)°

A B Cx+ D Ex+ F Gx + H Ix+J
x  x-—1 XX+ x+1 x4+ 1 x>+ 1) (*+1)

1 —x+2x*—x3
EXAMPLE 8 Evaluate j .
x(x*+1)

SOLUTION The form of the partial fraction decomposition is

1 —x+2x*—%? A Bx+C Dx + E

= +
x(x? 4+ 1)° X xP+1 (x* + 1)?

Multiplying by x(x* + 1)?, we have
P+ 2= x+1=A*+ 1P+ Bx+ O)x(x*+ 1) + (Dx + E)x
=A(x*+ 2x>+ 1) + B(x* + x*) + C(x* + x) + Dx*> + Ex

=A+Bx*+Cx*+QA+B+Dx>+(C+Ex+ A
If we equate coefficients, we get the system
A+B=0 Cc= -1 2A+B+ D=2 C+E=-1 A=1

which has the solution A = 1,B= —1,C= —1,D = 1, and E = 0. Thus

fl—x+2x2—x3d_j‘ l_x+1+ X p
x(x?+ 1) * x x*+1  (x*+1)2 *

jdx X d j dx . x dx

= | ==  —

X xP+1 xP+1 (x* + 1)?

=1 SIn(x® + 1 -l ! u
—n|x|—2n(x+ ) — tan x-m-FK

We note that sometimes partial fractions can be avoided when integrating a rational func-
tion. For instance, although the integral

j x+1 d
x(x* + 3) *
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could be evaluated by the method of Case III, it’s much easier to observe that if
u=x(x>+ 3) = x* + 3x, then du = (3x> + 3) dx and so

x*+1 . ,
fmdx—glnb( +3x| +C

RATIONALIZING SUBSTITUTIONS

Some nonrational functions can be changed into rational functions by means of appropri-
ate substitutions. In particular, when an integrand contains an expression of the form
{/g(x), then the substitution u = {/g(x) may be effective. Other instances appear in the
exercises.

EXAMPLE 9 Evaluate

[

SOLUTION Letu = +/x + 4. Then u®> = x + 4, so x = u*> — 4 and dx = 2u du.
Therefore

f_vx;“dpfuz” &

_42udu=2fu2_

4
=2j<1+ 3 >du
u- —4

We can evaluate this integral either by factoring u> — 4 as (u — 2)(u + 2) and using
partial fractions or by using Formula 6 with @ = 2:

4du

J.—Vx;4dx=2fdu+8ju2df4

1 u—72
=2u+8: In +C
2:2 u+ 2
Vxt+4 =2
=2Jx+4 +2In \/— o +C |
| 7.4 | EXERCISES
I-6 Write out the form of the partial fraction decomposition of the x4 [ |
function (as in Example 7). Do not determine the numerical values 5] () I (b) (2 + (2 + 47
of the coefficients.
4
X
2x 1 6. (a) (b)
I. e —— b)) —mi—— 3 2 _ 6 _
@ (x+3)Bx+1 ®) X+ 2x2 +x (7 + )" —x+3) *
X x?
2. (a) P+ -2 (b) ot rt2 7-38 Evaluate the integral.
2
xt+1 1 X r
A - 7. d 8. d
3'(a)xs-G-4x3 b) (x*—9)? jx_6x fr+4r
x? 2x + 1 ¢ x—9 1
4, _ -_— ———————dx 10 | ————dt
@ T s O CF Dy e ey [y
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2 flLd
o x24+3x+2 *

ax 1
13. | ——d 14, |\ ———d.
fxz—bxx (x + a)(x + b) *
2% —4 o xt = 4x — 10
5. ! x4 16, [ F———dx
3 x?—2x? Jo x*—x—6
2 4yt — Ty — 12 cxr+2x — 1
—_—— 18. | ————
L e [
1 x> —5x+ 16
19. |\ ——4d. 20 | ———————
j(x+5)2(x* 1) * @2x + D(x —2) *
x>+ 4 ¢ ds
21. d 22. | —————
jx2+4x ‘52(3—1)2
cS5xr+3x—2 x’—x+6
23. |\ —————d. 24, | ————d
J x>+ 2x2 * f o3 7
10 x2+x+1
—d. 26 | ————d
@J(x—l)(xz-i-% * @t &

2 —2x — 1
dx 8 [

27, Jx +x2+2x+ 1
(x—1D*x*+1)

(x2+ (x> +2)

x+4 P+ x+ 4
Eree— 30 |\ /————
jx2+2x+5dx fx4+3x2+2 .

| x
32. —d
lEljx—l f0x2+4x+13 *
“1 x3+ 2x 4 3a. [ x3 J
0o x*+4x*+ 3 * 'Jx3+1 x
f dx 36fx4+3x2+1
x(x2 + 4)? )X+ 50+ 5x
37‘~x2—3x+7 4 38jx3+2x2+3x—2
(P —4x+06)? * ) (x* + 2x + 2)?

X

/A 5a.

39-50 Make a substitution to express the integrand as a rational
function and then evaluate the integral.

dx

. 1 dx
39'Jx\/x+l 40'~[2\/x+3 + x

jlﬁx_é‘-

X
fﬁ/xz-i-ldx fl/Sx +x

n [ —
.f01+\3/; x

45. f \/— I dx [Hint: Substitute u = {’/;]
+
a6. | 7”1)6\/; dx

e2.x

eX + 3e* + 2

o

dx

¢ CcoS X
48. J wi.dx
sin“x + sin x

9 J- sec’r Ut
") tan®r + 3tant + 2

x

50. [—— 5 ——dx
(e = 2)(e** + 1)

51-52 Use integration by parts, together with the techniques of this
section, to evaluate the integral.

51. fln(x2 —x+ 2)dx 52. fxtan"x dx

53. Use a graph of f(x) = 1/(x*> — 2x — 3) to decide whether

|(f f(x) dx is positive or negative. Use the graph to give a rough
estimate of the value of the integral and then use partial fractions

to find the exact value.

Graph both y = 1/(x* — 2x?) and an antiderivative on the
same screen.

55-56 Evaluate the integral by completing the square and using
Formula 6.

dx 2x + 1

—_ 56. | ————
lEl»“xz—bc A+ 12x -7

57. The German mathematician Karl Weierstrass (1815-1897)
noticed that the substitution ¢ = tan(x/2) will convert any
rational function of sin x and cos x into an ordinary rational
function of 7.

(a) If t = tan(x/2), —7 < x < m, sketch a right triangle or use
trigonometric identities to show that

X 1 [ x t
COS<2> = ﬁ and sm<2> = ﬁ

(b) Show that

1 -1 . 2t
cosx = —— and sinx = ———
1+t 1+
(c) Show that
2
dx = > dt
1 +1¢

58-61 Use the substitution in Exercise 57 to transform the inte-
grand into a rational function of 7 and then evaluate the integral.

58 fdix
)3 —5sinx
1 /2 1
5. | —/———d 60. B —
f3sinx—4cosx * L/3 1 + sin x — cos x *



6l.

/2 sin 2x
f /1
0 2+ cosx

67.
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(a) Use a computer algebra system to find the partial fraction
decomposition of the function

4x3 — 27x* + 5x — 32

62-63 Find the area of the region under the given curve from f = 30x° — 13x* + 50x° — 286x% — 299x — 70
1to 2.
x2+1 (b) Use part (a) to find [ f(x) dx (by hand) and compare with
62. y = P+ x 63. y = 3x — x2 the result of using the CAS to integrate f directly. Com-
ment on any discrepancy.
64. Find the volume of the resulting solid if the region under the 68. (a) Find the partial fraction decomposition of the function

65.

66.

curve y = 1/(x* + 3x + 2) from x = 0 to x = 1 is rotated
about (a) the x-axis and (b) the y-axis.

One method of slowing the growth of an insect population
without using pesticides is to introduce into the population
a number of sterile males that mate with fertile females

but produce no offspring. If P represents the number of
female insects in a population, S the number of sterile males
introduced each generation, and r the population’s natural

12x° — 7x* — 13x*> + 8
100x° — 80x° + 116x* — 80x> + 41x> — 20x + 4

fx) =

(b) Use part (a) to find J’ f(x) dx and graph f and its indefinite
integral on the same screen.

(c) Use the graph of f to discover the main features of the
graph of [ f(x) dx.

growth rate, then the female population is related to time 7 by 69. Suppose that F, G, and Q are polynomials and
P+S
L p F) _ G
P[(r — )P — §] o(x)  0W)

Suppose an insect population with 10,000 females grows at a
rate of r = 0.10 and 900 sterile males are added. Evaluate the
integral to give an equation relating the female population to
time. (Note that the resulting equation can’t be solved explic-
itly for P.)

Factor x* + 1 as a difference of squares by first adding and
subtracting the same quantity. Use this factorization to evalu-
ate [ 1/(x* + 1) dx.

7.5

70.

for all x except when Q(x) = 0. Prove that F(x) = G(x) for
all x. [Hint: Use continuity.]

If f is a quadratic function such that £(0) = 1 and

f f(x) dx

xHx + 1)

is a rational function, find the value of f'(0).

STRATEGY FOR INTEGRATION

As we have seen, integration is more challenging than differentiation. In finding the deriv-
ative of a function it is obvious which differentiation formula we should apply. But it may
not be obvious which technique we should use to integrate a given function.

Until now individual techniques have been applied in each section. For instance, we
usually used substitution in Exercises 5.5, integration by parts in Exercises 7.1, and partial
fractions in Exercises 7.4. But in this section we present a collection of miscellaneous inte-
grals in random order and the main challenge is to recognize which technique or formula
to use. No hard and fast rules can be given as to which method applies in a given situation,
but we give some advice on strategy that you may find useful.

A prerequisite for strategy selection is a knowledge of the basic integration formulas.
In the following table we have collected the integrals from our previous list together with
several additional formulas that we have learned in this chapter. Most of them should be
memorized. It is useful to know them all, but the ones marked with an asterisk need not be
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memorized since they are easily derived. Formula 19 can be avoided by using partial frac-
tions, and trigonometric substitutions can be used in place of Formula 20.

TABLE OF INTEGRATION FORMULAS Constants of integration have been omitted.

xn+1 1
I.jx"dx= (n# —1) 2.f—dx=ln|x|
n+1 X
ax
3. jexdx =e" 4, fa‘dx =
na
5.jsinxdx=—cosx 6.jcosxdx=sinx
7. fseczx dx = tan x 8. fcsczx dx = —cot x
9. fsecxtanxdx = sec x 10. jcscxcotxdx = —csc X
1. jsecxdx=]n|secx+tanx\ 12. fcscxdx=ln]cscx— cot x
I3.jtanxdx=ln|secx\ I4.jcotxdx=ln|sinx|
15. jsinhxde cosh x 16. Jcoshxde sinh x
|7j dx 1t o x IBJ dx N
| ———=—tan"'| — . | ——=sin"!| —
x>+ a’ a a Jvar — x? a
dx 1 X—a dx
%19, j—z—ln %20. j—zln x+ 2 Ea
x>—ad®> 2a |x+a Jx? £ a? | |

Once you are armed with these basic integration formulas, if you don’t immediately see
how to attack a given integral, you might try the following four-step strategy.

I. Simplify the Integrand if Possible Sometimes the use of algebraic manipula-
tion or trigonometric identities will simplify the integrand and make the method of
integration obvious. Here are some examples:

J‘\/;(1+\/;)dx=j(\/;+x)dx

jtane

sin 6
do = 20 do
sec’6 f cos 6 €08

=fsin 0 cos 0dO = %jsin20d6

f (sin x + cos x)*dx = J (sin®x + 2 sin x cos x + cos’x) dx

=f(1 + 2 sin x cos x) dx
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2. Look for an Obvious Substitution Try to find some function u = g(x) in the
integrand whose differential du = ¢'(x) dx also occurs, apart from a constant fac-
tor. For instance, in the integral

j—x2)i " dx

we notice that if u = x> — 1, then du = 2x dx. Therefore we use the substitu-
tion u = x* — 1 instead of the method of partial fractions.

3. Classify the Integrand According to Its Form If Steps 1 and 2 have not led

to the solution, then we take a look at the form of the integrand f(x).

(a) Trigonometric functions. If f(x) is a product of powers of sin x and cos x,
of tan x and sec x, or of cot x and csc x, then we use the substitutions recom-
mended in Section 7.2.

(b) Rational functions. 1If f is a rational function, we use the procedure of Sec-
tion 7.4 involving partial fractions.

(¢) Integration by parts. If f(x) is a product of a power of x (or a polynomial) and
a transcendental function (such as a trigonometric, exponential, or logarithmic
function), then we try integration by parts, choosing # and dv according to the
advice given in Section 7.1. If you look at the functions in Exercises 7.1, you
will see that most of them are the type just described.

(d) Radicals. Particular kinds of substitutions are recommended when certain
radicals appear.

(1) If /£x2 = a? occurs, we use a trigonometric substitution according to
the table in Section 7.3.

(ii) If v/ax + b occurs, we use the rationalizing substitution # = {/ax + b.
More generally, this sometimes works for /g(x) .

4. Try Again If the first three steps have not produced the answer, remember that

there are basically only two methods of integration: substitution and parts.

(a) Try substitution. Even if no substitution is obvious (Step 2), some inspiration
or ingenuity (or even desperation) may suggest an appropriate substitution.

(b) Try parts. Although integration by parts is used most of the time on products
of the form described in Step 3(c), it is sometimes effective on single func-
tions. Looking at Section 7.1, we see that it works on tan ™ 'x, sin”'x, and In x,
and these are all inverse functions.

(c) Manipulate the integrand. Algebraic manipulations (perhaps rationalizing the
denominator or using trigonometric identities) may be useful in transforming
the integral into an easier form. These manipulations may be more substantial
than in Step 1 and may involve some ingenuity. Here is an example:

f dx _ 1 .1+cosx _fl-}—cosxx

1 —cosx 1 —cosx 1+cosx 1 — cos’x

1 + cos x ) cos
—f dx = cscx + dx
sin’x sin’x

(d) Relate the problem to previous problems. When you have built up some expe-
rience in integration, you may be able to use a method on a given integral that
is similar to a method you have already used on a previous integral. Or you
may even be able to express the given integral in terms of a previous one. For
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instance, f tan’x sec x dx is a challenging integral, but if we make use of the iden-
tity tan*x = sec’x — 1, we can write

ftanzx sec x dx = f sec’x dx — f sec x dx

and if J sec’x dx has previously been evaluated (see Example 8 in Section 7.2),
then that calculation can be used in the present problem.

(e) Use several methods. Sometimes two or three methods are required to evalu-
ate an integral. The evaluation could involve several successive substitutions
of different types, or it might combine integration by parts with one or more
substitutions.

In the following examples we indicate a method of attack but do not fully work out the
integral.

EXAMPLE | f dx

Cos x

In Step 1 we rewrite the integral:

3

tan"x

f —dx = f tan’x sec’x dx
cos’x

m

The integral is now of the form | tan"x sec”x dx with m odd, so we can use the advice in

Section 7.2.
Alternatively, if in Step 1 we had written

tan’x sin’x sin’x
o= = |
cos’x cos’x cos x cos x

then we could have continued as follows with the substitution u = cos x:

sin? 1 — cos 1 —
J 6x —f xsmxdx:j u’ (—du)
cos®x cos’x u®

—f du—f(u"‘—u’(’)du [ |

K7 EXAMPLE 2 jeﬁdx

According to (ii) in Step 3(d), we substitute u = \/; . Then x = u? so dx = 2u du and
f eVidx =2 j ue"du

The integrand is now a product of u and the transcendental function e" so it can be inte-
grated by parts. |
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EXAMPLE 3 f x+1 d
=32 — 102

No algebraic simplification or substitution is obvious, so Steps 1 and 2 don’t apply here.
The integrand is a rational function so we apply the procedure of Section 7.4, remember-
ing that the first step is to divide. |

\1 EXAMPLE 4 jd—x
x+/In x

Here Step 2 is all that is needed. We substitute # = In x because its differential is
du = dx/x, which occurs in the integral. [ |

1_
W1 EXAMPLE 5 J‘ \/ al dx
1 +x

Although the rationalizing substitution

1 —x
1 +x

works here [(ii) in Step 3(d)], it leads to a very complicated rational function. An easier
method is to do some algebraic manipulation [either as Step 1 or as Step 4(c)]. Multiply-
ing numerator and denominator by /1 — x, we have

1 —x

1 —x
j 1+xdx_j\/l—x2dx

1 X
j\/l—xz abc—j\/l_x2 dx
=sin"'x + 1 —x2+C [ ]

CAN WE INTEGRATE ALL CONTINUOUS FUNCTIONS?

The question arises: Will our strategy for integration enable us to find the integral of every
continuous function? For example, can we use it to evaluate f ¢ dx? The answer is No, at
least not in terms of the functions that we are familiar with.

The functions that we have been dealing with in this book are called elementary func-
tions. These are the polynomials, rational functions, power functions (x“), exponential
functions (a*), logarithmic functions, trigonometric and inverse trigonometric functions,
hyperbolic and inverse hyperbolic functions, and all functions that can be obtained from
these by the five operations of addition, subtraction, multiplication, division, and compo-
sition. For instance, the function

x2—1

3+ 2x—1

sin 2x

flx) = + In(cosh x) — xe
is an elementary function.

If f is an elementary function, then f” is an elementary function but f f(x) dx need not
be an elementary function. Consider f(x) = e*. Since f is continuous, its integral exists,
and if we define the function F by

F(x) = J: e dt
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then we know from Part 1 of the Fundamental Theorem of Calculus that
F'(x) = e°

Thus, f(x) = ¢* has an antiderivative F , but it has been proved that F is not an elemen-
tary function. This means that no matter how hard we try, we will never succeed in evalu-
ating | e dxi in terms of the functions we know. (In Chapter 11, however, we will see how
to express ‘ ¢* dx as an infinite series.) The same can be said of the following integrals:

X

J ex dx fsin(xz)dx jcos(e)‘)dx
j\/mdx ﬁdx jSiI;xdx

In fact, the majority of elementary functions don’t have elementary antiderivatives. You
may be assured, though, that the integrals in the following exercises are all elementary
functions.

1-80 Evaluate the integral.

1. [cosx (1 + sin’x) dx

sin x + sec x
[t seex

tan x

0 (= 3) dt

AN

1]+ y?

arctan y

dy
34
9. fl r*Inrdr

" de
SRS

I3. fsirﬁo cos’0 do
5 [ G
J‘xsinzx dx

19. fe”f‘dx

21. farctan\/;dx
23] (1 + V) ax

el

o

20.

22.

24.

3x* -2 3x2—2
25. | —d. 26 | ———d
¢ sin’x ~(x2—2x—8 * fx3—2x—8 *
cosxdx
rood
2. |~ +x - 28. [ sin ar di
ftan30d9 ¢
3w —1
J.S “ dw 30. [2 | x? — 4x]| dx
#dx o w+ 2 Joo
3=
3 LR 3 [Lx_l
fxcscx cot x dx ) a3 &
=2 1 + 4 cot
_x-1 3. jmdx M. 7y
——— - dx /4 4 — cotx
0x°—4x—5
X dx 35. J‘I x8 sin x dx 36. jsin 4x cos 3x dx
xt+ x4 1 -
fx73dx 37. fﬂm cos’6 tan’6 d6 38. fﬂﬂ tan’0 sec’6 d6
)V + X2 0 Jo
V2/2 x’ 39 Md@ 40 %d
‘J;, /l_xzdx .fSSCZO—SCCH f 4y2 — 4y — 3 Y
~ t: -1
4] | otan’0do a2 [
1‘|‘€4r X
fezdx 43. fe'*\/l + e* dx 44, “\/1 + e* dx
¢ In x 3 1 + sinx
—F——d Se™d 46. | ———d
x4/1 + (In x)? * fxe * 1—sinx "
In(x? — 1) dx 41. [ (x - )*d 48 [——a
[mnGe =1 [ 2= 0 dx [
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[ N T

1
l. | —F/———
5 Jx\/4x2 +1 dx
53. fxz sinh mx dx
dx
55. fix s
fxf/x + ¢ dx

59. f cos x cos’(sin x) dx
[ \/;eﬁ dx

63, J sin 2x
1 + cos* x

|
65.f77+1+\/;dx

50.

52.

54.

56.

58.

60.

62.

64.

66.

=3 In(tan x)
m/4 sin X COS X

7.6
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1

‘7d 341+ x2 1
XZ\/4)C + 1 )C 67. J Txdx 68. mdx
dx
—_— 1 +1
x(x*+ 1) j 1+€xdx 70. f%dx
f (x + sin x)*dx x + arcsmx 4+ 10"
71. j — 72. [ o
d
f\/;+xx\/§ n—1 4 78, [—— % _
-2+ 49) * J Vx(2 + Vx )
xlnx d §
_Anx )
JUxr =1 75. [%dx 76. J(x2 — bx) sin 2x dx
J e
dx
fx2v4x2 -1 77. j LB 78. fwdx
. 1+x3 sinx + secx
J x+ Jx 79. jxsinzxcosxdx 80. [M X
J sin*x + cos*x

81. The functions y = e and y= x%* don’t have elementary

soud + 1 du antiderivatives, but y = (2x + 1)e* does. Evaluate

u® — u’ [(2x* + De* dx.

INTEGRATION USING TABLES AND COMPUTER ALGEBRA SYSTEMS

In this section we describe how to use tables and computer algebra systems to integrate
functions that have elementary antiderivatives. You should bear in mind, though, that even
the most powerful computer algebra systems can’t find explicit formulas for the antideriv-
atives of functions like ¢* or the other functions described at the end of Section 7.5.

TABLES OF INTEGRALS

Tables of indefinite integrals are very useful when we are confronted by an integral that is
difficult to evaluate by hand and we don’t have access to a computer algebra system. A rel-
atively brief table of 120 integrals, categorized by form, is provided on the Reference Pages
at the back of the book. More extensive tables are available in CRC Standard Mathe-
matical Tables and Formulae, 31st ed. by Daniel Zwillinger (Boca Raton, FL: CRC
Press, 2002) (709 entries) or in Gradshteyn and Ryzhik’s Table of Integrals, Series, and
Products, 6e (San Diego: Academic Press, 2000), which contains hundreds of pages of
integrals. It should be remembered, however, that integrals do not often occur in exactly
the form listed in a table. Usually we need to use substitution or algebraic manipulation to
transform a given integral into one of the forms in the table.

EXAMPLE | The region bounded by the curves y = arctan x, y = 0, and x = 1 is rotated
about the y-axis. Find the volume of the resulting solid.

SOLUTION Using the method of cylindrical shells, we see that the volume is

1
V= f 27rx arctan x dx
0
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The Table of Integrals appears on Reference In the section of the Table of Integrals titled Inverse Trigonometric Forms we locate
Pages 610 at the back of the book. Formula 92:

u? +1

u
f utan 'udu = tan” 'y — B +C

Thus the volume is

1 x2+1 X :
V= 277}0 xtan x dx = 277[ 5 tan”x — E]

0
= 7-r[(x2 + 1)tan"'x — x]:) =7Q2tan 'l — 1)

=7[2(w/4) — 1]=i7" -7 [ |

2

X
i1 EXAMPLE 2 Use the Table of Integrals to find f %dx.
5 — 4x?

SOLUTION If we look at the section of the table titled Forms involving v/a*> — u?, we see
that the closest entry is number 34:

u’? u a* . (u
f—mdMZ _EM+7SIH 1(;) + C

This is not exactly what we have, but we will be able to use it if we first make the substi-
tution u = 2x:

(w/2)* du

2 1 2
f—ﬁfw"x:f—m7:§f—¢su——uzd“

Then we use Formula 34 with a*> = 5 (so a= \/g)

fx_zd zlju_zd L B s SR RN RS
S TR oM TR\ T2 TS s
X 5 2x
_ - — 2+_‘7l — | +
8\/5 4x 16sm (ﬁ) C |

EXAMPLE 3 Use the Table of Integrals to find f xsin x dx.

SOLUTION If we look in the section called Trigonometric Forms, we see that none of
the entries explicitly includes a u* factor. However, we can use the reduction formula
in entry 84 with n = 3:

fx3sinxdx = —x’cos x + 3fxzcosxdx

85. f u" cos u du We now need to evaluate J x? cos x dx. We can use the reduction formula in entry 85
with n = 2, followed by entry 82:

"1sin u du

:u"sinu—nfu
fxzcosxdx=x2sinx— ijsinxdx

= x2sinx — 2(sin x — xcos x) + K



. a’>+ u? du =—+/a* + u?
2. [ ;\/
2
+a7ln(u+\/a2+u2)+C
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Combining these calculations, we get
fx3sinxdx = —x’cos x + 3x?sinx + 6xcos x — 6sinx + C

where C = 3K. [ |

i EXAMPLE 4 Use the Table of Integrals to find j xJx2 + 2x T 4 dx.

SOLUTION Since the table gives forms involving \/a2 + x2, \/a2 — x2, and \/x2 — a?, but
not v/ax? + bx + ¢, we first complete the square:

X*+2x+4=x+172+3

If we make the substitution # = x + 1 (so x = u — 1), the integrand will involve the
pattern v/a? + u?:

jx\/mdx=f(u— 1) Vu? + 3 du
= f u\/m du — f Vu? + 3 du
The first integral is evaluated using the substitution t = u* + 3:
[ 53 au =3[ Vidr=1-3er =3 + 37
For the second integral we use Formula 21 with a = V3

jmdu=% w43 +3In(u + Vu2 +3)

Thus

fx\/x2+2x+4dx
+ 1
=%()52-|—2x+4)3/2_xT /2+2x+4—%1n(x+1+ /x2+2x+4)+C

COMPUTER ALGEBRA SYSTEMS

We have seen that the use of tables involves matching the form of the given integrand with
the forms of the integrands in the tables. Computers are particularly good at matching pat-
terns. And just as we used substitutions in conjunction with tables, a CAS can perform sub-
stitutions that transform a given integral into one that occurs in its stored formulas. So it
isn’t surprising that computer algebra systems excel at integration. That doesn’t mean that
integration by hand is an obsolete skill. We will see that a hand computation sometimes
produces an indefinite integral in a form that is more convenient than a machine answer.

To begin, let’s see what happens when we ask a machine to integrate the relatively
simple function y = 1/(3x — 2). Using the substitution u = 3x — 2, an easy calculation
by hand gives

1
jmdx=§ln|3x—2| +C
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This is Equation 3.11.3.

whereas Derive, Mathematica, and Maple all return the answer
In(3x — 2)

The first thing to notice is that computer algebra systems omit the constant of integra-
tion. In other words, they produce a particular antiderivative, not the most general one.
Therefore, when making use of a machine integration, we might have to add a constant.
Second, the absolute value signs are omitted in the machine answer. That is fine if our
problem is concerned only with values of x greater than 3. But if we are interested in other
values of x, then we need to insert the absolute value symbol.

In the next example we reconsider the integral of Example 4, but this time we ask a
machine for the answer.

EXAMPLE 5 Use a computer algebra system to find j x+/x% + 2x + 4 dx.

SOLUTION Maple responds with the answer

3 3
P+ 2x + 4 —2x + )2+ 2x + 4 — Earcsinh%(l + x)

This looks different from the answer we found in Example 4, but it is equivalent because
the third term can be rewritten using the identity

arcsinh x = ln(x + /x2 + 1)

Thus

arcsinhg(l +x) = 1n|:g(l +x) + /31 + 2 + 1]
=In%[1 +x+ I+ +3]
=mj%+Mmﬂ+¢FTZTﬂ

The resulting extra term —3 ln( 1/1/3 ) can be absorbed into the constant of integration.
Mathematica gives the answer

X ) et a2 arcsinh(
—+—+—= — —arcsinh| —=—
X X 3 ﬁ

6 6 3

Mathematica combined the first two terms of Example 4 (and the Maple result) into a
single term by factoring.
Derive gives the answer

L+ 2x+4 @22 +x+5) —32In(Vx?+2x +4 +x+ 1)

The first term is like the first term in the Mathematica answer, and the second term is
identical to the last term in Example 4. |

EXAMPLE 6 Use a CAS to evaluate f x(x? + 5)%dx.

SOLUTION Maple and Mathematica give the same answer:

x4+ 310 4 50x ™ + 0% 12 + 4375x10 + 21875x% + E0x0 + 156250x* + B2
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It’s clear that both systems must have expanded (x* 4+ 5)® by the Binomial Theorem and
then integrated each term.
If we integrate by hand instead, using the substitution u = x* + 5, we get

Derive and the TI-89/92 also give this answer. J‘x(xz + 5)%dx = 11*8(x2 +5°+C

For most purposes, this is a more convenient form of the answer. |

EXAMPLE 7 Use a CAS to ﬁndf sin’x cos’x dx.

SOLUTION In Example 2 in Section 7.2 we found that
[1] f sin’x cos’x dx = —3 cos’x + 3 cos’x — j cos’x + C

Derive and Maple report the answer
L4 3y, — A qin? 3, — 8 3
7 sin“x cos’x — 35 SIN“X COS°X — 755 COS”X
whereas Mathematica produces
5 1 3 1
— & COS X — 795 COS 3x + 355 COS SX — z55 COS 7x
We suspect that there are trigonometric identities which show these three answers are

equivalent. Indeed, if we ask Derive, Maple, and Mathematica to simplify their expres-
sions using trigonometric identities, they ultimately produce the same form of the answer

as in Equation 1. [ |
| 7.6 | EXERCISES
1-4 Use the indicated entry in the Table of Integrals on the . jo 207t dt 12. fXZ csch(x® + 1) dx
Reference Pages to evaluate the integral. -1
tan’(1/z) .
VT — 2x? 3 L) — . !
l. fixdx; entry 33 2. jixdx; entry 55 13 j 72 dz 14 [ sin” 'V dx
x? V3 = 2x
R 15. jez“ arctan(e”) dx 16. fx sin(x?) cos(3x?) dx
3. J sec’(mx) dx; entry 71 4. jeza sin 30 d0; entry 98
dx
. - 2 . —
jy\/f) + 4y —4y> dy 18 f P — 3
5-30 Use the Table of Integrals on Reference Pages 610 to evalu- = ) ~ sin 26
ate the integral. f sin®x cos x In(sin x) dx 20. J NGEETY do
5. f] 2x cos”'x dx 6. F;dx e’ 7 p——
o b x2J4x2 — 7 21. [ FQEpEE dx 22. JO X°/4x? — x* dx
N ln(l + \/;)
3 5 ia 6
7. J tan®(7x) dx 8. j NG dx 23. jsec X dx 24. fsm 2x dx
9 f dx io] f \/Zy2 - 25 V4 + (In x)? d [1 dgmr g
)X ax2 4+ 9 : j X . Jre &
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f\/ezx — 1ldx

x*dx

8l rm—s

28. f e'sin(at — 3) dt 43. (a) Use the table of integrals to evaluate F(x) = [ f(x) dx,

where
30. f sec’6 tan’6 1

9 — tan0 ==

31. Find the volume of the solid obtained when the region under
the curve y = x/4 — x2, 0 < x < 2, is rotated about the

y-axis.

32. The region under the curve y = tan’x from 0 to /4 is

What is the domain of fand F?

(b) Use a CAS to evaluate F(x). What is the domain of the
function F that the CAS produces? Is there a discrepancy
between this domain and the domain of the function F'
that you found in part (a)?

rotated about the x-axis. Find the volume of the resulting

solid.

(AS/44. Computer algebra systems sometimes need a helping hand
from human beings. Try to evaluate

[33.] Verify Formula 53 in the Table of Integrals (a) by differentia-

tion and (b) by using the substitution t = a + bu.

f(l +Inx) V1 + (xInx)? dx

34. Verify Formula 31 (a) by differentiation and (b) by substi-

tuting u = a sin 6.

35-42 Use a computer algebra system to evaluate the integral.

with a computer algebra system. If it doesn’t return an
answer, make a substitution that changes the integral into one
that the CAS can evaluate.

Compare the answer with the result of using tables. If the answers

are not the same, show that they are equivalent.

35. fsec“x dx
37. fxza/XZ + 4 dx

39. J‘x\/l ¥ 2xdx

45-48 Use a CAS to find an antiderivative F of f such
that F(0) = 0. Graph f and F and locate approximately the

5 . . . . .
36. fCSC x dx x-coordinates of the extreme points and inflection points of F.

| dx a5 f) =L
38 [ ——— A T R
e*(3e* + 2) X X
46. f(x) =xe *sinx, —5<x<35

.4
40. f sinx dx 47. f(x) = sin*x cos®x, O0<x<nm

41. | tan’x dx ) f;dx a8 fly =5 %
' o+ Ix ) xb+ 1
DISCOVERY (5] PATTERNS IN INTEGRALS
PROIJECT

In this project a computer algebra system is used to investigate indefinite integrals of families of
functions. By observing the patterns that occur in the integrals of several members of the family,
you will first guess, and then prove, a general formula for the integral of any member of the
family.

I. (a) Use a computer algebra system to evaluate the following integrals.

. 1 . 1
@ f GroGta ™ () f GrDa+s ™

1 , I
G+Da-5 " () f G+ ™

(b) Based on the pattern of your responses in part (a), guess the value of the integral

(iif) J

1
J Graxc+o ™
if a # b. What if a = b?
(c) Check your guess by asking your CAS to evaluate the integral in part (b). Then prove it
using partial fractions.
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2. (a) Use a computer algebra system to evaluate the following integrals.

@) f sinx cos 2xdx (i) f sin 3x cos Tx dx (iii) j sin 8x cos 3x dx

(b) Based on the pattern of your responses in part (a), guess the value of the integral

j sin ax cos bx dx

(c) Check your guess with a CAS. Then prove it using the techniques of Section 7.2. For
what values of a and b is it valid?

3. (a) Use a computer algebra system to evaluate the following integrals.
@) f In x dx (ii) J x In x dx (iii) f x*1n x dx

(iv) fxﬂnxdx V) fx7 In x dx

(b) Based on the pattern of your responses in part (a), guess the value of

fx"lnxdx

(c) Use integration by parts to prove the conjecture that you made in part (b). For what
values of n is it valid?

4. (a) Use a computer algebra system to evaluate the following integrals.
Q) [ xe"ax (i) [ x%e”dx (i) | xe*dx
(@iv) f xe* dx v) f x’e* dx

(b) Based on the pattern of your responses in part (a), guess the value of | x%* dx. Then
use your CAS to check your guess.

(c) Based on the patterns in parts (a) and (b), make a conjecture as to the value of the
integral

f x"e* dx

when # is a positive integer.
(d) Use mathematical induction to prove the conjecture you made in part (c).

APPROXIMATE INTEGRATION

There are two situations in which it is impossible to find the exact value of a definite
integral.

The first situation arises from the fact that in order to evaluate |: f(x) dx using the
Fundamental Theorem of Calculus we need to know an antiderivative of f. Sometimes,
however, it is difficult, or even impossible, to find an antiderivative (see Section 7.5). For
example, it is impossible to evaluate the following integrals exactly:

jol e dx f_ll m dx
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0O xo X x5 X3 X4 X

(a) Left endpoint approximation

0O xo X X X3 X4 X

(b) Right endpoint approximation

|
| |
[ [ |
\ | \ |
\ | \ |
\ | \ |
\ | \ |
| | | |
0 XX X X x

(c) Midpoint approximation

FIGURE 1

The second situation arises when the function is determined from a scientific experi-
ment through instrument readings or collected data. There may be no formula for the func-
tion (see Example 5).

In both cases we need to find approximate values of definite integrals. We already know
one such method. Recall that the definite integral is defined as a limit of Riemann sums,
so any Riemann sum could be used as an approximation to the integral: If we divide [a, b]
into n subintervals of equal length Ax = (b — a)/n, then we have

Lbf(x) dx = éf(x,*) Ax

where x is any point in the ith subinterval [x;-;, x;]. If x¥* is chosen to be the left endpoint
of the interval, then x¥ = x;_, and we have

1] Lb fx)dx =~ L, = gl Flxio) Ax

If f(x) = 0, then the integral represents an area and (1) represents an approximation of this
area by the rectangles shown in Figure 1(a). If we choose x}* to be the right endpoint, then
x¥ = x; and we have

Lbf(x) dx =R, = éf(x,-) Ax

[See Figure 1(b).] The approximations L, and R, defined by Equations 1 and 2 are called
the left endpoint approximation and right endpoint approximation, respectively.

In Section 5.2 we also considered the case where xj* is chosen to be the midpoint x; of
the subinterval [x;—1, x;]. Figure 1(c) shows the midpoint approximation M,, which appears
to be better than either L, or R,.

MIDPOINT RULE
(700 dx = M, = Ax[fGE) + f(R) + -+ + f(E)]

b—a
n

where Ax =

and % = 3(x;i-1 + x;) = midpoint of [x;_1, x;]

Another approximation, called the Trapezoidal Rule, results from averaging the approx-
imations in Equations 1 and 2:

[ ax == [E"Iﬂx”) Ax+ 3 p() Ax] o [2 (Fsi) +f(xi>)]
= 2 [(rt00) + 70) + () + f() + 2+ () + fx)]

A
= L (0) + 200) + 2(0) + -+ 2f(x,0) + £()]
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Trapezoidal approximation
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FIGURE 4

"b . R R
’ f(x) dx = approximation + error
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TRAPEZOIDAL RULE

b A
(770 dx =T, = S5 0fG0) + 2£0) + 2f ) + -+ 2f(r,m) + f(x)]

where Ax = (b — a)/nand x; = a + i Ax.

The reason for the name Trapezoidal Rule can be seen from Figure 2, which illustrates
the case f(x) = 0. The area of the trapezoid that lies above the ith subinterval is

Ax < f(xi—l) +f(xi)

5 > = %[f()ﬁ—l) + f(x:)]

and if we add the areas of all these trapezoids, we get the right side of the Trapezoidal
Rule.

EXAMPLE | Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with n = 5 to
approximate the integral |7 (1/x) dx.

SOLUTION
(a) Withn =5,a = 1,and b = 2, we have Ax = (2 — 1)/5 = 0.2, and so the Trape-
zoidal Rule gives

f%dx ~Ts = %[f(l) +2f(1.2) + 2f(1.4) + 2£(1.6) + 2f(1.8) + f(2)]

12 2 2 2 1
=0l|l—+—+—+—+—+—

(1 12 14 16 18 2)
~ 0.695635

This approximation is illustrated in Figure 3.

(b) The midpoints of the five subintervals are 1.1, 1.3, 1.5, 1.7, and 1.9, so the Midpoint
Rule gives

Lz%dx ~ Ax[f£(1.1) + £(1.3) + £(1.5) + £(1.7) + £(1.9)]

1 1 1 1 1 1
=—|l—t—=+—=+—=+—

s\l 13 15 17 19
~ 0.691908

This approximation is illustrated in Figure 4. |

In Example 1 we deliberately chose an integral whose value can be computed explicitly
so that we can see how accurate the Trapezoidal and Midpoint Rules are. By the Funda-
mental Theorem of Calculus,

2] 2
j} —dx=Inx]’=1In2 = 0693147 ...
X

The error in using an approximation is defined to be the amount that needs to be added to
the approximation to make it exact. From the values in Example 1 we see that the errors
in the Trapezoidal and Midpoint Rule approximations for n = 5 are

Er = —0.002488 and Ey = 0.001239
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In general, we have
Er = jbf(x)dx ~ T, and Ey= f”f(x)dx — M,

34 Module 5.2/7.7 allows you to The following tables show the results of calculations similar to those in Example 1, but
compare approximation methods. for n =5, 10, and 20 and for the left and right endpoint approximations as well as the
Trapezoidal and Midpoint Rules.

Approximations to ‘:l({.x n L, R, T, M,
JIX
5 0.745635 0.645635 0.695635 0.691908
10 0.718771 0.668771 0.693771 0.692835
20 0.705803 0.680803 0.693303 0.693069
Corresponding errors n E; Ex Er Ey
5 —0.052488 0.047512 —0.002488 0.001239
10 —0.025624 0.024376 —0.000624 0.000312
20 —0.012656 0.012344 —0.000156 0.000078

We can make several observations from these tables:

1. In all of the methods we get more accurate approximations when we increase the
value of n. (But very large values of n result in so many arithmetic operations that
we have to beware of accumulated round-off error.)

2. The errors in the left and right endpoint approximations are opposite in sign and
appear to decrease by a factor of about 2 when we double the value of 7.

It turns out that these observations are true 3. The Trapezoidal and Midpoint Rules are much more accurate than the endpoint
In most cases. approximations.

4. The errors in the Trapezoidal and Midpoint Rules are opposite in sign and appear
to decrease by a factor of about 4 when we double the value of n.

5. The size of the error in the Midpoint Rule is about half the size of the error in the
Trapezoidal Rule.

Figure 5 shows why we can usually expect the Midpoint Rule to be more accurate than
the Trapezoidal Rule. The area of a typical rectangle in the Midpoint Rule is the same as
the area of the trapezoid ABCD whose upper side is tangent to the graph at P. The area of
this trapezoid is closer to the area under the graph than is the area of the trapezoid AQRD
used in the Trapezoidal Rule. [The midpoint error (shaded red) is smaller than the trape-
zoidal error (shaded blue).]

C C

s

I

FIGURE 5 Xi—1

=



K can be any number larger than all the
values of | f"(x) |, but smaller values of K
give better error bounds.

It's quite possible that a lower value for n
would suffice, but 41 is the smallest value for
which the error bound formula can guarantee us
accuracy to within 0.0001.
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These observations are corroborated in the following error estimates, which are proved
in books on numerical analysis. Notice that Observation 4 corresponds to the n” in each
denominator because (2n)> = 4n”. The fact that the estimates depend on the size of the
second derivative is not surprising if you look at Figure 5, because f”(x) measures how
much the graph is curved. [Recall that f”(x) measures how fast the slope of y = f(x)
changes.]

[3] ERROR BOUNDS Suppose | f"(x)| < K for a < x < b. If E; and Ej, are the

errors in the Trapezoidal and Midpoint Rules, then

Kb — a)’
12n?

Kb — a)’
24n®

| Er| <

and  |Ey|<

Let’s apply this error estimate to the Trapezoidal Rule approximation in Example 1. If
f(x) = 1/x, then f'(x) = —1/x*and f"(x) = 2/x°. Since 1 < x < 2, wehave 1/x < 1, s0

) 2 2
[f'Wl=|5|=pF =2

Therefore, taking K = 2,a = 1, b = 2, and n = 5 in the error estimate (3), we see that

2017 1

Er| < =
| Er| 12(5)> 150

~ 0.006667

Comparing this error estimate of 0.006667 with the actual error of about 0.002488, we see
that it can happen that the actual error is substantially less than the upper bound for the
error given by (3).

i1 EXAMPLE 2 How large should we take n in order to guarantee that the Trapezoidal
and Midpoint Rule approximations for |7 (1/x) dx are accurate to within 0.0001?

SOLUTION We saw in the preceding calculation that | f”(x)| < 2 for 1 < x < 2, so we can
take K = 2,a = 1, and b = 2 in (3). Accuracy to within 0.0001 means that the size of
the error should be less than 0.0001. Therefore we choose n so that

2(1)°
12n®

< 0.0001

Solving the inequality for n, we get

) 2
n>—-————-
12(0.0001)

1

S~ 408
of =7 /0.0006

Thus n = 41 will ensure the desired accuracy.
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y
0 1 X
FIGURE 6

Error estimates give upper bounds for
the error. They are theoretical, worst-case
scenarios. The actual error in this case turns
out to be about 0.0023.

For the same accuracy with the Midpoint Rule we choose n so that

2(1)°
24n?

< 0.0001

1
which gives n > 00012 ~ 29 |

1 EXAMPLE 3
(a) Use the Midpoint Rule with n = 10 to approximate the integral Jg e* dx.
(b) Give an upper bound for the error involved in this approximation.

SOLUTION
(a) Since a = 0,b = 1, and n = 10, the Midpoint Rule gives

jo' e dx = Ax[£(0.05) + £(0.15) + - - - + £(0.85) + £(0.95)]

— 0.1[60‘0025 + 60‘0225 + 60.0625 + 60.1225 + 60,2025 + 60,3025
+ 60.4225 + eO.S()ZS + eO,7225 + 809025]

~ 1.460393

Figure 6 illustrates this approximation.

(b) Since f(x) = e, we have fl(x) = 2xe* and f'(x) =2+ 4x?)e*’. Also, since
0<x=<1, wehave x> < 1 and so

0<f"(x) =2+ 4x%)e" < 6e

Taking K = 6¢,a = 0, b = 1, and n = 10 in the error estimate (3), we see that an upper
bound for the error is
6e(1)* e

= ~0.007 m
2410 400

SIMPSON’S RULE

Another rule for approximate integration results from using parabolas instead of straight
line segments to approximate a curve. As before, we divide [a, b] into n subintervals of
equal length 1 = Ax = (b — a)/n, but this time we assume that 7 is an even number. Then
on each consecutive pair of intervals we approximate the curve y = f(x) = 0 by a parabola
as shown in Figure 7. If y; = f(x;), then P;(x;, y;) is the point on the curve lying above x;.
A typical parabola passes through three consecutive points P;, P11, and P;».

PO% P (0,y)

PZ(h3y2)

|
0 a=x, X X,

FIGURE 7

-
X3

Xy x'5 Xe=D> X —h 0

FIGURE 8



Here we have used Theorem 5.5.7.
Notice that Ax? + Cis even and Bx is odd.
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To simplify our calculations, we first consider the case where xo = —h, x; = 0, and
X2 = h. (See Figure 8.) We know that the equation of the parabola through Py, P, and P,
is of the form y = Ax? + Bx + C and so the area under the parabola from x = —h to
x=his

ﬁh (Ax> + Bx + C) dx = 2th (Ax> + C) dx

x3 "
= Z[A— + Cx]
3 0

h? hooo
=2 A?-i—Ch =§(2Ah + 60C)
But, since the parabola passes through Po(—h, yo), P1(0, y1), and Pa(h, y»), we have

vo = A(—h)*> + B(—h) + C = Ah* — Bh + C
n==C
y» =Ah*> + Bh + C

and therefore yo + 4y, + y, = 2Ah* + 6C
Thus we can rewrite the area under the parabola as

h

3 o+ 4y + 32)

Now, by shifting this parabola horizontally we do not change the area under it. This means
that the area under the parabola through Py, P, and P, from x = x, to x = x, in Figure 7
is still

h
g(yo + 4y + )
Similarly, the area under the parabola through P,, Ps, and P, from x = x; to x = x4 is
h
g(yz + 4ys + )
If we compute the areas under all the parabolas in this manner and add the results, we get

b h h h
Lf(x) dx = ?()’0 + 4y + y) + g(yz +dy; +oys) + e+ ?(yn*2 + 4y, + yn)

h
= g(y() + 4y1 + 2y2 + 4y3 + 2y4 + -+ 2y,172 + 4y,,71 + y,,)

Although we have derived this approximation for the case in which f(x) = 0, it is a rea-
sonable approximation for any continuous function f and is called Simpson’s Rule after
the English mathematician Thomas Simpson (1710-1761). Note the pattern of coeffi-
cients: 1,4,2,4,2,4,2,...,4,2,4, 1.
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[SIMPSON |
Thomas Simpson was a weaver who taught
himself mathematics and went on to become one
of the best English mathematicians of the 18th
century. What we call Simpson’s Rule was
actually known to Cavalieri and Gregory in the
17th century, but Simpson popularized it in his
best-selling calculus textbook, A New Treatise

of Fluxions.

FIGURE 9

SIMPSON’S RULE

b A
[ 700 dx = 5, = S5 [r00) + 4700) + 27 (0) + 4f () + -

+ 2f(xn72) + 4f(xn71) + f(x,l)]

where n is even and Ax = (b — a)/n.

EXAMPLE 4 Use Simpson’s Rule with n = 10 to approximate [} (1/x) dx.

SOLUTION Putting f(x) = 1/x,n = 10, and Ax = 0.1 in Simpson’s Rule, we obtain

jlzldx = S

X

— SEL0) + 4L + 2f(12) + 4£(13) + - + 2f(1L8) + 4£(19) + )]

0.1 (1 4 2 4 2 4 2 4 2 4 1
=— |-t —+ =+ —F—+—+—F—+—+—+ =
3\1 L1 12 13 14 15 16 17 18 19 2

~ (0.693150 |

+

Notice that, in Example 4, Simpson’s Rule gives us a much better approximation
(S10 = 0.693150) to the true value of the integral (In2 =~ 0.693147...) than does the
Trapezoidal Rule (T} = 0.693771) or the Midpoint Rule (Mo = 0.692835). It turns out
(see Exercise 48) that the approximations in Simpson’s Rule are weighted averages of
those in the Trapezoidal and Midpoint Rules:

SZn = %Tn + %Mn

(Recall that E; and Ej, usually have opposite signs and | Ey | is about half the size of | Er|.)

In many applications of calculus we need to evaluate an integral even if no explicit for-
mula is known for y as a function of x. A function may be given graphically or as a table
of values of collected data. If there is evidence that the values are not changing rapidly,
then the Trapezoidal Rule or Simpson’s Rule can still be used to find an approximate value
for f: y dx, the integral of y with respect to x.

7 EXAMPLE 5 Figure 9 shows data traffic on the link from the United States to SWITCH,
the Swiss academic and research network, on February 10, 1998. D(z) is the data through-
put, measured in megabits per second (Mb/s). Use Simpson’s Rule to estimate the total
amount of data transmitted on the link up to noon on that day.

D
8+

6<>

0 36 9 12 15 18 21 24 t(hours)



n Mu Sn

4 0.69121989 | 0.69315453

8 0.69266055 | 0.69314765
16 0.69302521 | 0.69314721

n E}u E,S

4 0.00192729 | —0.00000735

8 0.00048663 | —0.00000047
16 0.00012197 | —0.00000003
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SOLUTION Because we want the units to be consistent and D(7) is measured in megabits
per second, we convert the units for ¢ from hours to seconds. If we let A(r) be the
amount of data (in megabits) transmitted by time ¢, where ¢ is measured in seconds, then
A'(f) = D(¢). So, by the Net Change Theorem (see Section 5.4), the total amount of data
transmitted by noon (when t = 12 X 60? = 43,200) is

A(43,200) = fo“’z‘)‘) Do) dr

We estimate the values of D(¢) at hourly intervals from the graph and compile them in
the table.

t (hours) t (seconds) D(1) t (hours) t (seconds) D(1)

0 0 3.2 7 25,200 1.3
1 3,600 2.7 8 28,800 2.8
2 7,200 1.9 9 32,400 5.7
3 10,800 1.7 10 36,000 7.1
4 14,400 1.3 11 39,600 7.7
5 18,000 1.0 12 43,200 7.9
6 21,600 1.1

Then we use Simpson’s Rule with n = 12 and A = 3600 to estimate the integral:

. A
fo“ AG) di ~ Tt[D(O) + 4D(3600) + 2D(7200) + - - - + 4D(39,600) + D(43,200)]

~ 0 [32 4 407) +2(19) +40.7) + 20.3) + 401.0)

+2(1.1) + 4(1.3) + 2(2.8) + 4(5.7) + 2(7.1) + 4(7.7) + 7.9]
— 143,880

Thus the total amount of data transmitted up to noon is about 144,000 megabits, or
144 gigabits. |

The table in the margin shows how Simpson’s Rule compares with the Midpoint Rule
for the integral Lflz (1/x) dx, whose true value is about 0.69314718. The second table shows
how the error E, in Simpson’s Rule decreases by a factor of about 16 when n is doubled.
(In Exercises 27 and 28 you are asked to verify this for two additional integrals.) That is
consistent with the appearance of n* in the denominator of the following error estimate for
Simpson’s Rule. It is similar to the estimates given in (3) for the Trapezoidal and Midpoint
Rules, but it uses the fourth derivative of f.

[4] ERROR BOUND FOR SIMPSON’S RULE Suppose that | f“(x)| < K for
a < x < b. If Es is the error involved in using Simpson’s Rule, then

Kb — a)’

Es| <
| Es] 180n*
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Many calculators and computer algebra sys-
tems have a built-in algorithm that computes an
approximation of a definite integral. Some of
these machines use Simpson’s Rule; others use
more sophisticated techniques such as adaptive

numerical integration. This means that if a func-

tion fluctuates much more on a certain part of
the interval than it does elsewhere, then that
part gets divided into more subintervals. This
strategy reduces the number of calculations
required to achieve a prescribed accuracy.

Figure 10 illustrates the calculation in
Example 7. Notice that the parabolic arcs are
so close to the graph of y = " that they are
practically indistinguishable from it.

y

FIGURE 10

EXAMPLE 6 How large should we take n in order to guarantee that the Simpson’s Rule
approximation for [ (1/x) dx is accurate to within 0.0001?

SOLUTION If f(x) = 1/x, then f“¥(x) = 24/x°. Since x = 1, we have 1/x < 1 and so

| FO) | = <24

24
xS

Therefore we can take K = 24 in (4). Thus, for an error less than 0.0001, we should
choose n so that

24(1)°
R0, < 00001
) 24

This ei >
is gives 180(0.0001)

1

> [
of "= 70.00075

Therefore n = 8 (n must be even) gives the desired accuracy. (Compare this with
Example 2, where we obtained n = 41 for the Trapezoidal Rule and n = 29 for the
Midpoint Rule.)

=~ 6.04

EXAMPLE 7

. . . . " 2
(a) Use Simpson’s Rule with n = 10 to approximate the integral Jol e’ dx.
(b) Estimate the error involved in this approximation.

SOLUTION
(a) If n = 10, then Ax = 0.1 and Simpson’s Rule gives

jol e dx = %[f(O) + 47(0.1) + 2£(0.2) + - - - + 2£(0.8) + 4£(0.9) + f(1)]

0.1
_ ; [0 + 40 + 260% + 400 4 20016 4 40025 4 2,03

+ 469 4 2006 4 408 + 1]
~ 1.462681

(b) The fourth derivative of f(x) = e* is
() = (12 + 48x% + 16x*)e”
and so, since 0 < x < 1, we have
0<f9x) =< (12 + 48 + 16)e' = 76¢

Therefore, putting K = 76e,a = 0, b = 1, and n = 10 in (4), we see that the error is at
most
76¢(1)°

W ~ 0.000115

(Compare this with Example 3.) Thus, correct to three decimal places, we have

fol eCdx ~ 1.463 m
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(1) Let = .g f(x) dx, where f is the function whose graph is (Round your answers to six decimall places.) Corppare your
shown. results to the actual value to determine the error in each
(a) Use the graph to find L,, R,, and M,. approximation.

(b) Are these underestimates or overestimates of /?

T 5 . _ L —
(c) Use the graph to find 7,. How does it compare with 1? 5. jo x“sinxdx, n=8 6. J; eYdx, n=6

(d) For any value of n, list the numbers L,, R,, M, T,, and [

in increasing order.

7-18 Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and

y |1 (c
3

2. The left, right, Trapezoidal, and Midpoint Rule approxi-

) Simpson’s Rule to approximate the given integral with the

¥ specified value of n. (Round your answers to six decimal places.)

2 7. foz 1+ x2dx, n=38 8. fﬂl/z sin(x*)dx, n=4

o1 s dr
! 9.J2 Y gx. n=10 10. fi n=6
o1+

11+ x 2+t

. [0‘/2 sine’)dr, n=8 12 [T+ xdr, n=3

mations were used to estimate foz f(x) dx, where f is the 13. j: eV'sintds, n=38 14. JOI Vze7dz, n=10
function whose graph is shown. The estimates were 0.7811,
0.8675, 0.8632, and 0.9540, and the same number of sub- 5 COS X 6 R
intervals were used in each case. I5. jl X dx, n=8 16. L In(x* + 2)dx, n =10
(a) Which rule produced which estimate?
(b) l?zetween which two approximations does the true value of 7. j 31 —dy, n=6 8. f * cos Jxdx, n=10
Jo f(x) dx lie? ol+y 0
y
19. (a) Find the approximations 75 and Mjs for the integral
1 Jo cos(x?) dx.
y=f(x) (b) Estimate the errors in the approximations of part (a).
(c) How large do we have to choose n so that the approxima-
tions 7, and M, to the integral in part (a) are accurate to
within 0.0001?
0 2 x 20. (a) Find the approximations Ty, and M, for f]z e dx.

[3.] Estimate l(; cos(x?) dx using (a) the Trapezoidal Rule and
(b) the Midpoint Rule, each with n = 4. From a graph of the
integrand, decide whether your answers are underestimates or
overestimates. What can you conclude about the true value of 21
the integral?

Draw the graph of f(x) = sin(%xz) in the viewing rectangle

[0, 1]by [0,0.5] and let I = |, f(x) dx.

(a) Use the graph to decide whether L,, R,, M,, and T under-
estimate or overestimate /.

(b) For any value of n, list the numbers L,, R,, M,,, T,,, and
[ in increasing order. 22

(c) Compute Ls, Rs, Ms, and Ts. From the graph, which do
you think gives the best estimate of /?

(AS]23.

5-6 Use (a) the Midpoint Rule and (b) Simpson’s Rule to
approximate the given integral with the specified value of n.

(b) Estimate the errors in the approximations of part (a).

(c) How large do we have to choose n so that the approxima-
tions 7, and M, to the integral in part (a) are accurate to
within 0.0001?

. (a) Find the approximations T}y, Mo, and Sy, for |(;T sin x dx

and the corresponding errors Er, Ey, and Es.

(b) Compare the actual errors in part (a) with the error esti-
mates given by (3) and (4).

(c) How large do we have to choose n so that the approxima-
tions 7,, M,, and S, to the integral in part (a) are accurate
to within 0.00001?

. How large should 7 be to guarantee that the Simpson’s Rule

approximation to fol " dx is accurate to within 0.00001?

The trouble with the error estimates is that it is often very
difficult to compute four derivatives and obtain a good upper
bound K for | £*(x) | by hand. But computer algebra systems
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have no problem computing f and graphing it, so we can

easily find a value for K from a machine graph. This exercise

deals with approximations to the integral 7 = [ f(x) dx,

where f(x) = e

(a) Use a graph to get a good upper bound for | £"(x) |.

(b) Use M, to approximate /.

(c) Use part (a) to estimate the error in part (b).

(d) Use the built-in numerical integration capability of your
CAS to approximate /.

(e) How does the actual error compare with the error esti-
mate in part (c)?

(f) Use a graph to get a good upper bound for | f“(x) |.

(g) Use Sio to approximate /.

(h) Use part (f) to estimate the error in part (g).

(1) How does the actual error compare with the error esti-
mate in part (h)?

(j) How large should n be to guarantee that the size of the
error in using S, is less than 0.0001?

24. Repeat Exercise 23 for the integral fl V4 — x3 dx.
-1

25-26 Find the approximations L,, R,, T, and M, for n = 5, 10,
and 20. Then compute the corresponding errors E;, Er, Er, and
Ey. (Round your answers to six decimal places. You may wish to
use the sum command on a computer algebra system.) What
observations can you make? In particular, what happens to the
errors when 7 is doubled?

25. JOI xe*dx

21
26. f} —dx

27-28 Find the approximations 7,, M,, and S, for n = 6 and 12.
Then compute the corresponding errors Er, Ey, and Es. (Round
your answers to six decimal places. You may wish to use the sum
command on a computer algebra system.) What observations can
you make? In particular, what happens to the errors when 7 is
doubled?

27. f: x*dx

2. [y
.L\/; x

29. Estimate the area under the graph in the figure by using
(a) the Trapezoidal Rule, (b) the Midpoint Rule, and
(c) Simpson’s Rule, each with n = 6.

y

30. The widths (in meters) of a kidney-shaped swimming pool
were measured at 2-meter intervals as indicated in the

figure. Use Simpson’s Rule to estimate the area of the pool.

31. (a) Use the Midpoint Rule and the given data to estimate the
value of the integral ‘032 f(x) dx.

X f(x) X f(x)
0.0 6.8 2.0 7.6
0.4 6.5 2.4 8.4
0.8 6.3 2.8 8.8
1.2 6.4 3.2 9.0
1.6 6.9

(b) If it is known that —4 < f”(x) < 1 for all x, estimate the
error involved in the approximation in part (a).

32. A radar gun was used to record the speed of a runner during
the first 5 seconds of a race (see the table). Use Simpson’s
Rule to estimate the distance the runner covered during those
5 seconds.

t(s) v (m/s) t(s) v (m/s)
0 0 3.0 10.51

0.5 4.67 35 10.67
1.0 7.34 4.0 10.76
L5 8.86 4.5 10.81
2.0 9.73 5.0 10.81
2.5 10.22

[33.] The graph of the acceleration a(t) of a car measured in ft/s>
is shown. Use Simpson’s Rule to estimate the increase in the
velocity of the car during the 6-second time interval.

12 \

8/\\
N \

0 2 4 6 t(seconds)

34. Water leaked from a tank at a rate of r(¢) liters per hour, where
the graph of r is as shown. Use Simpson’s Rule to estimate the
total amount of water that leaked out during the first 6 hours.

’
4
2
\\
0 2 4 6 t(seconds)



[35.] The table (supplied by San Diego Gas and Electric) gives the

36.

37.

38.

power consumption P in megawatts in San Diego County
from midnight to 6:00 AM on December 8, 1999. Use Simp-
son’s Rule to estimate the energy used during that time
period. (Use the fact that power is the derivative of energy.)

t P t P

0:00 1814 3:30 1611
0:30 1735 4:00 1621
1:00 1686 4:30 1666
1:30 1646 5:00 1745
2:00 1637 5:30 1886
2:30 1609 6:00 2052
3:00 1604

Shown is the graph of traffic on an Internet service pro-
vider’s T1 data line from midnight to 8:00 AM. D is the data
throughput, measured in megabits per second. Use Simpson’s
Rule to estimate the total amount of data transmitted during
that time period.

b —

0.8 /

0 2 4 6 8 ¢ (hours)

If the region shown in the figure is rotated about the y-axis to
form a solid, use Simpson’s Rule with n = 8 to estimate the
volume of the solid.

y

4

2 o \\

0 2 4 6 8 10 x

The table shows values of a force function f(x), where x is
measured in meters and f(x) in newtons. Use Simpson’s Rule
to estimate the work done by the force in moving an object a
distance of 18 m.

f(x) 9.8 9.1 8.5 8.0 7.7 7

n

7.4
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39. The region bounded by the curves y = ¢ %, y = 0, x = 1,

and x = 5 is rotated about the x-axis. Use Simpson’s Rule
with n = 8 to estimate the volume of the resulting solid.

(A1 40. The figure shows a pendulum with length L that makes a
maximum angle 6, with the vertical. Using Newton’s
Second Law, it can be shown that the period 7 (the time
for one complete swing) is given by

L /2 dx
T=4,|— —_——
\/g fo 1 — k2 sin%x

where k = sin(% 00) and g is the acceleration due to gravity.
If L =1mand 6, = 42°, use Simpson’s Rule with n = 10 to
find the period.

41. The intensity of light with wavelength A traveling through
a diffraction grating with N slits at an angle 6 is given by
1(6) = N?sin’k/k>, where k = (7Nd sin 6)/A and d is the
distance between adjacent slits. A helium-neon laser with
wavelength A = 632.8 X 10~ m is emitting a narrow band
of light, given by —107° < § < 10, through a grating with
10,000 slits spaced 10~* m apart. Use the Midpoint Rule
with n = 10 to estimate the total light intensity Jl()l(;h 1(6) do
emerging from the grating.

42. Use the Trapezoidal Rule with n = 10 to approximate
[0 cos(arx) dx. Compare your result to the actual value.
Can you explain the discrepancy?

43. Sketch the graph of a continuous function on [0, 2] for which
the Trapezoidal Rule with n = 2 is more accurate than the
Midpoint Rule.

44. Sketch the graph of a continuous function on [0, 2] for which
the right endpoint approximation with n = 2 is more accurate
than Simpson’s Rule.

If £ is a positive function and f"(x) < 0 for a < x < b, show
that

T, < fbf(x)dx<Mn

46. Show that if f is a polynomial of degree 3 or lower, then
Simpson’s Rule gives the exact value of [” f(x) dx.

47. Show that 3(T, + M,) = T»,.

48. Show that 7, + iM, = S,,.
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7.8 | IMPROPER INTEGRALS

In defining a definite integral ’: f(x) dx we dealt with a function f defined on a finite inter-
val [a, b] and we assumed that f does not have an infinite discontinuity (see Section 5.2).
In this section we extend the concept of a definite integral to the case where the interval is
infinite and also to the case where f has an infinite discontinuity in [a, b]. In either case
the integral is called an improper integral. One of the most important applications of this
idea, probability distributions, will be studied in Section 8.5.

TYPE |: INFINITE INTERVALS

Consider the infinite region S that lies under the curve y = 1/x2, above the x-axis, and to
the right of the line x = 1. You might think that, since S is infinite in extent, its area must
be infinite, but let’s take a closer look. The area of the part of S that lies to the left of the
line x = ¢ (shaded in Figure 1) is

1 1] 1
A(r) =f:?dx= ——] =1-=

X 1
Notice that A(7) < 1 no matter how large ¢ is chosen.

y

0 X
FIGURE |
We also observe that
. . 1
limA(f) =lim|1——| =1
t—>00 t—>00 t
The area of the shaded region approaches 1 as t — o (see Figure 2), so we say that the area
of the infinite region S is equal to 1 and we write
o 1 oo 1
f —dx=1Ilim| —dx=1
1 X t—xJl X
y y y
area = % area = % area = 1
0 i é X 0 1 5 X 0 ‘ 1 X

FIGURE 2

Using this example as a guide, we define the integral of f (not necessarily a positive
function) over an infinite interval as the limit of integrals over finite intervals.
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[1] DEFINITION OF AN IMPROPER INTEGRAL OF TYPE |

(a) If J; f(x) dx exists for every number ¢t = a, then
f " £(x) dx = lim j " F(x) dx

provided this limit exists (as a finite number).
(b) If frb f(x) dx exists for every number ¢ < b, then

ﬁw fx) dx = E)IP& f’f(x) dx

provided this limit exists (as a finite number).

The improper integrals [ f(x) dx and [”,, f(x) dx are called convergent if the
corresponding limit exists and divergent if the limit does not exist.

(¢) Ifboth |7 f(x) dx and [*_ f(x) dx are convergent, then we define

j_: f(x) dx = j f(x) dx + j £(x) dx

In part (c) any real number a can be used (see Exercise 74).

Any of the improper integrals in Definition 1 can be interpreted as an area provided that
f is a positive function. For instance, in case (a) if f(x) = 0 and the integral | f(x) dx
is convergent, then we define the area of the region S = {(x, y)|x = a,0 < y < f(x)} in
Figure 3 to be

A(S) = j £(x) dx

This is appropriate because f; f(x) dx is the limit as  — o of the area under the graph of
ffromatot.

y

7 EXAMPLE | Determine whether the integral |;” (1/x) dx is convergent or divergent.

SOLUTION According to part (a) of Definition 1, we have

w1 . (1 . t
f —dx = lim | —dx = lim In | x|],
X t—>e Jl x t—o

=lim(nt—Inl)=1Ilimlnt =

t—© t—

The limit does not exist as a finite number and so the improper integral ‘f (1/x) dx is
divergent. |
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finite area

FIGURE 4

y

infinite area

FIGURE 5

T 1n Module 7.8 you can investigate
visually and numerically whether several
improper integrals are convergent or
divergent.

Let’s compare the result of Example 1 with the example given at the beginning of this
section:

» 1 % 1
j — dx converges j —dx diverges
L X

X

Geometrically, this says that although the curves y = 1/x* and y = 1/x look very similar
for x > 0, the region under y = 1/x? to the right of x = 1 (the shaded region in Figure 4)
has finite area whereas the corresponding region under y = 1/x (in Figure 5) has infinite
area. Note that both 1/x? and 1/x approach 0 as x — o but 1/x* approaches 0 faster than
1/x. The values of 1/x don’t decrease fast enough for its integral to have a finite value.

0
EXAMPLE 2 Evaluatej xe*dx.

©

SOLUTION Using part (b) of Definition 1, we have

0 . 0
f xe‘dx = lim | xe*dx
e

t——on Jt
We integrate by parts with u = x, dv = e*dx so that du = dx, v = e™:
0 10 0
j xe*dx = xe*], - f e*dx
t t
=—te'—1+e¢

We know that e’ — 0 as r — —, and by 1’Hospital’s Rule we have

. . t .
lim fe' = lim — = lim

t——x t——» @ t——x —e

Therefore

fo xe*dx = lim (—te' — 1 + ¢e')

t—>—

=—0-1+0=-1 |

0

1
EXAMPLE 3 Evaluatej 3 dx.
- 1+ x

SOLUTION It’s convenient to choose a = 0 in Definition 1(c):

:>o 1 1 o 1
jfccl—kxzdx:fwl—i-xzdx_l—jo 1+x2dx

We must now evaluate the integrals on the right side separately:

.1 d
[f = dr=tim [T = lim an ]
o1+ x r—oJo 1 + x t—>o0

. _ _ . _ T
= lim (tan"'t — tan"'0) = lim tan"'t = 5
t—>

t—
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fo ! = lim = lim tan’lx]0
© 1+ x —>—=Jr 1 + 1——o !

= lim (tan“O — tan " 1)

t— —

I
o
|
|
Y
N————
I
Y

Since both of these integrals are convergent, the given integral is convergent and

foc 1 d 7T+7T
——dx=—+—=7
1+ x? 2 2

Since 1/(1 + x*) > 0, the given improper integral can be interpreted as the area of
the infinite region that lies under the curve y = 1/(1 + x?) and above the x-axis (see
FIGURE 6 Figure 6). [ ]

EXAMPLE 4 For what values of p is the integral
o 1
j dx
1 x?

SOLUTION We know from Example 1 that if p = 1, then the integral is divergent, so let’s
assume that p # 1. Then

convergent?

w1 '
f dx = lim ['x77 dx
1 x?

t—x J1

. e =t
=lim———
=% —p + 1 —

. 1 1
=lim ——— — 1
== 1 —=p|t?

If p>1,thenp — 1 >0,s0ast—> %, "' —coand 1/t”"' — 0. Therefore
|

1 .
- x=p_1 if p>1

and so the integral converges. But if p < 1, then p — 1 < 0 and so

=t'7 5w as f—> ©

7!
and the integral diverges. |

We summarize the result of Example 4 for future reference:

|
fl —pdx is convergent if p > 1 and divergentif p < 1.
X

TYPE 2: DISCONTINUOUS INTEGRANDS

Suppose that f is a positive continuous function defined on a finite interval [a, b) but has
a vertical asymptote at b. Let S be the unbounded region under the graph of f and above
the x-axis between a and b. (For Type 1 integrals, the regions extended indefinitely in a
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y
y=fx) x=h
0 a th X
FIGURE 7

Parts (b) and (c) of Definition 3 are illustrated
in Figures 8 and 9 for the case where f(x) = 0
and f has vertical asymptotes at @ and c,
respectively.

y
0 at b X
FIGURE 8
y
0| « c b x
FIGURE 9
y
1
x—2
area=2\/§
0 12 3 4 5 X

FIGURE 10

horizontal direction. Here the region is infinite in a vertical direction.) The area of the part
of S between a and ¢ (the shaded region in Figure 7) is

Al) = j f(x) dx

If it happens that A(z) approaches a definite number A as r — b~, then we say that the
area of the region S is A and we write

Lb f(x)dx = ,IBE Lt f(x) dx

We use this equation to define an improper integral of Type 2 even when f is not a posi-
tive function, no matter what type of discontinuity f has at b.

[3] DEFINITION OF AN IMPROPER INTEGRAL OF TYPE 2

(a) If f is continuous on [a, b) and is discontinuous at b, then
t
fhf(x) dx = lirgl L f(x) dx

if this limit exists (as a finite number).

(b) If f is continuous on (a, b] and is discontinuous at @, then
jbf(x) dx = lim fbf(x) dx
a t—at Jt

if this limit exists (as a finite number).

The improper integral I: f(x) dx is called convergent if the corresponding limit
exists and divergent if the limit does not exist.

(¢) If f has a discontinuity at ¢, where a < ¢ < b, and both J; f(x) dx and
|? f(x) dx are convergent, then we define

L” f(x) dx = j f(x) dx + f f(x) dx

5 1
EXAMPLE 5 Findf ——dx.
2 \Jx—2

SOLUTION We note first that the given integral is improper because f(x) = 1/y/x — 2
has the vertical asymptote x = 2. Since the infinite discontinuity occurs at the left end-
point of [2, 5], we use part (b) of Definition 3:

js dx — lim F dx

2 WJx—2 =250 \Jx — 2
= lim 2y - 2],
= 111;12(\/_— Vi—2)
=23

Thus the given improper integral is convergent and, since the integrand is positive, we
can interpret the value of the integral as the area of the shaded region in Figure 10. |
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. /2 .
7 EXAMPLE 6 Determine whether JO sec x dx converges or diverges.

SOLUTION Note that the given integral is improper because lim, (/- sec x = %. Using
part (a) of Definition 3 and Formula 14 from the Table of Integrals, we have

lim | secxdx= lim In|secx + tanx|],

/2
j sec x dx
0 t—(m/2)~ JO t—(m/2)~

lim)_ [In(sect + tanf) — In 1] = o0

t—(m/2

because sec  — © and tan t — % as t — (7/2) . Thus the given improper integral is
divergent. |

dx

3
EXAMPLE 7 Evaluatej
o x—1

if possible.

SOLUTION Observe that the line x = 1 is a vertical asymptote of the integrand. Since it
occurs in the middle of the interval [0, 3], we must use part (c) of Definition 3 with

c=1:
d d d
f03xj1:f01xj1+j13xj]

d d
where fl T — lim jt - lim In lx — 1]
t—1-

o x—1 —1=Jo x — 1

=tlirlq(1n|t—1\—1n\—1|)

= lirln In(l1 — 1) = —x
m

because 1 — t— 0" ast— 1. Thus [} dx/(x — 1) is divergent. This implies that
Jo dx/(x — 1) is divergent. [We do not need to evaluate [ dx/(x — 1).] [ ]

[@ WARNING If we had not noticed the asymptote x = 1 in Example 7 and had instead
confused the integral with an ordinary integral, then we might have made the following
erroneous calculation:

3 d 3
= =mlx—1lli=m2-m1=m2
0ox—1
This is wrong because the integral is improper and must be calculated in terms of limits.
From now on, whenever you meet the symbol ‘ab f(x) dx you must decide, by looking
at the function f on [a, b], whether it is an ordinary definite integral or an improper
integral.

EXAMPLE 8 Evaluate jol In x dx.

SOLUTION We know that the function f(x) = In x has a vertical asymptote at O since
lim, .o+ In x = —oo. Thus the given integral is improper and we have

f' Inxdx = lim | Inxdx
0 t—0t Jt
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Now we integrate by parts with u = In x, dv = dx, du = dx/x, and v = x:

f,l lnxdx=xlnx]: - j,l dx

Ilnl —tlnt—(1 — 1)
=—tlntr—1+1¢

To find the limit of the first term we use 1’Hospital’s Rule:

. . Int t .
figy e =l e~ Ty T i (20 =0

Therefore jollnxdelir(g(—tlnt—1+t)=—0—1+0=—1

Figure 11 shows the geometric interpretation of this result. The area of the shaded region
above y = In x and below the x-axis is 1. |

A COMPARISON TEST FOR IMPROPER INTEGRALS

y /
0 1 X
area =
y=Inx
FIGURE 11
y
f
9
0 a
FIGURE 12
y

FIGURE 13

Sometimes it is impossible to find the exact value of an improper integral and yet it
is important to know whether it is convergent or divergent. In such cases the following the-
orem is useful. Although we state it for Type 1 integrals, a similar theorem is true for
Type 2 integrals.

COMPARISON THEOREM Suppose that f and g are continuous functions with
f(x) = g(x) = 0 for x = a.

(a) If [ f(x) dx is convergent, then |~ g(x) dx is convergent.

(b) If [ g(x) dx is divergent, then |7 f(x) dx is divergent.

We omit the proof of the Comparison Theorem, but Figure 12 makes it seem plausible.
If the area under the top curve y = f(x) is finite, then so is the area under the bottom curve
y = g(x). And if the area under y = g(x) is infinite, then so is the area under y = f(x).
[Note that the reverse is not necessarily true: If [ g(x) dx is convergent, |~ f(x) dx may
or may not be convergent, and if [~ f(x) dx is divergent, [~ g(x) dx may or may not be
divergent.]

7 EXAMPLE 9 Show that f: e Ydx is convergent.

X

SOLUTION We can’t evaluate the integral directly because the antiderivative of e~ “is not an

elementary function (as explained in Section 7.5). We write
o 2 1 o 2
f e tdx = f e dx + f e dx
0 0 1
and observe that the first integral on the right-hand side is just an ordinary definite inte-

gral. In the second integral we use the fact that for x = 1 we have x> = x, so —x? < —x
and therefore e™* =< e™*. (See Figure 13.) The integral of ¢™* is easy to evaluate:

fm edx=1lim | e*dx =1lim(e' —e’) = ¢!

1 t— J1 t—»



TABLE |
t foe “dx
1 0.7468241328
2 0.8820813908
3 0.8862073483
4 0.8862269118
5 0.8862269255
6 0.8862269255
TABLE 2
t {111 + e ™)/x] dx
2 0.8636306042
5 1.8276735512
10 2.5219648704
100 4.8245541204
1000 71271392134
10000 9.4297243064
| 7.8 | EXERCISES
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Thus, taking f(x) = ¢ * and g(x) = e in the Comparison Theorem, we see that
el — 2 . (*oo —_ 2 .
), e " dx is convergent. It follows that |~e ™ dx is convergent. |

In Example 9 we showed that ‘(;” e dx is convergent without computing its value. In
Exercise 70 we indicate how to show that its value is approximately 0.8862. In probabil-
ity theory it is important to know the exact value of this improper integral, as we will see
in Section 8.5; using the methods of multivariable calculus it can be shown that the exact
value is v/7r/2. Table 1 illustrates the definition of an improper integral by showing how
the (computer-generated) values of f(; e dx approach /2 as t becomes large. In fact,
these values converge quite quickly because e’ =0 very rapidly as x — .

—X

w1 +
EXAMPLE 10 The integral fl ¢ dx is divergent by the Comparison Theorem
X

because
1+e™ i
X X
and f1°° (1/x) dx is divergent by Example 1 [or by (2) with p = 1]. [ ]

Table 2 illustrates the divergence of the integral in Example 10. It appears that the
values are not approaching any fixed number.

[1.] Explain why each of the following integrals is improper.

@ |
© |

5.

S /2 jﬂ#dw 8 J'x S x
(@) [t ax () [ secxdx 8 iy, 3 e
2 X 0 1 A -1y,
—_ R Y 10.
©f moyeds @[ g 9. [ eay [Tear
2. Which of the following integrals are improper? Why? 1. j ” X — dx 12. J'““ Q- oY) dv
1 Lo el A -
S (b)f02 - dx -
X — X — 3 2 (o
sin x , [13] jl xe © dx 14. Jl 7{ dx
o ) fl In(x — 1) dx x
& X o x
15. | sin6do 16. [~ cos medr
. Find the area under the curve y = 1/x* fromx = l tox = ¢ "
and evaluate it for + = 10, 100, and 1000. Then find the total 17 r x+1 dx 18 r dz
area under this curve for x = 1. “hoxr 4 2x T2+ 3242
w 6
. (a) Graph the functions f(x) = 1/x"! and g(x) = 1/x*’ in the 19. jo se > ds 20. fﬁx re' dr
viewing rectangles [0, 10] by [0, 1] and [0, 100] by [0, 1].
(b) Find the areas under the graphs of f and g from x = 1 1) r In x dx 22. r B dx
to x = ¢t and evaluate for r = 10, 100, 10%, 10, 10'°, rox -
and 10%. . x2 . e
(c) Find the total area under each curve for x = 1, if it exists. 23. jfx 9 + x° dx 24. fo e+ 3 dx
5-40 Determine whether each integral is convergent or divergent. 25 r 1 dx 2 J‘x X arctan x .
Evaluate those that are convergent. “Je x(Inx)? o (1 + x?)?
w 1 0 1 13 3 1
——d 6. d | = |
) Gr+ 12 I -5 . | = 2. |, N
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dx

14
-‘12 Ix+2 3

e

f: (x — 6) dx

31 Ez%dx n | 7\/lfix2

B -1/s

33. fo (x — 1)/ dx e
3 d.x T

35. J;) m 36. “‘7/2 csc x dx
0 el/x 1 el//\'

37. [ e 38. |
2, 1 Inx

39. JO z7Inzdz 40. X 7\/; dx

J. x+ 1 52, fx arctanx
Vxt—x 2+ e

1 sec’x cw sin’x
3. |, T 54. [ T

41-46 Sketch the region and find its area (if the area is finite).

4. S={(x,y) |x<1,0=<y=<e}

2. S={(xy) |x=-20<sy<e"}
3]s ={xy |0=ys=
144 S ={(x,y) | x=0, 0 <y <x/(x>+9)}
45, S ={(x,y) | 0= x< m/2, 0 <y < sec’x}

146 S={(x,y) | 2<x< 1/Jx+2)

2/(x* + 9)}

0,0=sy=

47. (a) If g(x) = (sin’x)/x? use your calculator or computer to
make a table of approximate values of | g(x) dx for
t=2,5,10, 100, 1000, and 10,000. Does it appear that
{7 g(x) dx is convergent?

(b) Use the Comparison Theorem with f(x) =
that [;” g(x) dx is convergent.

(c) Nlustrate part (b) by graphing f and g on the same screen
for 1 < x =< 10. Use your graph to explain intuitively
why [ g(x) dx is convergent.

A948. (a) Ifg(x) = 1/ (\/; - 1), use your calculator or computer to

make a table of approximate values of |2’ g(x) dx fort =5,
10, 100, 1000, and 10,000. Does it appear that ‘; g(x) dx
is convergent or divergent?

(b) Use the Comparison Theorem with f(x) = 1/+/x to show
that [, g(x) dx is divergent.

(c) Nlustrate part (b) by graphing f and g on the same screen
for 2 < x =< 20. Use your graph to explain intuitively
why [, g(x) dx is divergent.

1/x? to show

49-54 Use the Comparison Theorem to determine whether the
integral is convergent or divergent.

w2+ e "
50. fl S

-f 3+1 dx

55. The integral

% 1
fo \/;(l-l-x)dx

is improper for two reasons: The interval [0, ©) is infinite and
the integrand has an infinite discontinuity at 0. Evaluate it by
expressing it as a sum of improper integrals of Type 2 and
Type 1 as follows:

o 1 1 1 w 1
b wmarae=hmara et o

56. Evaluate
e
—F——dx
2 xy/x2—4
by the same method as in Exercise 55.

57-59 Find the values of p for which the integral converges and
evaluate the integral for those values of p.

11 * 1
J.Oydx 58. Jf mdx

59. L] x”1n x dx

x"e *dxforn =0, 1, 2, and 3.
x"e " dx when n is an arbitrary posi-

60. (a) Evaluate the integral |~

(b) Guess the value of [;°
tive integer.

(c) Prove your guess using mathematical induction.

(a) Show that [ x dx is divergent.
(b) Show that
tim [ xdx =0

1—w

This shows that we can’t define

[ redx=1tim [ £ x

62. The average speed of molecules in an ideal gas is

32
7= 4 M fx 03¢ MYRRT) g
Jm \2RT 0

where M is the molecular weight of the gas, R is the gas con-
stant, T is the gas temperature, and v is the molecular speed.
Show that

_ S8RT
D= A |——
™M



63.

64.

65.

66.

67.

68.

We know from Example 1 that the region

R ={(x,y)|x =1, 0 <y =< 1/x} has infinite area. Show
that by rotating &R about the x-axis we obtain a solid with
finite volume.

Use the information and data in Exercises 29 and 30 of Sec-
tion 6.4 to find the work required to propel a 1000-kg satellite
out of the earth’s gravitational field.

Find the escape velocity v, that is needed to propel a rocket
of mass m out of the gravitational field of a planet with mass
M and radius R. Use Newton’s Law of Gravitation (see Exer-
cise 29 in Section 6.4) and the fact that the initial kinetic
energy of smvg supplies the needed work.

Astronomers use a technique called stellar stereography to
determine the density of stars in a star cluster from the
observed (two-dimensional) density that can be analyzed
from a photograph. Suppose that in a spherical cluster of
radius R the density of stars depends only on the distance r
from the center of the cluster. If the perceived star density is
given by y(s), where s is the observed planar distance from
the center of the cluster, and x(r) is the actual density, it can
be shown that

y(s) = LR %x(}’) dr

If the actual density of stars in a cluster is x(r) = 2(R — ),
find the perceived density y(s).

A manufacturer of lightbulbs wants to produce bulbs that last

about 700 hours but, of course, some bulbs burn out faster

than others. Let F() be the fraction of the company’s bulbs

that burn out before 7 hours, so F(z) always lies between 0

and 1.

(a) Make a rough sketch of what you think the graph of F
might look like.

(b) What is the meaning of the derivative r(z) = F'(r)?

(¢) What is the value of [*r(r) dt? Why?

As we saw in Section 3.8, a radioactive substance decays
exponentially: The mass at time ¢ is m(t) = m(0)e*’, where
m(0) is the initial mass and k is a negative constant. The mean
life M of an atom in the substance is

M= —krtek‘dt

0

For the radioactive carbon isotope, '*C, used in radiocarbon
dating, the value of k is —0.000121. Find the mean life of a
4C atom.

Determine how large the number a has to be so that

. 1
| = dx <0001
a X + 1

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.
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Estimate the numerical value of ‘l‘ox e dx by writing it as
the sum of J;‘e"‘zdx and [/ e dx. Approximate the first inte-
gral by using Simpson’s Rule with n = 8 and show that the
second integral is smaller than 14°° e **dx, which is less than

0.0000001.

If f(¢) is continuous for t = 0, the Laplace transform of f is
the function F defined by

F(s) = jo“ F(r)e™dr

and the domain of F is the set consisting of all numbers s for
which the integral converges. Find the Laplace transforms of
the following functions.

(a) f(r) =1 (b) f(r) = e’ (c) f(t) =1

Show that if 0 < f(¢) < Me“ for r = 0, where M and a are
constants, then the Laplace transform F(s) exists for s > a.

Suppose that 0 < f(1) < Me* and 0 < f'(r) < Ke“' fort = 0,
where f’ is continuous. If the Laplace transform of f(7) is
F(s) and the Laplace transform of f'(z) is G(s), show that

G(s) = sF(s) — f(0)

If J'fx f(x) dx is convergent and a and b are real numbers,
show that

Jic f(x)dx + f: f(x)dx = J: f(x)dx + f: f(x) dx

s>a

Show that f;° Xl dx = s e dx.

Show that [ ¢ 'dx = [!\/=Iny dy by interpreting the
integrals as areas.

Find the value of the constant C for which the integral

» 1 c
- d
jo (x/x2+4 x+2> x
converges. Evaluate the integral for this value of C.

Find the value of the constant C for which the integral

j“ X B C d
o \x2+1 3x + 1 *

converges. Evaluate the integral for this value of C.

Suppose fis continuous on [0, ) and lim, ... f(x) = 1. Is it
possible that [ f(x) dx is convergent?

Show thatif a > —1 and b > a + 1, then the following inte-
gral is convergent.

r al - dx
o1+ x
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7 REVIEW

CONCEPT CHECK

State the rule for integration by parts. In practice, how do you
use it?

. How do you evaluate | sin”x cos"x dx if m is odd? What if n is

odd? What if m and n are both even?

. If the expression v/a? — x? occurs in an integral, what sub-

stitution might you try? What if \/a® + x? occurs? What if

v/x? — a? occurs?

. What is the form of the partial fraction expansion of a rational

function P(x)/Q(x) if the degree of P is less than the degree of
Q and Q(x) has only distinct linear factors? What if a linear
factor is repeated? What if Q(x) has an irreducible quadratic
factor (not repeated)? What if the quadratic factor is repeated?

. State the rules for approximating the definite integral |: f(x) dx

with the Midpoint Rule, the Trapezoidal Rule, and Simpson’s
Rule. Which would you expect to give the best estimate? How
do you approximate the error for each rule?

. Define the following improper integrals.

@ [f@dx o [ f@dr © [ f)dx

. Define the improper integral |” f(x) dx for each of the follow-

ing cases.

(a) f has an infinite discontinuity at a.

(b) f has an infinite discontinuity at b.

(c) f has an infinite discontinuity at ¢, where a < ¢ < b.

. State the Comparison Theorem for improper integrals.

TRUE-FALSE QUIZ

Determine whether the statement is true or false. If it is true, explain why.
If it is false, explain why or give an example that disproves the statement.

. The Midpoint Rule is always more accurate than the

Trapezoidal Rule.

x(x* 4+ 4) be put in the f A n B 9. (a) Every elementary function has an elementary derivative.
xI—4 can be put in the form x+2 x =2 (b) Every elementary function has an elementary anti-
5 derivative.
x-+ 4 . A B C
2. x(x2 - 4) can be put in the form . + T+ 2 + T — 10. Ii f is continuous on [0, ©) and [” f(x) dx is convergent, then
Jo f(x) dx is convergent.
x>+ 4 ) A B
3. —, 5 canbe putin the form — + —. I1. If £ is a continuous, decreasing function on [1, ) and
x*(x—4) X x—4 . - 3
lim, ... f(x) = 0, then |" f(x) dx is convergent.
x> —4 ) . A B
4. (2 + 4) can be put in the form . + Y+ 4 12. If [ f(x) dx and [ g(x) dx are both convergent, then
. x 1 [Z[f(x) + g(x)] dx is convergent.
5. | —dx=1In15 ‘ )
o x”—1 13. If |* f(x) dx and |” g(x) dx are both divergent, then
= 1 i + dx is di t.
6. f] - dx is convergent. I L0+ (] dxs divergen
* 14. If f(x) < g(x) and ;" g(x) dx diverges, then [ f(x) dx also
7. If f is continuous, then [*_ f(x) dx = lim, ... [*, f(x) dx. diverges.
EXERCISES

Note: Additional practice in techniques of integration is provided
in Exercises 7.5.

1-40 Evaluate the integral.

50X
1. d
jo x + 10 *

“77/2
“Jo 1+ sin6

5 06y
2. fo ye dy

cos 6 ra dt
do e
Jl 2t + 1)*

5.

7. f sin(In 7) &t

9.

w/2 3 5 1
fo sin’ @ cos“ 6 df 6. ~[7y2*4y* 2 dy

8. ’* dx

J et —1
0. ’*01 J/arctan x dx

1+ x?

t

4
f X 1n x dx
1



. J‘f%dx . [ IST);Z dx

13. f e dx 14. | 2
x+2

5 [k o [t

17. fx sec x tan x dx 18. fxzxjf#dx

19. #d}c 20. jtanse sec’9 df

21, f% 2. [ e dr

23. jszﬁ 24. J e*cos x dx

5 j3f;2_+x12);261_2)4 dx 26. fxsinx cos x dx

f+1
ﬁ—l

/2 3 .
27. jo cos’x sin 2x dx 28. f

29 f' % sec x dx 30 IL
Tl eyl — e
3L J‘]n 10 e'yer — 1 J*w/4 x sin x dx

dx 32.
0 e+ 8 0o cos’x

- - : 2
33. f @- 2)3/2 dx 34, f(arcsm x)*dx

1 —tan@
36

1
35. | ——=d | T db
J e [+ and

X
. 2
37. j (cos x + sin x)*cos 2xdx  38. f o+ 2y dx

39. jol/z xe* J“rr/S Jtan 6 46

d 40.
a+202 /4 sin 20

41-50 Evaluate the integral or show that it is divergent.

4. fﬁdx a [ lzf dx
. x‘fr):x 44, L(’ﬁdy
as. f:l%dx 4. | S—-dx
ar. | %d w [
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w dx » tan”'x
49. D a— 50. d
f—x 4x* + 4x + 5 fl x? x

/A4 51-52 Evaluate the indefinite integral. Illustrate and check that
your answer is reasonable by graphing both the function and its
antiderivative (take C = 0).

x3
51. J‘ ln(x2+2x+2)dx 52. fﬁdx

53. Graph the function f(x) = cos’x sin’x and use the graph to
guess the value of the integral |02’7 f(x) dx. Then evaluate the
integral to confirm your guess.

(45]54. (a) How would you evaluate | x’¢™**dx by hand? (Don’t
actually carry out the integration.)
(b) How would you evaluate [ x’¢”**dx using tables?
(Don’t actually do it.)
(c) Use a CAS to evaluate [ x’e > dx.
(d) Graph the integrand and the indefinite integral on the
same screen.

55-58 Use the Table of Integrals on the Reference Pages to
evaluate the integral.

55. j VAxE = 4x — 3 dx 56. j cscSt dt

cot
57. fcosx\/4 + sin?x dx 58. Jix_dx
V1 + 2sinx

59. Verify Formula 33 in the Table of Integrals (a) by differentia-
tion and (b) by using a trigonometric substitution.

60. Verify Formula 62 in the Table of Integrals.

61. Is it possible to find a number n such that [ x"dx is
convergent?

62. For what values of a is ‘fox e cos x dx convergent? Evaluate
the integral for those values of a.

63-64 Use (a) the Trapezoidal Rule, (b) the Midpoint Rule,
and (c) Simpson’s Rule with n = 10 to approximate the given
integral. Round your answers to six decimal places.

63. f 7dx 64. Jf\/;cosxdx

65. Estimate the errors involved in Exercise 63, parts (a) and (b).
How large should 7 be in each case to guarantee an error of
less than 0.00001?

66. Use Simpson’s Rule with n = 6 to estimate the area under
the curve y = e¢*/x fromx = 1 to x = 4.
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67.

68.

(AS| 69.

70.

[[|| CHAPTER 7 TECHNIQUES OF INTEGRATION

The speedometer reading (v) on a car was observed at
1-minute intervals and recorded in the chart. Use Simpson’s
Rule to estimate the distance traveled by the car.

t (min) v (mi/h) t (min) v (mi/h)
0 40 6 56
1 42 7 57
2 45 8 57
3 49 9 55
4 52 10 56
5 54

A population of honeybees increased at a rate of r(t) bees per
week, where the graph of r is as shown. Use Simpson’s Rule

with six subintervals to estimate the increase in the bee popu-
lation during the first 24 weeks.

,
12000

N

8000 / \

4000

0 4 8 12 16 20 24 t
(weeks)

(a) If f(x) = sin(sin x), use a graph to find an upper bound
for | f9(x)|.

(b) Use Simpson’s Rule with n = 10 to approximate
f(f f(x) dx and use part (a) to estimate the error.

(c) How large should n be to guarantee that the size of the
error in using S, is less than 0.00001?

Suppose you are asked to estimate the volume of a football.
You measure and find that a football is 28 cm long. You use a
piece of string and measure the circumference at its widest
point to be 53 cm. The circumference 7 cm from each end is
45 cm. Use Simpson’s Rule to make your estimate.

P

| 28 cm }

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Use the Comparison Theorem to determine whether the

integral \

flm xsx-i; 2 dx

is convergent or divergent.

Find the area of the region bounded by the hyperbola
y? — x? = 1 and the line y = 3.

Find the area bounded by the curves y = cos x and y = cos’x
between x = 0 and x = .

Find the area of the region bounded by the curves
y=1/2+x),y=1/2 - yx),andx = 1.

The region under the curve y = cos’x, 0 < x < 7/2,is
rotated about the x-axis. Find the volume of the resulting solid.

The region in Exercise 75 is rotated about the y-axis. Find the
volume of the resulting solid.

If f' is continuous on [0, ) and lim,_... f(x) = 0, show that
| r@ dx = —£(0)

We can extend our definition of average value of a continuous
function to an infinite interval by defining the average value
of f on the interval [a, ) to be

Jim — f " () dx

=t —a

(a) Find the average value of y = tan~'x on the interval [0, ).

(b) If f(x) = 0 and | f(x) dx is divergent, show that the
average value of f on the interval [a, ) is lim,_.. f(x), if
this limit exists.

(c) If [ f(x) dx is convergent, what is the average value of f
on the interval [a, ©)?

(d) Find the average value of y = sin x on the interval [0, ©).

Use the substitution u = 1/x to show that

J‘x In x dr =0
0o 1+ x2 *

The magnitude of the repulsive force between two point

charges with the same sign, one of size 1 and the other of size
, 1S
4 q
dareor?

where r is the distance between the charges and ¢ is a con-
stant. The potential V at a point P due to the charge ¢ is
defined to be the work expended in bringing a unit charge to
P from infinity along the straight line that joins ¢ and P. Find
a formula for V.



Cover up the solution to the example and try it
yourself first.

The principles of problem solving are
discussed on page 76.

The computer graphs in Figure 1 make it
seem plausible that all of the integrals in the
example have the same value. The graph of each
integrand is labeled with the corresponding
value of n.

0

FIGURE 1

1‘
‘-
-
(@]

PROBLEMS

EXAMPLE |
(a) Prove that if f is a continuous function, then

J:f(x) dx = j:f(a — x)dx

(b) Use part (a) to show that

/2 sin”x T
f o oaodx=—
0 sin"x + cos"x 4

for all positive numbers .

SOLUTION
(a) At first sight, the given equation may appear somewhat baffling. How is it possible
to connect the left side to the right side? Connections can often be made through one of
the principles of problem solving: introduce something extra. Here the extra ingredient is
a new variable. We often think of introducing a new variable when we use the Substitu-
tion Rule to integrate a specific function. But that technique is still useful in the present
circumstance in which we have a general function f.

Once we think of making a substitution, the form of the right side suggests that it
should be u = a — x. Then du = —dx. When x = 0, u = a; when x = a, u = 0. So

f:f(a —x)dx = —Lof(u) du = j:f(u) du

But this integral on the right side is just another way of writing [ f(x) dx. So the given
equation is proved.

(b) If we let the given integral be I and apply part (a) with a = /2, we get

I fﬂ/z sin”x dr = r/z . sin"(7/2 — x) I
0 sin

o sin"x + cos"x (/2 — x) + cos™(w/2 — x)

A well-known trigonometric identity tells us that sin(7r/2 — x) = cos x and
cos(7/2 — x) = sin x, so we get

[— jw/z cos"x
0 cos"x + sin"x

Notice that the two expressions for I are very similar. In fact, the integrands have the

same denominator. This suggests that we should add the two expressions. If we do so,
we get

s> sin"x + cos"x /2 T
2]=f77 ﬁd}C:fﬂ ldx =—
0 sin"x + cos"x 0

Therefore, I = /4. |
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PROBLEMS

PROBLEMS

FIGURE FOR PROBLEM 1

pier

()

(L,0)

1‘
‘-
c
¢

Y
<]

. Evaluate f

o

FIGURE FOR PROBLEM 6

. Three mathematics students have ordered a 14-inch pizza. Instead of slicing it in the tradi-

tional way, they decide to slice it by parallel cuts, as shown in the figure. Being mathematics
majors, they are able to determine where to slice so that each gets the same amount of pizza.
Where are the cuts made?

7 dx.
x'—x
The straightforward approach would be to start with partial fractions, but that would be brutal.

Try a substitution.

. Evaluate fol (V1 =x7 = Y1 —x%)dx

. The centers of two disks with radius 1 are one unit apart. Find the area of the union of the two

disks.

. An ellipse is cut out of a circle with radius a. The major axis of the ellipse coincides with a

diameter of the circle and the minor axis has length 2b. Prove that the area of the remaining
part of the circle is the same as the area of an ellipse with semiaxes a and a — b.

. A man initially standing at the point O walks along a pier pulling a rowboat by a rope of

length L. The man keeps the rope straight and taut. The path followed by the boat is a curve
called a tractrix and it has the property that the rope is always tangent to the curve (see the
figure).

(a) Show that if the path followed by the boat is the graph of the function y = f(x), then

— /L2_x2

’ —ﬂ:
S =— .

(b) Determine the function y = f(x).

. A function f is defined by

fx) = joﬂ cos t cos(x — ) dt 0<x<2m

Find the minimum value of f.

. If n is a positive integer, prove that

fol (In x)"dx = (=1)"n!

. Show that

" om g 22"(n!)?
Jo (1= x%)"dx = 2n + 1)

Hint: Start by showing that if 7, denotes the integral, then

2%k +2
2% +3

Ik

k+1



10.

y=|2x]

FIGURE FOR PROBLEM 13

L 10 < a < b, find lim {jo' [bx + a(l — 0] dx}

v
‘-
-
(@]

PROBLEMS

Suppose that f is a positive function such that f’ is continuous.

(a) How is the graph of y = f(x) sin nx related to the graph of y = f(x)? What happens
as n — 7

(b) Make a guess as to the value of the limit

1
lim | f(x) sin nx dx
n—o J0O

based on graphs of the integrand.
(c) Using integration by parts, confirm the guess that you made in part (b). [Use the fact that,
since f' is continuous, there is a constant M such that | f'(x) | < M for0 < x < 1.]

1/t

. Graph f(x) = sin(e*) and use the graph to estimate the value of 7 such that [""' f(x) dx is a

maximum. Then find the exact value of ¢ that maximizes this integral.

. The circle with radius 1 shown in the figure touches the curve y = | 2x| twice. Find the area

of the region that lies between the two curves.

. A rocket is fired straight up, burning fuel at the constant rate of b kilograms per second. Let

v = v(r) be the velocity of the rocket at time  and suppose that the velocity u of the exhaust
gas is constant. Let M = M(7) be the mass of the rocket at time 7 and note that M decreases as
the fuel burns. If we neglect air resistance, it follows from Newton’s Second Law that

dv
F=M=——ub
a "

where the force F = —Mg. Thus

m M E — ub = —Mg
Let M, be the mass of the rocket without fuel, M, the initial mass of the fuel, and
My = M, + M,. Then, until the fuel runs out at time ¢ = M,b, the mass is M = M, — bt.
(a) Substitute M = M, — bt into Equation 1 and solve the resulting equation for ». Use the
initial condition »(0) = O to evaluate the constant.
(b) Determine the velocity of the rocket at time 1 = M, /b. This is called the burnout velocity.
(c) Determine the height of the rocket y = y(z) at the burnout time.
(d) Find the height of the rocket at any time ¢.

. Use integration by parts to show that, for all x > 0,

- [ sin ¢ di < 2
o In(1 +x+1) In(1 + x)

Suppose f(1) = f'(1) = 0, f" is continuous on [0, 1] and | f”(x) | < 3 for all x. Show that

1
2

=

=

jol f(x) dx
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EXERCISES 6.5 PAGE 445
LY 3.2 5 r1-e¢%)  1.2/5m
9. @1 b 2.4 () v

4+ (5,4)

y=(x—37
2,1 4,1
il @1 4.1
0 2 3 4 5 x

1. () 4/ (b) =~1.24,2.81

(c) 3
;
4
=
0 [ &) .
15. 385 17. (50 + 28/7)°F = 59°F  19. 6 kg/m
21. 5/(4m) = 04 L
CHAPTER 6 REVIEW PAGE 446
Exercises
LY 3L s i+4/m  1.64m/15 9. 16567/5
1. $7(Q2ah + h?)? 13. J’ff/s 27 (/2 = x)(cos> — §) dx
I5. (a) 2@/15  (b) w/6 (c) 8m/15
17. (a) 0.38 (b) 0.87

19. Solid obtained by rotating the region 0 < y < cos x,
0 < x < 71/2 about the y-axis

21. Solid obtained by rotating the region 0 < x < ,

0 < y =< 2 — sin x about the x-axis

23. 36 25.2.3m®  27.32]

29. (a) 80007/3 ~ 8378 ft-Ib  (b) 2.1ft 31 f(x)
PROBLEMS PLUS PAGE 448

. () f)=3> () f(x) =2x/m 3.2

5. (b) 02261 (c) 0.6736m

(d) () 1/(105m) =~ 0.003 in/s (i) 3707/3 s = 6.5 min

9. y= %xz
I (@ V=["7[f0WPdy (© f(y)=VkA/(wC)y"*

Advantage: the markings on the container are equally spaced.

13. b =2a 15. B = 16A
CHAPTER 7
EXERCISES 7.1 = PAGE 457

Licdlnx—3x*+C 3. ixsin5x+ = cos5x + C

5. 2(r — 2)e'"? + C

APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES 111

1 2 . 2
7. ——x?cos mx + —5 x sin mx + —5 cos wx + C
v v T

9. 32x+ DIn@x+ 1) —x+ C

Il. rarctan 4¢ — 3 In(1 + 16/ + C

13. 37 tan 2¢ — jIn|sec 27| + C

I15. x(Inx)> — 2xInx + 2x + C

17. 5¢2(2sin 36 — 3 cos 30) + C

19. 7/3  21.1—1/e 23.3—1In2 25 1322
27. {(m+ 6 —3y3)  29.sinx(Insinx — 1) + C
3. Z(n2? - Em2 + 2

33. 2/x siny/x + 2 cos/x + C 35. —1 — w/4
37. 5> — DIn(l +x) — x> +3x+ 3+ C

39. 2x + l)e* + C 7

=35 [ ] 1.5

41, 3x*(1 + x2)2 = 51+ 3P + ¢

\_

—4

2

43. (b) —3cosxsin’x + 3x — &sin2x + C

45, (b) 3, % 51. x(Inx)® — 3x(Inx)> + 6xlnx — 6x + C
53. 2 — .2 55 1.0475,2.8731;2.1828
59. 2me 6l 3In3 — 2
65. 2

63. 2 — ¢ (1>’ +2t+2)m

EXERCISES 7.2 = PAGE 465

I. fcos’x —3cos’x + C 3. —a;

1 2 [
5. — sin’(mx) — — sin’(7x) + — sin’(7x) + C

3 S T
7. w/4 9. 37/8 11.20 + 2sin6 +isin26+ C
13. 7/16  15. &/sin a (45 — 18 sin’a + 15 sin*a) + C
17. 3 cos’x — In|cos x| + C
21, jtan’x + € 23. tanx —x + C
25. Ltan’s + 2tan’s + tans + C 27 &
29. ;sec’ — secx + C
31 sec’y — tan* + In|sec x| + C
33. ftan®0 + 1 tan*6 + C
35. xsecx — In|secx + tanx| + C  37. {3 —im
41. In|cscx — cotx| + C
43. —icos3x — =cos 13x + C
47. 1sin2x + C 49. 5 tan’(s) + C

1 1
39. sescla — sesc’a + C

19. In|sinx| + 2sinx + C

A93

57. 4 — 8/m

45. 1sin46 — 5sin66 + C



A%4 ]|

51. 1x> — Lsin(x?) cos(x?) + C  53. Lsin3x — &sin9x + C
T 1
f
F
F
-7 w -2 2
I
. 1
5.0 57.1 59.0 6l w¥4 63 w(2y2 —32)

65. s = (1 — cos’wt)/(3w)

EXERCISES 7.3 = PAGE 472

L Jx2=9/(9x) + C 3. 12— 18)Vx2+9+C

5. 7w/24 + /3/8 — —/25 = x2/(25x) + C

9. In(vx2+ 16 +x) + C 1l isin™'2x) +3x/T —4x> + C
13. fsec”'(x/3) — Vx2 —9/(2x) + C

I5. wma* 11 Jx2 =7+ C

19. ln|(\/l+x2—1)/x|+\/l+x2+C 21 57
23. 2sin M(x — 2)/3) +2(x —2)V5+4x — 2+ C
25. Jx2+x+1 —%ln(\/x2+x+ 1 +x+%)+C
27. 2(x + DYx2 + 2x —3In ‘x+ 1+ \/x2+2x| +C
29. tsin'(x?) +1x2V/1 —x* + C

33. ¢(v48 —sec™'7)  37. 0.81,2;2.10
41. r/R* — 2 + 7r%/2 — R? arcsin(/R)

EXERCISES 7.4

43. 27°Rr’

PAGE 481

B (b)é-i- B C

1 x  x+1 (x + 1)

Dx + E

x2+4

A n B n C n D

x+3 (x+3? x—-3 (x—3)?

5. () 1 + A n B Cx + D

) x—1 x+1 x2+1

(b)At+B Ct+ D Et + F
P+l P+4 (P42

7. x+6lnjx — 6| +C

9. 2In|x+5[-Injx—-2|+C

13. aln|x—b|+C 15 L+ n3

I7.2771n2—%1n3(0r%1n§)

19. —Lln|x+5\+i ! +Lln|x—1|+C
36 6x+5 36

21. 3x2 — 21In(x> + 4) + 2tan'(x/2) + C

23. 2In x|+ (1/x) +3In|x+ 2|+ C

25. In|x — 1| —3In(x> + 9) — 3tan"'(x/3) + C

27. 5In(x> + 1) + (1//2) tan"'(x/y/2) + C
+ 1
29. 1In(x2 + 2x + 5) + ;tanl<xz> +C

1 2x+ 1

—=t
NG
I+ 4+ — 4 c
8(x* + 4)

I. (a) A +

) x+3 3x +
A B C

3.(21.)*‘}'724‘i3
X X X

(b)

1 3
1. 3In3

3 sIn|x — 1| —¢ln(x>+ x+ 1) — +C

33. ;In§ 35 In|x|—

APPENDIX | ANSWERS TO ODD-NUMBERED EXERCISES

x—2 3x — 8
37. 74/2 tan”! + +C
V2 an < /2 > 4(x* — 4x + 6)
NOEES|
39. In | Y————| +C
Jxt+ 1+ 1
4L.2+In5 43 507+ DV i+ D)+ C

45, 2 x +3x+ 6Yx+ 6In|Yx— 1]+ C

B ,x+22
PR Lt B
e+ 1

49. In|tanz + 1| — In|tans + 2| + C

2x — 1
51. (x — %) In(x> —x+2) — 2x + ﬁtan‘(%) +C
53. —1In3 = —0.55

55. Ln xx2 e s9.§m% e
6l. 4In2+2 63 —1+2m2
65. t=—InP — éln(0.9P + 900) + C, where C = 10.23
6. @ 24110 1 668 1 9438 1
4879 5x+2 323 2x+ 1 80,155 3x — 7
1 22,098x + 48,935
260,015 x2+x+5
) 4875 In|5x + 2] - 333 In|2x + 1] — 8‘?’)1;‘565 In|3x — 7| +
11,049 G+ x4 5) + 75,772 2t
260,015 260,015 \F J19

The CAS omits the absolute value signs and the constant of
integration.

EXERCISES 7.5 = PAGE 488

l. sinx + 3 Lsin’x + C

3. smx+1n|cscx—cotx|+C

5.4—In9 7. — e

9. %2m3 -2  ILilnG*—4x+5) +tan'(x—2)+C
13. §cos®0 — ¢ cos® + C (or §sin*6 — 3sin@ + & sin®6 + C)
15. x/J/1—x2+C

17. 1x* — Lxsinx cosx + §sin’x + C

(or x* — jxsin2x — gcos 2x + C)

19. ¢+ C 21. (x+1 Yarctan /x — /x + C

23. % 25, 3x+FIn|x—4|—3|x+2]+C
27.x—ln(l+e)+C 29. 15 + 71n?

3l. sin 'x — /1 —x2+ C

33. 25in'<x+ 1) + x

V3—2x—x*+C
39. In|secf — 1| — In|secd| + C
43.5(1+ey?+C

2
35.0 37. 7/8 — 3
41. ftan § — 36 — In |sec 8] + C
45 — (x> + e + C

4. Injx—1|-3x—-D"'"=3x-1D2-3x-D3+C

9. 1 dx+1 -1 +tc 5| 4x2 + 1 tc
. In|—F/—— o
Vidx + 1+ 1
53. —x? cosh(mx) — —x sinh(mx) + — cosh(mx) + C
m m? m?



55. 2Inyx — 2In(1 + Vx) + C

5. 3(x + )P = 3c(x + )P + C

59. sin(sin x) — 4 sin*(sinx) + C 61. 2(x — 2/x + 2)eV" + C
63. —tan '(cos’x) + C 65. :[(x + )* = X1+ C

67. V2 —2//3+ (2 +3) - In(1 + 2)

69. ¢* —In(1 +¢e*) + C

71. —/1 — x2 + Y(aresinx)> + C

73. 5In|x — 2| — g In(x> + 4) — gtan"'(x/2) + C
J1I+er +1

75. 2()6— 2)\/1 +e* + ZIHW'F C

77. 2tan”'(x¥?) + C

79. lxsin’x + cosx — lcos’x + € 8L xe¥ + C

EXERCISES 7.6 = PAGE 493

1. (—1/x)/7 — 2x2 — /2sin"/(y2x/4/7) + C

1 1
3. — sec(mx) tan(mx) + —— In |sec(mx) + tan(wx) | + C
21 21T

1 1
5. w/4 7. — tan*(mx) + — In|cos(mx)| + C
21 T

9. —\/4x2+9/(9x) + C . e—2
13. —1tan’(1/z) — In|cos(1/2)| + C
I5. 2(e* + 1) arctan(e®) — 3e* + C
2y —

6+ 4y — 4y + ;sinl<2yﬁ 1)
— 506+ 4y — 4+ C
. 3 sin’x [3In(sinx) — 1]+ C
1 e’ + \/37
ﬁln 73}(_\/5
ftanxsec’x + 3tanxsecx + 3In|secx + tanx| + C
Hnx)v4 + (Inx)? + 2Inflnx + V4 + (In02) + C
Jer =1 —cos (e + C
fhn|x® + Vx° =2+ C
i tan xsec’x + S tanx + C
(2 + )2+ 4 —2In(Vx2+4 +x)+C
(1 +2x) =1 +2x)* + C

—In|cos x| — 3 tan’x + § tan*x + C

1+ /1 - %2
(a) — T i
X

both have domain (—1,0) U (0, 1)
45, F(x) =1In(x> — x + 1) — 2 In(x> + x + 1);

21. +C

23.
25.
27.
29.
35.
37.
39.
41.

31. 272

43. —In

max. at —1, min. at 1; IP at —1.7, 0, and 1.7

0.6
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47. F(x) = —3 sin’x cos’x — & sin x cos’x + 1o sin x cos’x
1. 3 3 . 3
+ 128 SIN X COS™x + 356 SIN X COS X + 555.X;
max. at 77, min. at 0; IP at 0.7, 77/2, and 2.5
0.04
f
F
O ks
EXERCISES 7.7 PAGE 505
l. (a) Lz = 6, Rz = 12, Mz ~ 9.6
(b) L, is an underestimate, R, and M, are overestimates.
C©Th=9<I @L<T,<I<M,<R,
3. (a) Ty, = 0.895759 (underestimate)
(b) M, = 0.908907 (overestimate)
T, <I<M,
5. (a) 5.932957, Exm = —0.063353
(b) 5.869247, Es = 0.000357
7. (a) 2413790 (b) 2.411453  (c) 2.412232
9. (a) 0.146879  (b) 0.147391  (c) 0.147219
1. (a) 0.451948 (b) 0.451991 (c) 0.451976
13. (a) 4513618  (b) 4.748256  (c) 4.675111
15. (a) —0.495333 (b) —0.543321 (c¢) —0.526123
17. (a) 1.064275 (b) 1.067416  (c¢) 1.074915
19. (a) Ts = 0.902333, My = 0.905620
(b) | Er| < 0.0078, | Ey| < 0.0039
(c) n="71for T,, n = 50 for M,
21. (a) T\ = 1.983524, Er = 0.016476;
M,, = 2.008248, E); = —0.008248,;
Sio = 2.000110, Es = —0.000110
(b) |Er| < 0.025839, | Ey| < 0.012919, | E5| < 0.000170
(c) n =509 for T,,, n = 360 for M,,, n = 22 for S,
23. (a) 2.8 (b) 7.954926518 (c) 0.2894
(d) 7.954926521  (e) The actual error is much smaller.
(f) 109  (g) 7.953789422  (h) 0.0593
(i) The actual error is smaller.  (j) n = 50
Bl L, R, T, M,
5 0.742943 1.286599 1.014771 0.992621
10 0.867782 1.139610 1.003696 0.998152
20 0.932967 1.068881 1.000924 0.999538
n E, Ey E, E,
5 0.257057 —0.286599 —0.014771 0.007379
10 0.132218 —0.139610 —0.003696 0.001848
20 0.067033 —0.068881 —0.000924 0.000462

Observations are the same as after Example 1.
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27. 1

n T, M, M ©

6 6.695473 6.252572 6.403292

12 6.474023 6.363008 6.400206 sin’r

=3
n Er Ey Es 1§ 110
-0.1
6 —0.295473 0.147428 —0.003292
12 | —0.074023 0.036992  —0.000206 49.C 51.D 53D 55w 57 p<IL /(1 —p)
59. p>—1,—1/(p + 1) 65. \/2GM/R
Observations are the same as after Example 1. 67. (a)

29. (a) 198 (b) 206 (c) 2053 1 s
31. (a) 23.44 (b) 0.3413 33. 37.73 ft/s y=Fo)
35. 10,177 megawatt-hours 37. 828 39. 6.0 41. 59.4
43.

! 0\ 700 !

(in hours)
(b) The rate at which the fraction F() increases as ¢ increases
| ; | | (c) 1; all bulbs burn out eventually
of 05 | 15 4, =x

69. 1000

71. (@) F(s) =1/s,s >0 (b) F(s) = 1/(s — 1), s > 1
(c) F(s) =1/s%s>0

77. C=1;In2 79. No

EXERCISES 7.8 PAGE 515
Abbreviations: C, convergent; D, divergent

I. (a) Infinite interval  (b) Infinite discontinuity
(c¢) Infinite discontinuity  (d) Infinite interval

3. 1 — 1/(21%); 0.495, 0.49995, 0.4999995; 0.5 CHAPTER 7 REVIEW = PAGE 518

5.5 7D 9.2 I.D 130 5D True-False Quiz

17. D 19. % 21. b 23. 7/9 I. False 3. False 5. False 7. False

25. % 27. D 29. %2 3. D 33. ? 9. (a) True (b) False I1. False 13. False
3. D 37 —2/e  39.%m2-%

41. ¢ 43. 27/3 Exercises

I.L5+10Inf 3. In2 5 &
7. —cos(Inr) + C 9. %4 -2
I3 =37 133V (Va2 —23x +2)+ C
I5. —;In|x| +3ln|x+ 2|+ C
17. xsecx — In|secx + tanx| + C
19. 5In(Ox* + 6x + 5) + stan '[LBx + 1)] + €
21 In|x — 2+ a2 —4x|+ C
NI
X
25. 2In(x*> + 1) — 3tan"'x + 2 tan '(x/y2) + C
2
5

23. In

e

27. 29.0 31.6—3xw
41. (a) , 3. - sinl<;) +cC
' j [(sinx)/x?] dx X
: 35. 4T+ Jx+ C 37 3sin2x —jcosdx + C
2 0.447453 39.le—) a1 43D
5 0.577101 s
10 0621306 45. 4In4 — 8  47. —% 49, 7/4
100 0.668479 51. (x + 1) In(x®> + 2x + 2) + 2 arctan(x + 1) — 2x + C
1,000 0.672957 53. 0
10,000 0.673407 55. 1(2x — 1)\/4x? — 4x — 3 —

It appears that the integral is convergent. In|2x— 1+ 4x? —4x - 3|+ C
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57. 5 sinxy/4 + sin>x + 21In(sinx + /4 + sin2x ) + C 9. 2J/1+ @2+ 2/mIn(m+ Y1+ #2) 1L 37
61. No 13. 5 7(145/145 — 10/10) 15, 7d’
63. (a) 1.925444  (b) 1.920915  (c) 1.922470 17. 9.023754  19. 13.527296
65. (a) 0.01348,n =368  (b) 0.00674, n = 260 21 Yr[4 (V17 + 4) — 41n(yv2 + 1) — V17 + 44/2]
67. 8.6 mi |

23. t7[In(\/10 + 3) + 3/
69. (a) 3.8 (b) 1.7867,0.000646 (c) n =30 3 6”[1“(*/:0 3) w 3‘/7(1]
7.C 1.2 15 o 27. (a) 3ma®  (b) ¥my/3a

a’ sin”'(Va? — b%/a)
PROBLEMS PLUS = PAGE 521 29. () 27[b2 + N
I. About 1.85 inches from the center 3.0 2
b Vb2 — a?/b

T f(m=—m/2 1 a0 %! (b) 27T|:a2 +2 Sm\/b(z — a/ )]

13. 2 — sin'(2/V/5)
31. ["27fc — FOIVT + [ (WPdx  33. 4o

CHAPTER 8
EXERCISES 8.1 PAGE 530 EXERCISES 8.3 PAGE 547
. : o I. () 187516/t (b) 187516 (c) 562.51b
L 45 3. (T +sinixdx 5 |y + 62 +2d
Vs Jo s ), Voyi T ey Y 3. 6000b 5 67X 10°N 7. 98 X 10°N
7 (8282 1) 955 ¥ 9. 12X 10°lb Il 28ah  13. 527 X 10°N
13. In(v2+1) 15 In3 -1 I5. (a) 314N (b) 353N
7 T - B (T 1) - 1 — (Y3 — 1) 17. (a) 563 X 10°1b  (b) 5.06 X 10*Ib
V34 m( 4+ 3) e () 488 X 10*1b  (d) 3.03 X 10° Ib

25. 1.569619 | |
27. (), (b) 3 Ly =4, 25. (0,16) 27. ( et > 29. (2,2

L, ~ 643, > ce— 1 4 (20a 20)

L, = 7.50 D — 4 1

) 3, (72 , 33. (2,0)
42 -1)4(V2-1)
35. 60; 160; (5, 1) 37. (0.781,1.330)  41. (0,15)
45. L’
0 . 4

© ['VTT 46 = /6@ - 0P Fde  (d) 7.7988 EXERCISES 8.4 = PAGE 553
29. 5 — n(2(1 + v5)) = V2 + In(1 + y3) I. $38,000 3. $43,866,933.33 5. $407.25
31. 6 y 7. $12,000 9. 3727; $37,753

(1= R~ a*™)
* (2 _ k)(bl—k _ al—k)

1. 3(16y2 — 8) = $9.75 million 13
15. 1.19 X 10™* cm®/s
17. 6.60 L/min 19. 5.77 L/min

EXERCISES 8.5 = PAGE 560

I. (a) The probability that a randomly chosen tire will have a

33. 5(x) = 5[(1 + 90¥? = 104/10]  35. 242(VI +x— 1) lifetime between 30,000 and 40,000 miles

37. 209.1'm 39. 29.36 in. 41. 12.4 (b) The probability that a randomly chosen tire will have a

lifetime of at least 25,000 miles

EXERCISES 8.2 = PAGE 537 3. (a) f(x) =0forall xand [* f(x)dx =1
) . (b) 1 —3v/3=035

1. (a) |O' 2mx*/1 + 16x%dx  (b) |O' 2ax+/1 + 16x° dx 5. (a) 1/877 (b)
J J . 2

] 1 7. (a) f(x) = Oforallxand [* f(x)dx=1 (b) 5
3. (a jo 2mtan” x4 /1 + TS dx I (@) e¥* =020 (b) 1 —e¥=055 (c) Ifyou

aren’t served within 10 minutes, you get a free hamburger.

1 —_—
® [ 27Tx\/1 + s dx 13. ~44%
0 (1 +x9) I5. (a) 0.0668 (b) =~5.21%
5. »7(145145 — 1) 1. %7 17. ~0.9545
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