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Because of the Fundamental Theorem of Calculus, we can integrate a function if we know

an antiderivative, that is, an indefinite integral. We summarize here the most important

integrals that we have learned so far.

In this chapter we develop techniques for using these basic integration formulas to obtain

indefinite integrals of more complicated functions. We learned the most important method of

integration, the Substitution Rule, in Section 5.5. The other general technique, integration by

parts, is presented in Section 7.1. Then we learn methods that are special to particular classes

of functions, such as trigonometric functions and rational functions.

Integration is not as straightforward as differentiation; there are no rules that absolutely

guarantee obtaining an indefinite integral of a function. Therefore we discuss a strategy for

integration in Section 7.5.
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INTEGRATION BY PARTS

Every differentiation rule has a corresponding integration rule. For instance, the Substi-

tution Rule for integration corresponds to the Chain Rule for differentiation. The rule that

corresponds to the Product Rule for differentiation is called the rule for integration by

parts.

The Product Rule states that if and are differentiable functions, then

In the notation for indefinite integrals this equation becomes

or

We can rearrange this equation as

Formula 1 is called the formula for integration by parts. It is perhaps easier to remem-

ber in the following notation. Let and . Then the differentials are

and , so, by the Substitution Rule, the formula for integration

by parts becomes

EXAMPLE 1 Find .

SOLUTION USING FORMULA 1 Suppose we choose and . Then 

and . (For we can choose any antiderivative of .) Thus, using Formula

1, we have

It’s wise to check the answer by differentiating it. If we do so, we get , as 

expected.

x sin x
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 ­ 2x cos x 1 y cos x dx

 ­ xs2cos xd 2 y s2cos xd dx
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 f f sxdtsxdg ­ f sxdt9sxd 1 tsxdf 9sxd

tf

7.1

453



SOLUTION USING FORMULA 2 Let

Then

and so

M

Our aim in using integration by parts is to obtain a simpler integral than the one

we started with. Thus in Example 1 we started with and expressed it in terms

of the simpler integral . If we had instead chosen and , then

and , so integration by parts gives

Although this is true, is a more difficult integral than the one we started with.

In general, when deciding on a choice for and , we usually try to choose to

be a function that becomes simpler when differentiated (or at least not more complicated)

as long as can be readily integrated to give .

EXAMPLE 2 Evaluate .

SOLUTION Here we don’t have much choice for and . Let

Then

Integrating by parts, we get

Integration by parts is effective in this example because the derivative of the function

is simpler than . Mff sxd ­ ln x

 ­ x ln x 2 x 1 C

 ­ x ln x 2 y dx

 y ln x dx ­ x ln x 2 y x 
dx

x

 du ­
1

x
 dx v ­ x

 u ­ ln x dv ­ dx

dvu

y ln x dxV

vdv ­ t9sxd dx

u ­ f sxddvu

x x 2 cos x dx

y x sin x dx ­ ssin xd 
x 2

2
2

1

2
 y x 2 cos x dx

v ­ x 2y2du ­ cos x dx

dv ­ x dxu ­ sin xx cos x dx

x x sin x dx

NOTE

 ­ 2x cos x 1 sin x 1 C

 ­ 2x cos x 1 y cos x dx

 y x sin x dx ­ y x  sin x dx ­ x s2cos xd 2 y s2cos xd dx

 v ­ 2cos x du ­ dx

 dv ­ sin x dx u ­ x
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u d√ u √ √ du

N It is helpful to use the pattern:

 v ­ h du ­ h

 dv ­ h u ­ h

N It’s customary to write as .x dxx 1 dx

N Check the answer by differentiating it.



EXAMPLE 3 Find .

SOLUTION Notice that becomes simpler when differentiated (whereas is unchanged

when differentiated or integrated), so we choose

Then

Integration by parts gives

The integral that we obtained, , is simpler than the original integral but is still not

obvious. Therefore, we use integration by parts a second time, this time with and

. Then , , and

Putting this in Equation 3, we get

M

EXAMPLE 4 Evaluate .

SOLUTION Neither nor becomes simpler when differentiated, but we try choosing

and anyway. Then and , so integration by

parts gives

The integral that we have obtained, , is no simpler than the original one, but

at least it’s no more difficult. Having had success in the preceding example integrating

by parts twice, we persevere and integrate by parts again. This time we use and

. Then , , and

At first glance, it appears as if we have accomplished nothing because we have arrived at

, which is where we started. However, if we put the expression for 

from Equation 5 into Equation 4 we get

y e x sin x dx ­ 2e x cos x 1 e x sin x 2 y e x sin x dx
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v ­ 2cos xdu ­ e x dxdv ­ sin x dxu ­ e x

sin xe x
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N An easier method, using complex numbers, is

given in Exercise 50 in Appendix H.



This can be regarded as an equation to be solved for the unknown integral. Adding

to both sides, we obtain

Dividing by 2 and adding the constant of integration, we get

M

If we combine the formula for integration by parts with Part 2 of the Fundamental

Theorem of Calculus, we can evaluate definite integrals by parts. Evaluating both sides of

Formula 1 between and , assuming and are continuous, and using the Fundamental

Theorem, we obtain

EXAMPLE 5 Calculate .

SOLUTION Let

Then

So Formula 6 gives

To evaluate this integral we use the substitution (since has another meaning

in this example). Then , so . When , ; when ,

; so

Therefore My1
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a
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N Since for , the integral in

Example 5 can be interpreted as the area of the

region shown in Figure 2.
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FIGURE 2

N Figure 1 illustrates Example 4 by show-

ing the graphs of and

. As a visual check

on our work, notice that when has 

a maximum or minimum.
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EXAMPLE 6 Prove the reduction formula

where is an integer.

SOLUTION Let

Then

so integration by parts gives

Since , we have

As in Example 4, we solve this equation for the desired integral by taking the last term

on the right side to the left side. Thus we have

or M

The reduction formula (7) is useful because by using it repeatedly we could eventually

express in terms of (if is odd) or (if is even).nx ssin xd0 dx ­ x dxnx sin x dxx sinnx dx

 y sinnx dx ­ 2
1

n
 cos x sinn21x 1

n 2 1

n
 y sinn22x dx
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cos2x ­ 1 2 sin2x
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1
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N Equation 7 is called a reduction formula

because the exponent has been reduced to

and .n 2 2n 2 1

n

11. 12.

13. 14.

16.

18.

19.

21. 22.
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y t sinh mt dty sln xd2 dx15.

y s 2s dsy t sec2 2t dt

y p5 ln p dpy arctan 4t dt1–2 Evaluate the integral using integration by parts with the 

indicated choices of and .

1. ; ,

2. ; ,

3–32 Evaluate the integral.

4.

5. 6.

7. 8.

9. 10. y sin21x dxy lns2x 1 1d dx

y x 2 cos mx dxy x 2 sin px dx

y t sin 2t dty rery2 dr

y xe2x dxy x cos 5x dx3.

dv ­ cos u duu ­ uy u cos u du

dv ­ x 2 dxu ­ ln xy x 2 ln x dx
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(b) Use part (a) to evaluate and .

(c) Use part (a) to show that, for odd powers of sine,

46. Prove that, for even powers of sine,

47–50 Use integration by parts to prove the reduction formula.

48.

49.

50.

51. Use Exercise 47 to find .

52. Use Exercise 48 to find .

53–54 Find the area of the region bounded by the given curves.

53. , ,

54.

; 55–56 Use a graph to find approximate -coordinates of the

points of intersection of the given curves. Then find (approxi-

mately) the area of the region bounded by the curves.

55. ,

56. ,

57–60 Use the method of cylindrical shells to find the volume

generated by rotating the region bounded by the given curves

about the specified axis.

, , ; about the -axis

58. , , ; about the -axis

59. , , , ; about 

60. , , ; about the -axisxy ­ px ­ 0y ­ e x

x ­ 1x ­ 0x ­ 21y ­ 0y ­ e2x

yx ­ 1y ­ e2xy ­ e x

y0 ø x ø 1y ­ 0y ­ cosspxy2d57.

y ­
1

2 xy ­ arctan 3x

y ­ sx 2 2d2y ­ x sin x

x

y ­ x ln xy ­ 5 ln x,

x ­ 5y ­ 0y ­ xe20.4x
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1
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n 2 1
 y secn22x dx
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tann21 x
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y x ne x dx ­ x ne x
2 n y x n21e x dx
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3 ? 5 ? 7 ? ? ? ? ? s2n 1 1d

xpy2

0
 sin5x dxxpy2

0
 sin3x dx

25. 26.

27. 28.

29. 30.

31. 32.

33–38 First make a substitution and then use integration by parts

to evaluate the integral.

33. 34.

36.

37. 38.

; 39–42 Evaluate the indefinite integral. Illustrate, and check that

your answer is reasonable, by graphing both the function and its

antiderivative (take ).

39. 40.

41. 42.

43. (a) Use the reduction formula in Example 6 to show that

(b) Use part (a) and the reduction formula to evaluate

.

44. (a) Prove the reduction formula

(b) Use part (a) to evaluate .

(c) Use parts (a) and (b) to evaluate .

45. (a) Use the reduction formula in Example 6 to show that

where is an integer.n ù 2
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y sin2x dx ­
x

2
2

sin 2x

4
1 C

y x 2 sin 2x dxy x 3s1 1 x 2  dx

y x 3y2 ln x dxy s2x 1 3de x dx

C ­ 0

y sinsln xd dxy x lns1 1 xd dx

yp

0
 e cos t sin 2t dtysp

 

spy2
 u 3 cossu 2 d du35.

y t 3e2t
2

 dty cos sx  dx

yt

0
 e s sinst 2 sd dsy2

1
 x 4sln xd2 dx

y1

0
 

r 3

s4 1 r 2 
 dry cos x lnssin xd dx

y2

1
 
sln xd2

x 3
 dxy1y2

0
 cos21x dx

ys3

1
 arctans1yxd dxy1

0
 

y

e2y
 dy

458 | | | | CHAPTER 7 TECHNIQUES OF INTEGRATION



SECTION 7.1 INTEGRATION BY PARTS | | | | 459

parts on the resulting integral to prove that

68. Let .

(a) Show that .

(b) Use Exercise 46 to show that 

(c) Use parts (a) and (b) to show that

and deduce that .

(d) Use part (c) and Exercises 45 and 46 to show that

This formula is usually written as an infinite product:

and is called the Wallis product.

(e) We construct rectangles as follows. Start with a square of

area 1 and attach rectangles of area 1 alternately beside or

on top of the previous rectangle (see the figure). Find the

limit of the ratios of width to height of these rectangles.
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ø

I2n11
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I2n12

I2n

­
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2n 1 2

I2n12 ø I2n11 ø I2n

In ­ xpy2

0
 sinnx dx

y

0 xa b

c

d

x=a

x=b

y=ƒx=g(y)

V ­ yb

a
 2px f sxd dx

61. Find the average value of on the interval .

62. A rocket accelerates by burning its onboard fuel, so its mass

decreases with time. Suppose the initial mass of the rocket at

liftoff (including its fuel) is , the fuel is consumed at rate ,

and the exhaust gases are ejected with constant velocity 

(relative to the rocket). A model for the velocity of the rocket

at time is given by the equation

where is the acceleration due to gravity and is not too 

large. If , kg, kgys, and

, find the height of the rocket one minute 

after liftoff.

A particle that moves along a straight line has velocity

meters per second after seconds. How far will 

it travel during the first seconds?

64. If and and are continuous, show that

65. Suppose that , , , , and

is continuous. Find the value of .

(a) Use integration by parts to show that

(b) If and are inverse functions and is continuous,

prove that

[Hint: Use part (a) and make the substitution .]

(c) In the case where and are positive functions and 

, draw a diagram to give a geometric interpre-

tation of part (b).

(d) Use part (b) to evaluate .

67. We arrived at Formula 6.3.2, , by using

cylindrical shells, but now we can use integration by parts to

prove it using the slicing method of Section 6.2, at least for

the case where is one-to-one and therefore has an inverse

function . Use the figure to show that

Make the substitution and then use integration by y ­ f sxd

V ­ pb 2d 2 pa 2c 2 yd

c
 p ftsydg2 dy

t
f

V ­ xb
a
 2px f sxd dx

xe
1
 ln x dx

b . a . 0

tf

y ­ f sxd

yb

a
 f sxd dx ­ bf sbd 2 af sad 2 yf sbd

f sad
 tsyd dy

f 9tf

y f sxd dx ­ x f sxd 2 y x f 9sxd dx

66.

x4
1
 x f 0sxd dxf 0

f 9s4d ­ 3f 9s1d ­ 5f s4d ­ 7f s1d ­ 2

ya

0
 f sxdt 0sxd dx ­ f sadt9sad 2 f 9sadtsad 1 ya

0
 f 0sxdtsxd dx

t 0f 0f s0d ­ ts0d ­ 0

t

tvstd ­ t 2e2t

63.

ve ­ 3000 mys

r ­ 160m ­ 30,000t ­ 9.8 mys2

tt

vstd ­ 2tt 2 ve ln 
m 2 rt

m

t

ve

rm

f1, 3gf sxd ­ x 2 ln x



TRIGONOMETRIC INTEGRALS

In this section we use trigonometric identities to integrate certain combinations of trigo-

nometric functions. We start with powers of sine and cosine.

EXAMPLE 1 Evaluate .

SOLUTION Simply substituting isn’t helpful, since then . In order

to integrate powers of cosine, we would need an extra factor. Similarly, a power of

sine would require an extra factor. Thus here we can separate one cosine factor and

convert the remaining factor to an expression involving sine using the identity

:

We can then evaluate the integral by substituting , so and

M

In general, we try to write an integrand involving powers of sine and cosine in a form

where we have only one sine factor (and the remainder of the expression in terms of

cosine) or only one cosine factor (and the remainder of the expression in terms of sine).

The identity enables us to convert back and forth between even powers

of sine and cosine.

EXAMPLE 2 Find .

SOLUTION We could convert to , but we would be left with an expression in

terms of with no extra factor. Instead, we separate a single sine factor and

rewrite the remaining factor in terms of :

Substituting , we have and so

M ­ 2
1

3 cos3x 1
2

5 cos5x 2
1

7 cos7x 1 C

 ­ 2Su 3

3
2 2 

u 5

5
1

u 7

7
D 1 C

 ­ y s1 2 u 2 d2u 2s2dud ­ 2y su 2
2 2u 4

1 u 6 d du

 ­ y s1 2 cos2xd2 cos2x sin x dx

 y sin5x cos2x dx ­ y ssin2xd2 cos2x sin x dx

du ­ 2sin x dxu ­ cos x

sin5x cos2x ­ ssin2xd2 cos2x sin x ­ s1 2 cos2xd2 cos2x sin x

cos xsin4x

cos xsin x

1 2 sin2xcos2x

y sin5x cos2x dxV

sin2x 1 cos2x ­ 1

 ­ sin x 2
1

3 sin3x 1 C

 ­ y s1 2 u 2 d du ­ u 2
1

3 u 3
1 C

 y cos3x dx ­ y cos2x ? cos x dx ­ y s1 2 sin2xd cos x dx

du ­ cos x dxu ­ sin x

cos3x ­ cos2x ? cos x ­ s1 2 sin2xd cos x 

sin2x 1 cos2x ­ 1

cos2x

cos x

sin x

du ­ 2sin x dxu ­ cos x

y cos3x dx

7.2
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N Figure 1 shows the graphs of the integrand

in Example 2 and its indefinite inte-

gral (with ). Which is which?C ­ 0

sin5x cos2x

FIGURE 1

_π

_0.2

0.2

π



In the preceding examples, an odd power of sine or cosine enabled us to separate a 

single factor and convert the remaining even power. If the integrand contains even powers

of both sine and cosine, this strategy fails. In this case, we can take advantage of the fol-

lowing half-angle identities (see Equations 17b and 17a in Appendix D):

and

EXAMPLE 3 Evaluate .

SOLUTION If we write , the integral is no simpler to evaluate. Using the

half-angle formula for , however, we have

Notice that we mentally made the substitution when integrating . Another

method for evaluating this integral was given in Exercise 43 in Section 7.1. M

EXAMPLE 4 Find .

SOLUTION We could evaluate this integral using the reduction formula for 

(Equation 7.1.7) together with Example 3 (as in Exercise 43 in Section 7.1), but a better

method is to write and use a half-angle formula:

Since occurs, we must use another half-angle formula

This gives

M

To summarize, we list guidelines to follow when evaluating integrals of the form

, where and are integers.n ù 0m ù 0x sinmx cosnx dx

 ­
1

4 ( 3

2 x 2 sin 2x 1
1

8 sin 4x) 1 C

 ­
1

4 y ( 3

2 2 2 cos 2x 1
1

2 cos 4x) dx

 y sin4x dx ­
1

4 y f1 2 2 cos 2x 1
1

2 s1 1 cos 4xdg dx

cos2 2x ­
1

2 s1 1 cos 4xd

cos2 2x

 ­
1

4 y s1 2 2 cos 2x 1 cos2 2xd dx

 ­ y S1 2 cos 2x

2
D2

 dx

 y sin4x dx ­ y ssin2xd2 dx

sin4x ­ ssin2xd2

x sinnx dx

y sin4x dx

cos 2xu ­ 2x

 ­
1

2 (p 2
1

2 sin 2p) 2
1

2 (0 2
1

2 sin 0) ­
1

2 p

 yp

0
 sin2x dx ­

1

2 yp

0
 s1 2 cos 2xd dx ­ [ 1

2 (x 2
1

2 sin 2x)]0 

p

sin2x

sin2x ­ 1 2 cos2x

yp

0
 sin2x dxV

cos2x ­
1

2 s1 1 cos 2xdsin2x ­
1

2 s1 2 cos 2xd
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N Example 3 shows that the area of the region

shown in Figure 2 is .py2

FIGURE 2
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y=sin@ x



STRATEGY FOR EVALUATING 

(a) If the power of cosine is odd , save one cosine factor and use

to express the remaining factors in terms of sine:

Then substitute .

(b) If the power of sine is odd , save one sine factor and use

to express the remaining factors in terms of cosine:

Then substitute . [Note that if the powers of both sine and cosine are

odd, either (a) or (b) can be used.]

(c) If the powers of both sine and cosine are even, use the half-angle identities

It is sometimes helpful to use the identity

We can use a similar strategy to evaluate integrals of the form . Since

, we can separate a factor and convert the remaining (even)

power of secant to an expression involving tangent using the identity .

Or, since , we can separate a factor and convert the

remaining (even) power of tangent to secant.

EXAMPLE 5 Evaluate .

SOLUTION If we separate one factor, we can express the remaining factor in

terms of tangent using the identity . We can then evaluate the integral

by substituting so that :

M ­
1

7 tan7x 1
1

9 tan9x 1 C

 ­
u 7

7
1

u 9

9
1 C

 ­ y u 6s1 1 u 2 d du ­ y su 6 1 u 8d du

 ­ y tan6x s1 1 tan2xd sec2x dx

 y tan6x sec4x dx ­ y tan6x sec2x sec2x dx

du ­ sec2x dxu ­ tan x

sec2x ­ 1 1 tan2x

sec2xsec2x

y tan6x sec4x dxV

sec x tan xsdydxd sec x ­ sec x tan x

sec2x ­ 1 1 tan2x

sec2xsdydxd tan x ­ sec2x

x tanmx secnx dx

sin x cos x ­
1

2 sin 2x

cos2x ­
1

2 s1 1 cos 2xdsin2x ­
1

2 s1 2 cos 2xd

u ­ cos x

 ­ y s1 2 cos2xdk cosnx sin x dx

 y sin2k11x cosnx dx ­ y ssin2xdk cosnx sin x dx

sin2x ­ 1 2 cos2x

sm ­ 2k 1 1d

u ­ sin x

 ­ y sinmx s1 2 sin2xdk cos x dx

 y sinmx cos2k11x dx ­ y sinmx scos2xdk cos x dx

cos2x ­ 1 2 sin2x

sn ­ 2k 1 1d

y sin
m

x cos
n
x dx
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EXAMPLE 6 Find .

SOLUTION If we separate a factor, as in the preceding example, we are left with 

a factor, which isn’t easily converted to tangent. However, if we separate a

factor, we can convert the remaining power of tangent to an expression

involving only secant using the identity . We can then evaluate the

integral by substituting , so :

M

The preceding examples demonstrate strategies for evaluating integrals of the form

for two cases, which we summarize here.

STRATEGY FOR EVALUATING 

(a) If the power of secant is even , save a factor of and use

to express the remaining factors in terms of :

Then substitute .

(b) If the power of tangent is odd , save a factor of and

use to express the remaining factors in terms of :

Then substitute .

For other cases, the guidelines are not as clear-cut. We may need to use identities, inte-

gration by parts, and occasionally a little ingenuity. We will sometimes need to be able to 

u ­ sec x

 ­ y ssec2x 2 1dk secn21x sec x tan x dx

 y tan2k11x secnx dx ­ y stan2xdk secn21x sec x tan x dx

sec xtan2x ­ sec2x 2 1

sec x tan xsm ­ 2k 1 1d

u ­ tan x

 ­ y tanmx s1 1 tan2xdk21 sec2x dx

 y tanmx sec2kx dx ­ y tanmx ssec2xdk21 sec2x dx

tan xsec2x ­ 1 1 tan2x

sec2xsn ­ 2k, k ù 2d

y tan
m
x sec

n
x dx

x tanmx secnx dx

   ­
1

11 sec11u 2
2

9 sec9u 1
1

7 sec7u 1 C

 ­
u 11

11
2 2 

u 9

9
1

u 7

7
1 C

 ­ y su 10 2 2u 8 1 u 6 d du

 ­ y su 2 2 1d2u 6 du

 ­ y ssec2u 2 1d2 sec6u sec u tan u du

 y tan5u sec7u du ­ y tan4u sec6u sec u tan u du

du ­ sec u tan u duu ­ sec u

tan2u ­ sec2u 2 1

sec u tan u

sec5u

sec2u

y tan5u sec7u du
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integrate by using the formula established in (5.5.5):

We will also need the indefinite integral of secant:

We could verify Formula 1 by differentiating the right side, or as follows. First we multi-

ply numerator and denominator by :

If we substitute , then , so the integral

becomes . Thus we have

EXAMPLE 7 Find .

SOLUTION Here only occurs, so we use to rewrite a factor in

terms of :

In the first integral we mentally substituted so that . M

If an even power of tangent appears with an odd power of secant, it is helpful to express

the integrand completely in terms of . Powers of may require integration by

parts, as shown in the following example.

EXAMPLE 8 Find .

SOLUTION Here we integrate by parts with

 du ­ sec x tan x dx v ­ tan x

 u ­ sec x  dv ­ sec2x dx

y sec3x dx

sec xsec x

du ­ sec2x dxu ­ tan x

 ­
tan2x

2
2 ln | sec x | 1 C

 ­ y tan x sec2x dx 2 y tan x dx

­ y tan x ssec2x 2 1d dx y tan3x dx ­ y tan x tan2x dx

sec2x

tan2xtan2x ­ sec2x 2 1tan x

y tan3x dx

y sec x dx ­ ln | sec x 1 tan x | 1 C

x s1yud du ­ ln | u | 1 C

du ­ ssec x tan x 1 sec2xd dxu ­ sec x 1 tan x

  ­ y sec2x 1 sec x tan x

sec x 1 tan x
 dx

 y sec x dx ­ y sec x 
sec x 1 tan x

sec x 1 tan x
 dx

sec x 1 tan x

y sec x dx ­ ln | sec x 1 tan x | 1 C1

y tan x dx ­ ln | sec x | 1 C

tan x
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Then

Using Formula 1 and solving for the required integral, we get

M

Integrals such as the one in the preceding example may seem very special but they

occur frequently in applications of integration, as we will see in Chapter 8. Integrals of 

the form can be found by similar methods because of the identity

.

Finally, we can make use of another set of trigonometric identities:

To evaluate the integrals (a) , (b) , or

(c) , use the corresponding identity:

(a)

(b)

(c)

EXAMPLE 9 Evaluate .

SOLUTION This integral could be evaluated using integration by parts, but it’s easier to use

the identity in Equation 2(a) as follows:

M ­
1

2 (cos x 2
1

9 cos 9xd 1 C

 ­
1

2 y s2sin x 1 sin 9xd dx

 y sin 4x cos 5x dx ­ y 1

2 fsins2xd 1 sin 9xg dx

y sin 4x cos 5x dx

 cos A cos B ­
1

2 fcossA 2 Bd 1 cossA 1 Bdg

 sin A sin B ­
1

2 fcossA 2 Bd 2 cossA 1 Bdg

 sin A cos B ­
1

2 fsinsA 2 Bd 1 sinsA 1 Bdg

x cos mx cos nx dx

x sin mx sin nx dxx sin mx cos nx dx2

1 1 cot2x ­ csc2x

x cotmx cscnx dx

y sec3x dx ­
1

2 (sec x tan x 1 ln | sec x 1 tan x |) 1 C

 ­ sec x tan x 2 y sec3x dx 1 y sec x dx

 ­ sec x tan x 2 y sec x ssec2x 2 1d dx

 y sec3x dx ­ sec x tan x 2 y sec x tan2x dx

SECTION 7.2 TRIGONOMETRIC INTEGRALS | | | | 465

N These product identities are discussed in

Appendix D.

9. 10.

11. 12.

14.

15. 16. y cos u cos5ssin ud duy cos5a

ssin a 
 da

yp

0
 sin2 t cos4 t dtypy2

0
 sin2x cos2x dx13.

y x cos2x dxy s1 1 cos ud2 du

yp

0
 cos6u duyp

0
 sin4s3td dt

1–49 Evaluate the integral.

1. 2.

4.

5. 6.

8. ypy2

0
 sin2s2ud duypy2

0
 cos2u du7.

y sin3(sx )
sx 

 dxy sin2spxd cos5spxd dx

ypy2

0
 cos5x dxy3py4

py2
 sin5x cos3x dx3.

y sin6x cos3x dxy sin3x cos2x dx

EXERCISES7.2



53. 54.

Find the average value of the function on

the interval .

56. Evaluate by four methods:

(a) the substitution 

(b) the substitution 

(c) the identity 

(d) integration by parts

Explain the different appearances of the answers.

57–58 Find the area of the region bounded by the given curves.

57.

58. , ,

; 59–60 Use a graph of the integrand to guess the value of the

integral. Then use the methods of this section to prove that your

guess is correct.

59. 60.

61–64 Find the volume obtained by rotating the region bounded

by the given curves about the specified axis.

, , ; about the -axis

62. , , ; about the -axis

63. , , ; about 

64. , , ; about 

65. A particle moves on a straight line with velocity function

. Find its position function 

if 

66. Household electricity is supplied in the form of alternating 

current that varies from V to V with a frequency 

of 60 cycles per second (Hz). The voltage is thus given by 

the equation

where is the time in seconds. Voltmeters read the RMS

(root-mean-square) voltage, which is the square root of the

average value of over one cycle.

(a) Calculate the RMS voltage of household current.

(b) Many electric stoves require an RMS voltage of 220 V.

Find the corresponding amplitude needed for the volt-

age .Estd ­ A sins120ptd
A

fEstdg2

t

Estd ­ 155 sins120p td

2155155

f s0d ­ 0.

s ­ f stdvstd ­ sin vt cos2vt

y ­ 210 ø x ø py3y ­ cos xy ­ sec x

y ­ 10 ø x ø py4y ­ cos xy ­ sin x

x0 ø x ø py ­ 0y ­ sin2 x

xpy2 ø x ø py ­ 0y ­ sin x61.

y2

0
 sin 2px cos 5px dxy2p

0
 cos3x dx

py4 ø x ø 5py4y ­ cos3 xy ­ sin3 x

2py4 ø x ø py4y ­ cos2 x,y ­ sin2 x,

sin 2x ­ 2 sin x cos x

u ­ sin x

u ­ cos x

x sin x cos x dx

f2p, pg
f sxd ­ sin2x cos3x55.

y sec4 
x

2
 dxy sin 3x sin 6x dx17. 18.

19. 20.

21. 22.

24.

25. 26.

27. 28.

30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

44.

45. 46.

47. 48.

49.

50. If , express the value of

in terms of .

; 51–54 Evaluate the indefinite integral. Illustrate, and check that

your answer is reasonable, by graphing both the integrand and its

antiderivative (taking .

51. 52. y sin3 x cos4 x dxy x sin2sx 2d dx

C ­ 0d

Ixpy4

0
 tan8x sec x dx

xpy4

0
 tan6x sec x dx ­ I

y t sec2st 2d tan4st 2d dt

y dx

cos x 2 1
y 1 2 tan2x

sec2x
 dx

y cos x 1 sin x

sin 2x
 dxy sin 5u sin u du

y cos px cos 4px dxy sin 8x cos 5x dx43.

ypy3

py6
 csc3x dxy csc x dx

y csc 4x cot 6x dxy cot 3a csc3a da

ypy2

py4
 cot3x dxypy2

py6
 cot2x dx

y sin f

cos3 f
 dfy x sec x tan x dx

y tan2x sec x dxy tan3u

cos4u
 du

y tan6sayd dyy tan5x dx

ypy3

0
 tan5x sec6x dxy tan3x sec x dx29.

y tan3s2xd sec5s2xd dxypy3

0
 tan5x sec4x dx

ypy4

0
 sec4u tan4u duy sec6t dt

y stan2 x 1 tan4 xd dxy tan2x dx23.

ypy2

0
 sec4sty2d dty sec2x tan x dx

y cos2x sin 2x dxy cos x 1 sin 2x

sin x
 dx

y cot5u sin4u duy cos2x tan3x dx
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70. A finite Fourier series is given by the sum

Show that the th coefficient is given by the formula

am ­
1

p
 yp

2p
 f sxd sin mx dx

amm

 ­ a1 sin x 1 a2 sin 2x 1 ? ? ? 1 aN sin Nx

 f sxd ­ o
N

n­1

 an sin nx

67–69 Prove the formula, where and are positive integers.

67.

68.

69. yp

2p
 cos mx cos nx dx ­ H0

p

if m ± n

if m ­ n

yp

2p
 sin mx sin nx dx ­ H0

p

if m ± n

if m ­ n

yp

2p
 sin mx cos nx dx ­ 0

nm

TRIGONOMETRIC SUBSTITUTION

In finding the area of a circle or an ellipse, an integral of the form arises,

where . If it were , the substitution would be effective

but, as it stands, is more difficult. If we change the variable from to by

the substitution , then the identity allows us to get rid of the

root sign because

Notice the difference between the substitution (in which the new variable is

a function of the old one) and the substitution (the old variable is a function of

the new one).

In general we can make a substitution of the form by using the Substitution

Rule in reverse. To make our calculations simpler, we assume that has an inverse func-

tion; that is, is one-to-one. In this case, if we replace by and by in the Substitution

Rule (Equation 5.5.4), we obtain

This kind of substitution is called inverse substitution.

We can make the inverse substitution provided that it defines a one-to-one

function. This can be accomplished by restricting to lie in the interval .

In the following table we list trigonometric substitutions that are effective for the given

radical expressions because of the specified trigonometric identities. In each case the restric-

tion on is imposed to ensure that the function that defines the substitution is one-to-one.

(These are the same intervals used in Section 1.6 in defining the inverse functions.)

TABLE OF TRIGONOMETRIC SUBSTITUTIONS

u

f2py2, py2gu

x ­ a sin u

y f sxd dx ­ y f ststddt9std dt

txxut
t

x ­ tstd

x ­ a sin u

u ­ a 2 2 x 2

sa 2 2 x 2 ­ sa 2 2 a 2 sin2u  

­ sa 2s1 2 sin 2ud 
­ sa 2 cos2u  

­ a | cos u |

1 2 sin2u ­ cos2ux ­ a sin u

uxx sa 2 2 x 2  dx

u ­ a 2 2 x 2x xsa 2 2 x 2  dxa . 0

x sa 2 2 x 2  dx

7.3

Expression Substitution Identity

sec2u 2 1 ­ tan2ux ­ a sec u, 0 ø u ,
p

2
or p ø u ,

3p

2
sx 2 2 a 2 

1 1 tan2u ­ sec2ux ­ a tan u, 2
p

2
, u ,

p

2
sa 2 1 x 2 

1 2 sin2u ­ cos2ux ­ a sin u, 2
p

2
ø u ø

p

2
sa 2 2 x 2 



EXAMPLE 1 Evaluate .

SOLUTION Let , where . Then and

(Note that because .) Thus the Inverse Substitution Rule

gives

Since this is an indefinite integral, we must return to the original variable . This can be

done either by using trigonometric identities to express in terms of or 

by drawing a diagram, as in Figure 1, where is interpreted as an angle of a right tri-

angle. Since , we label the opposite side and the hypotenuse as having lengths

and . Then the Pythagorean Theorem gives the length of the adjacent side as ,

so we can simply read the value of from the figure:

(Although in the diagram, this expression for is valid even when .)

Since , we have and so

M

EXAMPLE 2 Find the area enclosed by the ellipse

SOLUTION Solving the equation of the ellipse for , we get

Because the ellipse is symmetric with respect to both axes, the total area is four times

the area in the first quadrant (see Figure 2). The part of the ellipse in the first quadrant is

given by the function

and so
1

4 A ­ ya

0
 
b

a
 sa 2 2 x 2  dx

0 ø x ø ay ­
b

a
 sa 2 2 x 2 

A

y ­ 6
b

a
 sa 2 2 x 2 or

 y 2

b 2
­ 1 2

x 2

a 2
­

a 2 2 x 2

a 2

y

x 2

a 2
1

 y 2

b 2
­ 1

V

y s9 2 x 2 

x 2
 dx ­ 2

s9 2 x 2 

x
2 sin21S x

3
D 1 C

u ­ sin21sxy3dsin u ­ xy3

u , 0cot uu . 0

cot u ­
s9 2 x 2 

x

cot u
s9 2 x 2 3

xsin u ­ xy3

u

sin u ­ xy3cot u

x

 ­ 2cot u 2 u 1 C

 ­ y scsc2u 2 1d du

 ­ y cos2u

sin2u
 du ­ y cot2u du

 y s9 2 x 2 

x 2
 dx ­ y 3 cos u

9 sin2u
 3 cos u du

2py2 ø u ø py2cos u ù 0

s9 2 x 2 ­ s9 2 9 sin2u  
­ s9 cos2u  

­ 3 | cos u | ­ 3 cos u

dx ­ 3 cos u du2py2 ø u ø py2x ­ 3 sin u

y s9 2 x 2 

x 2
 dxV
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To evaluate this integral we substitute . Then . To change 

the limits of integration we note that when , , so ; when ,

, so . Also

since . Therefore

We have shown that the area of an ellipse with semiaxes and is . In particular,

taking , we have proved the famous formula that the area of a circle with

radius is . M

Since the integral in Example 2 was a definite integral, we changed the limits

of integration and did not have to convert back to the original variable .

EXAMPLE 3 Find .

SOLUTION Let . Then and

Thus we have

To evaluate this trigonometric integral we put everything in terms of and :

Therefore, making the substitution , we have

We use Figure 3 to determine that and so

My dx

x 2sx 2 1 4 
­ 2

sx 2 1 4 

4x
1 C

csc u ­ sx 2 1 4 yx

 ­ 2
csc u

4
1 C

 ­
1

4
 S2

1

u
D 1 C ­ 2

1

4 sin u
1 C

 y dx

x 2sx 2 1 4 
­

1

4
 y cos u

sin2u
 du ­

1

4
 y du

u 2

u ­ sin u

sec u

tan2u
­

1

cos u
?

cos2u

sin2u
­

cos u

sin2u

cos usin u

y dx

x 2sx 2 1 4 
­ y 2 sec2u du

4 tan2u ? 2 sec u
­

1

4
 y sec u

tan2u
 du

sx 2 1 4 ­ s4stan 2u 1 1d 
­ s4 sec 2u 

­ 2 | sec u | ­ 2 sec u

dx ­ 2 sec2u dux ­ 2 tan u, 2py2 , u , py2

y 1

x 2sx 2 1 4 
 dxV

x

NOTE

pr 2r

a ­ b ­ r

pabba

 ­ 2ab[u 1
1

2 sin 2u]0

py2

­ 2abSp

2
1 0 2 0D ­ pab

 ­ 4ab ypy2

0
 cos2u du ­ 4ab ypy2

0
 
1

2 s1 1 cos 2ud du

 A ­ 4 
b

a
 ya

0
 sa 2 2 x 2  dx ­ 4 

b

a
 ypy2

0
 a cos u ? a cos u du

0 ø u ø py2

sa 2 2 x 2 ­ sa 2 2 a 2 sin2u 
­ sa 2 cos2u 

­ a | cos u | ­ a cos u

u ­ py2sin u ­ 1

x ­ au ­ 0sin u ­ 0x ­ 0

dx ­ a cos u dux ­ a sin u
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EXAMPLE 4 Find .

SOLUTION It would be possible to use the trigonometric substitution here (as in

Example 3). But the direct substitution is simpler, because then 

and

M

Example 4 illustrates the fact that even when trigonometric substitutions are

possible, they may not give the easiest solution. You should look for a simpler method first.

EXAMPLE 5 Evaluate , where .

SOLUTION 1 We let , where or . Then

and

Therefore

The triangle in Figure 4 gives , so we have

Writing , we have

SOLUTION 2 For the hyperbolic substitution can also be used. Using the

identity , we have

Since , we obtain

Since , we have and

y dx

sx 2 2 a 2 
­ cosh21S x

a
D 1 C2

t ­ cosh21sxyadcosh t ­ xya

y dx

sx 2 2 a 2 
­ y a sinh t dt

a sinh t
­ y dt ­ t 1 C

dx ­ a sinh t dt

sx 2 2 a 2 ­ sa 2 scosh2 t 2 1d ­ sa 2 sinh2 t ­ a sinh t

cosh2y 2 sinh2y ­ 1

x ­ a cosh tx . 0

y dx

sx 2 2 a 2 
­ ln | x 1 sx 2 2 a 2 | 1 C11

C1 ­ C 2 ln a

 ­ ln | x 1 sx 2 2 a 2 | 2 ln a 1 C

 y dx

sx 2 2 a 2 
­ ln Z x

a
1
sx 2 2 a 2 

a
Z 1 C

tan u ­ sx 2 2 a 2 ya

 ­ y sec u du ­ ln | sec u 1 tan u | 1 C

 y dx

sx 2 2 a 2 
­ y a sec u tan u

a tan u
 du

sx 2 2 a 2 ­ sa 2ssec 2u 2 1d 
­ sa 2 tan2u 

­ a | tan u | ­ a tan u

dx ­ a sec u tan u du

p , u , 3py20 , u , py2x ­ a sec u

a . 0y dx

sx 2 2 a 2 

NOTE

y x

sx 2 1 4 
 dx ­

1

2
 y du

su 
­ su 1 C ­ sx 2 1 4 1 C

du ­ 2x dxu ­ x 2 1 4

x ­ 2 tan u

y x

sx 2 1 4 
 dx
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Although Formulas 1 and 2 look quite different, they are actually equivalent by

Formula 3.11.4. M

As Example 5 illustrates, hyperbolic substitutions can be used in place of trigo-

nometric substitutions and sometimes they lead to simpler answers. But we usually use

trigonometric substitutions because trigonometric identities are more familiar than hyper-

bolic identities.

EXAMPLE 6 Find .

SOLUTION First we note that so trigonometric substitution 

is appropriate. Although is not quite one of the expressions in the table of

trigonometric substitutions, it becomes one of them if we make the preliminary substitu-

tion . When we combine this with the tangent substitution, we have ,

which gives and

When , , so ; when , , so .

Now we substitute so that . When , ; when

. Therefore

M

EXAMPLE 7 Evaluate .

SOLUTION We can transform the integrand into a function for which trigonometric substitu-

tion is appropriate by first completing the square under the root sign:

This suggests that we make the substitution . Then and , so

y x

s3 2 2x 2 x 2 
 dx ­ y u 2 1

s4 2 u 2 
 du

x ­ u 2 1du ­ dxu ­ x 1 1

 ­ 4 2 sx 1 1d2

 3 2 2x 2 x 2
­ 3 2 sx 2 1 2xd ­ 3 1 1 2 sx 2 1 2x 1 1d

y x

s3 2 2x 2 x 2 
 dx

 ­
3

16 Fu 1
1

u
G

1

1y2

­
3

16 [( 1

2 1 2) 2 s1 1 1d] ­
3

32

 y3s3y2

0
 

x 3

s4x 2 1 9d3y2
 dx ­ 2

3

16 y1y2

1
 
1 2 u 2

u 2
 du ­

3

16 y1y2

1
 s1 2 u22 d du

u ­ py3, u ­
1

2

u ­ 1u ­ 0du ­ 2sin u duu ­ cos u

 ­
3

16 ypy3

0
 
1 2 cos2u

cos2u
 sin u du

 ­
3

16 ypy3

0
 
tan3u

sec u
 du ­

3

16 ypy3

0
 
sin3u

cos2u
 du

 y3s3y2

0
 

x 3

s4x 2 1 9d3y2
 dx ­ ypy3

0
 

27

8 tan3u

 27 sec3u
 

3

2 sec2u du

u ­ py3tan u ­ s3 x ­ 3s3 y2u ­ 0tan u ­ 0x ­ 0

s4x 2 1 9 ­ s9 tan2u 1 9 
­ 3 sec u

dx ­
3

2 sec2u du

x ­
3

2 tan uu ­ 2x

s4x 2 1 9 

s4x 2 1 9d3y2
­ ss4x 2 1 9 )3

y3s3y2

0
 

x 3

s4x 2 1 9d3y2
 dx

NOTE
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We now substitute , giving and , so

M ­ 2s3 2 2x 2 x 2 2 sin21S x 1 1

2
D 1 C

 ­ 2s4 2 u 2 2 sin21Su

2
D 1 C

 ­ 22 cos u 2 u 1 C

 ­ y s2 sin u 2 1d du

 y x

s3 2 2x 2 x 2 
 dx ­ y 2 sin u 2 1

2 cos u
 2 cos u du

s4 2 u 2 ­ 2 cos udu ­ 2 cos u duu ­ 2 sin u
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N Figure 5 shows the graphs of the integrand 

in Example 7 and its indefinite integral (with

). Which is which?C ­ 0

_4

_5

3

2

FIGURE 5  

21.

23. 24.

25. 26.

27. 28.

29. 30.

(a) Use trigonometric substitution to show that

(b) Use the hyperbolic substitution to show that

These formulas are connected by Formula 3.11.3.

32. Evaluate

(a) by trigonometric substitution.

(b) by the hyperbolic substitution .

33. Find the average value of , .

34. Find the area of the region bounded by the hyperbola

and the line .x ­ 39x 2
2 4y 2

­ 36

1 ø x ø 7f sxd ­ sx 2 2 1yx

x ­ a sinh t

y x 2

sx 2
1 a 2 d3y2

 dx

y dx

sx 2 1 a 2 
­ sinh21S x

a
D 1 C

x ­ a sinh t

y dx

sx 2 1 a 2 
­ ln(x 1 sx 2 1 a 2 ) 1 C

31.

ypy2

0
 

cos t

s1 1 sin2t 
 dty xs1 2 x 4  dx

y x 2
1 1

sx 2
2 2x 1 2d2

 dxy sx 2 1 2x dx

y x 2

s3 1 4x 2 4x 2d3y2
 dxy x

sx 2 1 x 1 1
 dx

y dt

st 2 2 6t 1 13 y s5 1 4x 2 x 2  dx

y1

0
 sx 2 1 1 dx22.y0.6

0
 

x 2

s9 2 25x 2 
 dx

1–3 Evaluate the integral using the indicated trigonometric sub-

stitution. Sketch and label the associated right triangle.

1. ;

2. ;

;

4–30 Evaluate the integral.

4.

5. 6.

8.

9. 10.

11. 12.

14.

15. 16.

18.

19. 20. y t

s25 2 t 2 
 dty s1 1 x 2 

x
 dx

y dx

fsaxd2
2 b 2 g3y2y x

sx 2 2 7 
 dx17.

y2y3

s2y3
 

dx

x 5s9x 2 2 1
 ya

0
 x 2sa 2 2 x 2  dx

y du

us5 2 u 2 y sx 2 2 9

x 3
 dx13.

y1

0
 xsx 2 1 4  dxy s1 2 4x 2 dx

y t 5

st 2 1 2 
 dty dx

sx 2 1 16 

y x 3

sx 2 1 100 
 dxy 1

x 2s25 2 x 2 
 dx7.

y2

1
 
sx 2 2 1

x
 dxy2

s2
 

1

t 3st 2 2 1
 dt

y2s3

0
 

x 3

s16 2 x 2  
 dx

x ­ 3 tan uy x 3

sx 2 1 9 
 dx3.

x ­ 3 sin uy x 3s9 2 x 2  dx

x ­ 3 sec uy 1

x 2sx 2 2 9 
 dx

EXERCISES7.3
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39. (a) Use trigonometric substitution to verify that

(b) Use the figure to give trigonometric interpretations of

both terms on the right side of the equation in part (a).

40. The parabola divides the disk into two

parts. Find the areas of both parts.

41. Find the area of the crescent-shaped region (called a lune)

bounded by arcs of circles with radii and . (See the figure.)

42. A water storage tank has the shape of a cylinder with diam-

eter 10 ft. It is mounted so that the circular cross-sections 

are vertical. If the depth of the water is 7 ft, what percentage

of the total capacity is being used?

43. A torus is generated by rotating the circle

about the -axis. Find the volume

enclosed by the torus.

xx 2
1 sy 2 Rd2

­ r 2

R

r

Rr

x 2
1 y 2

ø 8y ­
1

2x 2

¨
¨

y=œ„„„„„a@-t@

t0

y

a

x

yx

0
 sa 2 2 t 2  dt ­

1

2 a 2 sin21sxyad 1
1

2 xsa 2 2 x 2 

35. Prove the formula for the area of a sector of 

a circle with radius and central angle . [Hint: Assume

and place the center of the circle at the origin

so it has the equation . Then is the sum of the

area of the triangle and the area of the region in

the figure.] 

; 36. Evaluate the integral

Graph the integrand and its indefinite integral on the same

screen and check that your answer is reasonable. 

; 37. Use a graph to approximate the roots of the equation

. Then approximate the area bounded by

the curve and the line . 

38. A charged rod of length produces an electric field at point

given by

where is the charge density per unit length on the rod and

is the free space permittivity (see the figure). Evaluate the

integral to determine an expression for the electric field .

0 x

y

L

P (a, b)

EsPd
«0

l

EsPd ­ yL2a

2a
 

lb

4p«0sx 2
1 b 2 d3y2

 dx

Psa, bd
L

y ­ 2 2 xy ­ x 2s4 2 x 2 

x 2s4 2 x 2 ­ 2 2 x

y dx

x 4sx 2 2 2 

O x

y

RQ
¨

P

PQRPOQ

Ax 2
1 y 2

­ r 2

0 , u , py2

ur

A ­
1

2 r 2
u

INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS

In this section we show how to integrate any rational function (a ratio of polynomials) by

expressing it as a sum of simpler fractions, called partial fractions, that we already know

how to integrate. To illustrate the method, observe that by taking the fractions 

and to a common denominator we obtain

If we now reverse the procedure, we see how to integrate the function on the right side of 

2

x 2 1
2

1

x 1 2
­

2sx 1 2d 2 sx 2 1d

sx 2 1dsx 1 2d
­

x 1 5

x 2
1 x 2 2

1ysx 1 2d
2ysx 2 1d

7.4



this equation:

To see how the method of partial fractions works in general, let’s consider a rational

function

where and are polynomials. It’s possible to express as a sum of simpler fractions

provided that the degree of is less than the degree of . Such a rational function is called

proper. Recall that if

where , then the degree of is and we write .

If is improper, that is, , then we must take the preliminary step 

of dividing into (by long division) until a remainder is obtained such that

. The division statement is

where and are also polynomials.

As the following example illustrates, sometimes this preliminary step is all that is

required.

EXAMPLE 1 Find .

SOLUTION Since the degree of the numerator is greater than the degree of the denominator,

we first perform the long division. This enables us to write

M

The next step is to factor the denominator as far as possible. It can be shown that

any polynomial can be factored as a product of linear factors (of the form ) 

and irreducible quadratic factors (of the form , where ). For

instance, if , we could factor it as

The third step is to express the proper rational function (from Equation 1) as

a sum of partial fractions of the form

Ax 1 B

sax 2
1 bx 1 cd j

or
A

sax 1 bdi

RsxdyQsxd

Qsxd ­ sx 2
2 4dsx 2

1 4d ­ sx 2 2dsx 1 2dsx 2
1 4d

Qsxd ­ x 4
2 16

b 2
2 4ac , 0ax 2

1 bx 1 c

ax 1 bQ

Qsxd

 ­
x 3

3
1

x 2

2
1 2x 1  2 ln | x 2 1 | 1 C

 y x 3
1 x

x 2 1
 dx ­ y Sx 2

1 x 1 2 1
2

x 2 1
D dx

y x 3
1 x

x 2 1
 dxV

RS

f sxd ­
Psxd

Qsxd
­ Ssxd 1

Rsxd

Qsxd
1

degsRd , degsQd
RsxdPQ

degsPd ù degsQdf

degsPd ­ nnPan ± 0

Psxd ­ anx n
1 an21x n21

1 ? ? ? 1 a1x 1 a0

QP

fQP

f sxd ­
Psxd

Qsxd

 ­ 2 ln | x 2 1 | 2 ln | x 1 2 | 1 C

 y x 1 5

x 2
1 x 2 2

 dx ­ y S 2

x 2 1
2

1

x 1 2
D dx
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A theorem in algebra guarantees that it is always possible to do this. We explain the details

for the four cases that occur.

CASE I N The denominator Q(x) is a product of distinct linear factors.

This means that we can write

where no factor is repeated (and no factor is a constant multiple of another). In this case

the partial fraction theorem states that there exist constants such that

These constants can be determined as in the following example.

EXAMPLE 2 Evaluate .

SOLUTION Since the degree of the numerator is less than the degree of the denominator, we

don’t need to divide. We factor the denominator as

Since the denominator has three distinct linear factors, the partial fraction decomposition

of the integrand (2) has the form

To determine the values of , , and , we multiply both sides of this equation by the

product of the denominators, , obtaining

Expanding the right side of Equation 4 and writing it in the standard form for polyno-

mials, we get

The polynomials in Equation 5 are identical, so their coefficients must be equal. The

coefficient of on the right side, , must equal the coefficient of on the

left side—namely, 1. Likewise, the coefficients of are equal and the constant terms are

equal. This gives the following system of equations for , , and :

 22A 1  2B 2  2C ­ 21

 3A 1  2B 2  C ­ 2

 2A 1  B 1  2C ­ 1

CBA

x

x 22A 1 B 1 2Cx 2

x 2
1 2x 2 1 ­ s2A 1 B 1 2C dx 2

1 s3A 1 2B 2 C dx 2 2A5

x 2
1 2x 2 1 ­ As2x 2 1dsx 1 2d 1 Bxsx 1 2d 1 Cxs2x 2 1d4

xs2x 2 1dsx 1 2d
CBA

x 2
1 2x 2 1

xs2x 2 1dsx 1 2d
­

A

x
1

B

2x 2 1
1

C

x 1 2
3

2x 3
1 3x 2

2 2x ­ xs2x 2
1 3x 2 2d ­ xs2x 2 1dsx 1 2d

y x 2
1 2x 2 1

2x 3
1 3x 2

2 2x
 dxV

Rsxd

Qsxd
­

A1

a1 x 1 b1

1
A2

a2x 1 b2

1 ? ? ? 1
Ak

akx 1 bk

2

A1, A2, . . . , Ak

Qsxd ­ sa1x 1 b1 dsa2 x 1 b2 d ? ? ? sak x 1 bkd
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N Another method for finding , , and 

is given in the note after this example.

CBA



Solving, we get , , and , and so

In integrating the middle term we have made the mental substitution , which

gives and . M

We can use an alternative method to find the coefficients , , and in 

Example 2. Equation 4 is an identity; it is true for every value of . Let’s choose values of

that simplify the equation. If we put in Equation 4, then the second and third terms

on the right side vanish and the equation then becomes , or . Likewise,

gives and gives , so and . (You may object

that Equation 3 is not valid for , , or , so why should Equation 4 be valid for those

values? In fact, Equation 4 is true for all values of , even , , and . See Exercise 69

for the reason.)

EXAMPLE 3 Find , where .

SOLUTION The method of partial fractions gives

and therefore

Using the method of the preceding note, we put in this equation and get

, so . If we put , we get , so .

Thus

Since , we can write the integral as

See Exercises 55–56 for ways of using Formula 6. M

CASE 11 N Q(x) is a product of linear factors, some of which are repeated.

Suppose the first linear factor is repeated times; that is, occurs in

the factorization of . Then instead of the single term in Equation 2, we A1ysa1x 1 b1dQsxd
sa1x 1 b1drrsa1 x 1 b1d

y dx

x 2
2 a 2

­
1

2a
 ln Z x 2 a

x 1 a
Z 1 C6

ln x 2 ln y ­ lnsxyyd

 ­
1

2a
 (ln | x 2 a | 2 ln | x 1 a |) 1 C

 y dx

x 2
2 a 2

­
1

2a
 y S 1

x 2 a
2

1

x 1 a
D dx

B ­ 21ys2adBs22ad ­ 1x ­ 2aA ­ 1ys2adAs2ad ­ 1

x ­ a

Asx 1 ad 1 Bsx 2 ad ­ 1

1

x 2
2 a 2

­
1

sx 2 adsx 1 ad
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A

x 2 a
1

B

x 1 a

a ± 0y dx

x 2
2 a 2

22
1

2x ­ 0x

22
1

2x ­ 0

C ­ 2
1

10B ­
1

510C ­ 21x ­ 225By4 ­
1

4x ­
1

2

A ­
1

222A ­ 21

x ­ 0x

x

CBANOTE

dx ­ duy2du ­ 2 dx

u ­ 2x 2 1

 ­
1

2 ln | x | 1
1

10 ln | 2x 2 1 | 2
1

10 ln | x 1 2 | 1 K

 y x 2
1 2x 2 1

2x 3
1 3x 2

2 2x
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N We could check our work by taking the terms

to a common denominator and adding them.

N Figure 1 shows the graphs of the integrand 

in Example 2 and its indefinite integral (with

). Which is which?K ­ 0

FIGURE 1

_3

_2

2

3



would use

By way of illustration, we could write

but we prefer to work out in detail a simpler example.

EXAMPLE 4 Find .

SOLUTION The first step is to divide. The result of long division is

The second step is to factor the denominator . Since ,

we know that is a factor and we obtain

Since the linear factor occurs twice, the partial fraction decomposition is

Multiplying by the least common denominator, , we get

Now we equate coefficients:

Solving, we obtain , , and , so

M ­
x 2

2
1 x 2

2

x 2 1
1 ln Z x 2 1

x 1 1
Z 1 K

 ­
x 2

2
1 x 1 ln | x 2 1 | 2

2

x 2 1
2 ln | x 1 1 | 1 K

 y x 4
2 2x 2

1 4x 1 1

x 3
2 x 2

2 x 1 1
 dx ­ y Fx 1 1 1

1

x 2 1
1

2

sx 2 1d2
2

1

x 1 1
G dx

C ­ 21B ­ 2A ­ 1

 2A 1  B 1  C ­ 0

 A 2  B 2  2C ­ 4

 A 1  B 1  C ­ 0

 ­ sA 1 C dx 2
1 sB 2 2C dx 1 s2A 1 B 1 C d

 4x ­ Asx 2 1dsx 1 1d 1 Bsx 1 1d 1 Csx 2 1d2
8

sx 2 1d2sx 1 1d
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sx 2 1d2sx 1 1d
­

A

x 2 1
1

B
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1
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x 1 1

x 2 1

 ­ sx 2 1d2sx 1 1d

 x 3
2 x 2

2 x 1 1 ­ sx 2 1dsx 2
2 1d ­ sx 2 1dsx 2 1dsx 1 1d

x 2 1

Qs1d ­ 0Qsxd ­ x 3
2 x 2

2 x 1 1

x 4
2 2x 2

1 4x 1 1

x 3
2 x 2

2 x 1 1
­ x 1 1 1

4x

x 3
2 x 2

2 x 1 1

y x 4
2 2x 2

1 4x 1 1

x 3
2 x 2

2 x 1 1
 dx

x 3
2 x 1 1

x 2sx 2 1d3
­

A

x
1

B

x 2
1

C

x 2 1
1

D
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1

E
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Ar
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N Another method for finding the coefficients:

Put in (8): .

Put : .

Put : .A ­ B 1 C ­ 1x ­ 0

C ­ 21x ­ 21

B ­ 2x ­ 1



CASE III N Q(x) contains irreducible quadratic factors, none of which is repeated.

If has the factor , where , then, in addition to the partial

fractions in Equations 2 and 7, the expression for will have a term of the form

where and are constants to be determined. For instance, the function given by

has a partial fraction decomposition of the form

The term given in (9) can be integrated by completing the square and using the formula

EXAMPLE 5 Evaluate .

SOLUTION Since can’t be factored further, we write

Multiplying by , we have

Equating coefficients, we obtain

Thus , , and and so

In order to integrate the second term we split it into two parts:

We make the substitution in the first of these integrals so that .

We evaluate the second integral by means of Formula 10 with :

M ­ ln | x | 1
1

2 lnsx 2
1 4d 2

1

2 tan21sxy2d 1 K

 y 2x 2
2 x 1 4

xsx 2
1 4d

 dx ­ y 1
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 dx 1 y x
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1 4
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x 2
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y x 2 1
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x 2
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y 2x 2
2 x 1 4
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1 4x
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x 2 1

x 2
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D dx
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 ­ sA 1 Bdx 2
1 Cx 1 4A
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1 4d 1 sBx 1 C dx
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­
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D 1 C10
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sx 2 2dsx 2
1 1dsx 2

1 4d
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Bx 1 C

x 2
1 1

1
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EXAMPLE 6 Evaluate .

SOLUTION Since the degree of the numerator is not less than the degree of the denominator,

we first divide and obtain

Notice that the quadratic is irreducible because its discriminant is

. This means it can’t be factored, so we don’t need to use the 

partial fraction technique.

To integrate the given function we complete the square in the denominator:

This suggests that we make the substitution . Then, and

, so

M

Example 6 illustrates the general procedure for integrating a partial fraction of

the form

We complete the square in the denominator and then make a substitution that brings the

integral into the form

Then the first integral is a logarithm and the second is expressed in terms of .

CASE IV N Q(x) contains a repeated irreducible quadratic factor.

If has the factor , where , then instead of the single

partial fraction (9), the sum

A1 x 1 B1

ax 2
1 bx 1 c

1
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1 ? ? ? 1
Ar x 1 Br

sax 2
1 bx 1 cdr

11

b 2
2 4ac , 0sax 2

1 bx 1 cdrQsxd

tan21

y Cu 1 D

u2
1 a2

 du ­ C y u

u2
1 a 2

 du 1 D y 1

u2
1 a2

 du 

where b 2
2 4ac , 0

Ax 1 B

ax 2
1 bx 1 c

NOTE

 ­ x 1
1

8 lns4x 2
2 4x 1 3d 2
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SECTION 7.4 INTEGRATION OF RATIONAL FUNCTIONS BY PARTIAL FRACTIONS | | | | 479



occurs in the partial fraction decomposition of . Each of the terms in (11) can be

integrated by first completing the square.

EXAMPLE 7 Write out the form of the partial fraction decomposition of the function

SOLUTION

M

EXAMPLE 8 Evaluate .

SOLUTION The form of the partial fraction decomposition is

Multiplying by , we have

If we equate coefficients, we get the system

which has the solution , , , , and . Thus

M

We note that sometimes partial fractions can be avoided when integrating a rational func-

tion. For instance, although the integral
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N It would be extremely tedious to work out by

hand the numerical values of the coefficients in

Example 7. Most computer algebra systems,

however, can find the numerical values very

quickly. For instance, the Maple command

or the Mathematica command

gives the following values:

I ­ 2
1

2 , J ­
1

2

E ­
15

8 , F ­ 2
1

8 , G ­ H ­
3

4 ,

 A ­ 21,  B ­
1

8 , C ­ D ­ 21,

Apart[f]

convertsf, parfrac, xd

N In the second and fourth terms we made the

mental substitution .u ­ x 2
1 1



could be evaluated by the method of Case III, it’s much easier to observe that if

, then and so

RATIONALIZING SUBSTITUTIONS

Some nonrational functions can be changed into rational functions by means of appropri-

ate substitutions. In particular, when an integrand contains an expression of the form 

, then the substitution may be effective. Other instances appear in the

exercises.

EXAMPLE 9 Evaluate .

SOLUTION Let . Then , so and . 

Therefore

We can evaluate this integral either by factoring as and using

partial fractions or by using Formula 6 with :

M ­ 2sx 1 4 
1 2 ln Z sx 1 4 

2 2

sx 1 4 
1 2

Z 1 C

 ­ 2u 1 8 ?

1

2 ? 2
 ln Z u 2 2
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2 4u 2
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y sx 1 4 

x
 dx
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y x 2
1 1

xsx 2
1 3d

 dx ­
1

3 ln | x 3
1 3x | 1 C

du ­ s3x 2
1 3d dxu ­ xsx 2

1 3d ­ x 3
1 3x
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(a) (b)

6. (a) (b)

7–38 Evaluate the integral.

7. 8.

9. 10. y 1

st 1 4dst 2 1d
 dty x 2 9

sx 1 5dsx 2 2d
 dx

y r 2

r 1 4
 dry x

x 2 6
 dx

1

x 6
2 x 3

x 4

sx 3
1 xdsx 2

2 x 1 3d

t 4
1 t 2

1 1

st 2
1 1dst 2

1 4d2

x 4

x 4
2 1

5.
1–6 Write out the form of the partial fraction decomposition of the

function (as in Example 7). Do not determine the numerical values

of the coefficients.

1. (a) (b)

2. (a) (b)

3. (a) (b)

4. (a) (b)
2x 1 1

sx 1 1d3sx 2
1 4d2

x 3

x 2
1 4x 1 3

1

sx 2
2 9d2

x 4
1 1

x 5
1 4x 3

x 2

x 2
1 x 1 2

x

x 2
1 x 2 2

1

x 3
1 2x 2

1 x

2x

sx 1 3ds3x 1 1d

EXERCISES7.4
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48.

49.

50.

51–52 Use integration by parts, together with the techniques of this

section, to evaluate the integral.

51. 52.

; 53. Use a graph of to decide whether

is positive or negative. Use the graph to give a rough

estimate of the value of the integral and then use partial fractions

to find the exact value.

; 54. Graph both and an antiderivative on the

same screen.

55–56 Evaluate the integral by completing the square and using

Formula 6.

56.

57. The German mathematician Karl Weierstrass (1815–1897)

noticed that the substitution will convert any

rational function of and into an ordinary rational

function of .

(a) If , , sketch a right triangle or use

trigonometric identities to show that

(b) Show that

(c) Show that

58–61 Use the substitution in Exercise 57 to transform the inte-

grand into a rational function of and then evaluate the integral.

58.

59. 60. ypy2

py3
 

1

1 1 sin x 2 cos x
 dxy 1

3 sin x 2 4 cos x
 dx

y dx

3 2 5 sin x

t

dx ­
2

1 1 t 2
 dt

cos x ­
1 2 t 2

1 1 t 2
and sin x ­

2t

1 1 t 2

cosS x

2
D ­

1

s1 1 t 2 
and sinS x

2
D ­

t

s1 1 t 2 

2p , x , pt ­ tansxy2d
t

cos xsin x

t ­ tansxy2d

y 2x 1 1

4x 2
1 12x 2 7

 dxy dx

x 2
2 2x

55.

y ­ 1ysx 3
2 2x 2 d

x2
0
 f sxd dx

f sxd ­ 1ysx 2
2 2x 2 3d

y x tan21x dxy lnsx 2
2 x 1 2d dx

y e x

se x
2 2dse 2x

1 1d
 dx

y sec 2 t

tan2 t 1 3 tan t 1 2
 dt

y cos x

sin2x 1 sin x
 dx

y e 2x

e 2x
1 3e x

1 2
 dx47.12.

13. 14.

15. 16.

18.

19. 20.

21. 22.

23. 24.

26.

27. 28.

30.

32.

33. 34.

35. 36.

37. 38.

39–50 Make a substitution to express the integrand as a rational

function and then evaluate the integral.

39. 40.

41. 42.

44.

45. [Hint: Substitute .]

46. y s1 1 sx  

x
 dx

u ­
6sx y 1

sx 
2 s3 x 

 dx

y3

1y3
 
sx 

x 2
1 x

 dxy x 3

s3 x 2 1 1
 dx43.

y1

0
 

1

1 1 s3 x 
 dxy16

9
 
sx 

x 2 4
 dx

y dx

2sx 1 3 
1 x

y 1

xsx 1 1
 dx

y x 3
1 2x 2

1 3x 2 2

sx 2
1 2x 1 2d2

 dxy x 2
2 3x 1 7

sx 2
2 4x 1 6d2

 dx

y x 4
1 3x 2

1 1

x 5
1 5x 3

1 5x
 dxy dx

xsx 2
1 4d2

y x 3

x 3
1 1

 dxy1

0
 

x 3
1 2x

x 4
1 4x 2

1 3
 dx

y1

0
 

x

x 2
1 4x 1 13

 dxy 1

x 3
2 1

 dx31.

y 3x 2
1 x 1 4

x 4
1 3x 2

1 2
 dxy x 1 4

x 2
1 2x 1 5

 dx29.

y x 2
2 2x 2 1

sx 2 1d2sx 2
1 1d

 dxy x 3
1 x 2

1 2x 1 1

sx 2
1 1dsx 2

1 2d
 dx

y x 2
1 x 1 1

sx 2
1 1d2

 dxy 10

sx 2 1dsx 2
1 9d

 dx25.

y x 2
2 x 1 6

x 3
1 3x

 dxy 5x 2
1 3x 2 2

x 3
1 2x 2

 dx

y ds

s 2ss 2 1d2y x 3
1 4

x 2
1 4

 dx

y x 2
2 5x 1 16

s2x 1 1dsx 2 2d2
 dxy 1

sx 1 5d2sx 2 1d
 dx

y x 2
1 2x 2 1

x 3
2 x

 dxy2

1
 

4y 2
2 7y 2 12

ysy 1 2dsy 2 3d
 dy17.

y1

0
 
x 3

2 4x 2 10

x 2
2 x 2 6

 dxy4

3
 
x 3

2 2x 2
2 4

x 3
2 2x 2

 dx

y 1

sx 1 adsx 1 bd
 dxy ax

x 2
2 bx

 dx

y1

0
 

x 2 1

x 2
1 3x 1 2

 dxy3

2
 

1

x 2
2 1

 dx11.
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67. (a) Use a computer algebra system to find the partial fraction

decomposition of the function

(b) Use part (a) to find (by hand) and compare with

the result of using the CAS to integrate directly. Com-

ment on any discrepancy.

68. (a) Find the partial fraction decomposition of the function

(b) Use part (a) to find and graph and its indefinite

integral on the same screen.

(c) Use the graph of to discover the main features of the

graph of .

69. Suppose that , and are polynomials and

for all except when . Prove that for 

all . [Hint: Use continuity.]

70. If is a quadratic function such that and

is a rational function, find the value of .f 9s0d

y  f sxd

x 2sx 1 1d3
 dx

f s0d ­ 1f

x

Fsxd ­ GsxdQsxd ­ 0x

Fsxd

Qsxd
­

Gsxd

Qsxd

QF, G

x f sxd dx

f

fx f sxd dx

f sxd ­
12x 5

2 7x 3
2 13x 2

1 8

100x 6
2 80x 5

1 116x 4
2 80x 3

1 41x 2
2 20x 1 4

CAS

f

x f sxd dx

f sxd ­
4x 3

2 27x 2
1 5x 2 32

30x 5
2 13x 4

1 50x 3
2 286x 2

2 299x 2 70

CAS
61.

62–63 Find the area of the region under the given curve from 

1 to 2.

62. 63.

64. Find the volume of the resulting solid if the region under the

curve from to is rotated

about (a) the -axis and (b) the -axis.

65. One method of slowing the growth of an insect population

without using pesticides is to introduce into the population 

a number of sterile males that mate with fertile females 

but produce no offspring. If represents the number of

female insects in a population, the number of sterile males

introduced each generation, and the population’s natural

growth rate, then the female population is related to time by

Suppose an insect population with 10,000 females grows at a

rate of and 900 sterile males are added. Evaluate the

integral to give an equation relating the female population to

time. (Note that the resulting equation can’t be solved explic-

itly for .)

66. Factor as a difference of squares by first adding and

subtracting the same quantity. Use this factorization to evalu-

ate .x 1ysx 4
1 1d dx

x 4
1 1

P

r ­ 0.10

t ­ y P 1 S

Pfsr 2 1dP 2 Sg
 dP

t

r

S

P

yx

x ­ 1x ­ 0y ­ 1ysx 2
1 3x 1 2d

y ­
x 2

1 1

3x 2 x 2
y ­

1

x 3
1 x

ypy2

0
 

sin 2x

2 1 cos x
 dx

STRATEGY FOR INTEGRATION

As we have seen, integration is more challenging than differentiation. In finding the deriv-

ative of a function it is obvious which differentiation formula we should apply. But it may

not be obvious which technique we should use to integrate a given function.

Until now individual techniques have been applied in each section. For instance, we

usually used substitution in Exercises 5.5, integration by parts in Exercises 7.1, and partial

fractions in Exercises 7.4. But in this section we present a collection of miscellaneous inte-

grals in random order and the main challenge is to recognize which technique or formula

to use. No hard and fast rules can be given as to which method applies in a given situation,

but we give some advice on strategy that you may find useful.

A prerequisite for strategy selection is a knowledge of the basic integration formulas.

In the following table we have collected the integrals from our previous list together with

several additional formulas that we have learned in this chapter. Most of them should be

memorized. It is useful to know them all, but the ones marked with an asterisk need not be 

7.5



memorized since they are easily derived. Formula 19 can be avoided by using partial frac-

tions, and trigonometric substitutions can be used in place of Formula 20.

TABLE OF INTEGRATION FORMULAS Constants of integration have been omitted.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

*19. *20.

Once you are armed with these basic integration formulas, if you don’t immediately see

how to attack a given integral, you might try the following four-step strategy.

1. Simplify the Integrand if Possible Sometimes the use of algebraic manipula-

tion or trigonometric identities will simplify the integrand and make the method of

integration obvious. Here are some examples:

 ­ y s1 1 2 sin x cos xd dx

 y ssin x 1 cos xd2 dx ­ y ssin2x 1 2 sin x cos x 1 cos2xd dx

 ­ y sin u cos u du ­
1

2 y sin 2u du

 y tan u

sec2
u

 du ­ y sin u

cos u
 cos2

u du

y sx  (1 1 sx ) dx ­ y (sx 
1 x) dx

y dx

sx 2 6 a2 
­ ln | x 1 sx 2 6 a2 |y dx

x 2
2 a2

­
1

2a
 ln Z x 2 a

x 1 a
Z

y dx

sa 2 2 x 2 
­ sin21S x

a
Dy dx

x 2
1 a 2

­
1

a
 tan21S x

a
D

y cosh x dx ­ sinh xy sinh x dx ­ cosh x

y cot x dx ­ ln | sin x |y tan x dx ­ ln | sec x |

y csc x dx ­ ln | csc x 2 cot x |y sec x dx ­ ln | sec x 1 tan x |

y csc x cot x dx ­ 2csc xy sec x tan x dx ­ sec x

y csc2x dx ­ 2cot xy sec2x dx ­ tan x

y cos x dx ­ sin xy sin x dx ­ 2cos x

y a x dx ­
a x

ln a
y e x dx ­ e x

y 1

x
 dx ­ ln | x |sn ± 21dy x n dx ­

x n11

n 1 1
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2. Look for an Obvious Substitution Try to find some function in the

integrand whose differential also occurs, apart from a constant fac-

tor. For instance, in the integral

we notice that if , then . Therefore we use the substitu-

tion instead of the method of partial fractions.

3. Classify the Integrand According to Its Form If Steps 1 and 2 have not led

to the solution, then we take a look at the form of the integrand .

(a) Trigonometric functions. If is a product of powers of and ,

of and , or of and , then we use the substitutions recom-

mended in Section 7.2.

(b) Rational functions. If is a rational function, we use the procedure of Sec-

tion 7.4 involving partial fractions.

(c) Integration by parts. If is a product of a power of (or a polynomial) and

a transcendental function (such as a trigonometric, exponential, or logarithmic

function), then we try integration by parts, choosing and according to the

advice given in Section 7.1. If you look at the functions in Exercises 7.1, you

will see that most of them are the type just described.

(d) Radicals. Particular kinds of substitutions are recommended when certain

radicals appear.

(i) If occurs, we use a trigonometric substitution according to

the table in Section 7.3.

(ii) If occurs, we use the rationalizing substitution .

More generally, this sometimes works for .

4. Try Again If the first three steps have not produced the answer, remember that

there are basically only two methods of integration: substitution and parts.

(a) Try substitution. Even if no substitution is obvious (Step 2), some inspiration

or ingenuity (or even desperation) may suggest an appropriate substitution.

(b) Try parts. Although integration by parts is used most of the time on products

of the form described in Step 3(c), it is sometimes effective on single func-

tions. Looking at Section 7.1, we see that it works on , , and ,

and these are all inverse functions.

(c) Manipulate the integrand. Algebraic manipulations (perhaps rationalizing the

denominator or using trigonometric identities) may be useful in transforming

the integral into an easier form. These manipulations may be more substantial

than in Step 1 and may involve some ingenuity. Here is an example:

(d) Relate the problem to previous problems. When you have built up some expe-

rience in integration, you may be able to use a method on a given integral that

is similar to a method you have already used on a previous integral. Or you

may even be able to express the given integral in terms of a previous one. For 

 ­ y 1 1 cos x

sin2x
 dx ­ y Scsc2x 1

cos x

sin2x
D dx

 y dx

1 2 cos x
­ y 1

1 2 cos x
?

1 1 cos x

1 1 cos x
 dx ­ y 1 1 cos x

1 2 cos2x
 dx

ln xsin21xtan21x

sn tsxd 

u ­ sn ax 1 b sn ax 1 b 

s6x 2 6 a 2 

dvu

xf sxd

f

csc xcot xsec xtan x

cos xsin xf sxd
f sxd

u ­ x 2
2 1

du ­ 2x dxu ­ x 2
2 1

y x

x 2
2 1

 dx

du ­ t9sxd dx

u ­ tsxd
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instance, is a challenging integral, but if we make use of the iden-

tity , we can write

and if has previously been evaluated (see Example 8 in Section 7.2),

then that calculation can be used in the present problem.

(e) Use several methods. Sometimes two or three methods are required to evalu-

ate an integral. The evaluation could involve several successive substitutions 

of different types, or it might combine integration by parts with one or more

substitutions.

In the following examples we indicate a method of attack but do not fully work out the

integral.

EXAMPLE 1

In Step 1 we rewrite the integral:

The integral is now of the form with odd, so we can use the advice in

Section 7.2.

Alternatively, if in Step 1 we had written

then we could have continued as follows with the substitution :

M

EXAMPLE 2

According to (ii) in Step 3(d), we substitute . Then , so and

The integrand is now a product of and the transcendental function so it can be inte-

grated by parts. M

e uu

y esx  dx ­ 2 y ue u du

dx ­ 2u dux ­ u 2u ­ sx 

y esx  dxV

 ­ y u 2
2 1

u 6
 du ­ y su24

2 u 26 d du

 y sin3x

cos6x
 dx ­ y 1 2 cos2x

cos6x
 sin x dx ­ y 1 2 u 2

u 6
 s2dud

u ­ cos x

y tan3x

cos3x
 dx ­ y sin3x

cos3x
 

1

cos3x
 dx ­ y sin3x

cos6x
 dx

mx tanmx secnx dx

y tan3x

cos3x
 dx ­ y tan3x sec3x dx

y tan3x

cos3x
 dx

x sec3x dx

y tan2x sec x dx ­ y sec3x dx 2 y sec x dx

tan2x ­ sec2x 2 1

x tan2x sec x dx
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EXAMPLE 3

No algebraic simplification or substitution is obvious, so Steps 1 and 2 don’t apply here.

The integrand is a rational function so we apply the procedure of Section 7.4, remember-

ing that the first step is to divide. M

EXAMPLE 4

Here Step 2 is all that is needed. We substitute because its differential is

, which occurs in the integral. M

EXAMPLE 5

Although the rationalizing substitution

works here [(ii) in Step 3(d)], it leads to a very complicated rational function. An easier

method is to do some algebraic manipulation [either as Step 1 or as Step 4(c)]. Multiply-

ing numerator and denominator by , we have

M

CAN WE INTEGRATE ALL CONTINUOUS FUNCTIONS?

The question arises: Will our strategy for integration enable us to find the integral of every

continuous function? For example, can we use it to evaluate ? The answer is No, at

least not in terms of the functions that we are familiar with.

The functions that we have been dealing with in this book are called elementary func-

tions. These are the polynomials, rational functions, power functions , exponential

functions , logarithmic functions, trigonometric and inverse trigonometric functions,

hyperbolic and inverse hyperbolic functions, and all functions that can be obtained from

these by the five operations of addition, subtraction, multiplication, division, and compo-

sition. For instance, the function

is an elementary function.

If is an elementary function, then is an elementary function but need not

be an elementary function. Consider . Since is continuous, its integral exists,

and if we define the function by

Fsxd ­ yx

0
 et

2

 dt

F

ff sxd ­ ex
2

x f sxd dxf 9f

f sxd ­ Î x 2
2 1

x 3
1 2x 2 1

1 lnscosh xd 2 xe sin 2x

sa xd
sx ad

x ex
2

 dx

 ­ sin21x 1 s1 2 x 2 1 C

 ­ y 1

s1 2 x 2 
 dx 2 y x

s1 2 x 2 
 dx

 yÎ1 2 x

1 1 x
  dx ­ y 1 2 x

s1 2 x 2 
 dx

s1 2 x 

u ­ Î1 2 x

1 1 x
 

y Î1 2 x

1 1 x
  dxV

du ­ dxyx

u ­ ln x

y dx

xsln x 
V

y x 5
1 1

x 3
2 3x 2

2 10x
 dx
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then we know from Part 1 of the Fundamental Theorem of Calculus that

Thus, has an antiderivative , but it has been proved that is not an elemen-

tary function. This means that no matter how hard we try, we will never succeed in evalu-

ating in terms of the functions we know. (In Chapter 11, however, we will see how

to express as an infinite series.) The same can be said of the following integrals:

In fact, the majority of elementary functions don’t have elementary antiderivatives. You

may be assured, though, that the integrals in the following exercises are all elementary

functions.

 y sx 3 1 1 dx y 1

ln x
 dx  y sin x

x
 dx

 y e x

x
 dx  y sinsx 2 d dx y cosse x d dx

x ex
2

 dx

x ex
2

 dx

FFf sxd ­ ex
2

F9sxd ­ ex
2
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25. 26.

27. 28.

29. 30.

32.

33. 34.

35. 36.

37. 38.

39. 40.

42.

43. 44.

46.

47. 48. y x

x 4
2 a 4

 dxy x 3sx 2 1d24 dx

y 1 1 sin x

1 2 sin x
 dxy x 5e 2x

3

dx45.

y s1 1 e x  dxy e xs1 1 e x  dx

y tan21 x

x 2
 dxy u tan2

u du41.

y 1

s4y 2 2 4y 2 3 
 dyy sec u tan u

sec2
u 2 sec u

 du

ypy4

0
 tan5

u sec3
u du ypy4

0
 cos2

u tan2
u du

y sin 4x cos 3x dxy1

21
 x 8 sin x dx

ypy2

py4
 
1 1 4 cot x

4 2 cot x
 dxy s3 2 2x 2 x 2  dx

y s2x 2 1

2x 1 3
 dxy Î1 1 x

1 2 x
  dx31.

y2

22
 | x 2

2 4x | dxy5

0
 
3w 2 1

w 1 2
 dw

y sin sat  dty dx

1 1 e x

y 3x 2
2 2

x 3
2 2x 2 8

 dxy 3x 2
2 2

x 2
2 2x 2 8

 dx
1–80 Evaluate the integral.

1. 2.

3. 4.

5. 6.

8.

9. 10.

11. 12.

13. 14.

15. 16.

18.

19. 20.

21. 22.

24. y lnsx 2
2 1d dxy1

0
 (1 1 sx )8 dx23.

y ln x

xs1 1 sln xd2 
 dxy arctan sx  dx

y e 2 dxy e x1e x

dx

y e2 t

1 1 e4 t
 dty x sin2x dx17.

ys2y2

0
 

x 2

s1 2 x 2 

 dxy dx

s1 2 x 2d3y2

y x 3

s1 1 x 2
  dxy sin3

u cos5
u du

y x

x 4
1 x 2

1 1
 dxy x 2 1

x 2
2 4x 1 5

 dx

y4

0
 

x 2 1

x 2
2 4x 2 5

 dxy3

1
 r 4 ln r dr

y x csc x cot x dxy1

21
 

e arctan y

1 1 y 2
 dy7.

y x

s3 2 x 4 
 dxy2

0
 

2t

st 2 3d2
 dt

y tan3
u duy sin x 1 sec x

tan x
 dx

y sin3x

cos x
 dxy cos x s1 1 sin2xd dx
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67. 68.

70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81. The functions and don’t have elementary

antiderivatives, but does. Evaluate

.x s2x 2
1 1de x

2

 dx

y ­ s2x 2
1 1de x

2

y ­ x 2e x
2

y ­ e x
2

y sin x cos x

sin4 x 1 cos4 x
 dxy x sin2 x cos x dx

y sec x cos 2x

sin x 1 sec x
 dxy sx 

1 1 x 3
 dx

y sx 2
2 bxd sin 2x dxy xe x

s1 1 e x 
 dx

y dx

sx (2 1 sx )4y 1

sx 2 2dsx 2
1 4d

 dx

y 4 x
1 10 x

2 x
 dxy x 1 arcsin x

s1 2 x 2 
 dx

y lnsx 1 1d

x 2
 dxy e 2x

1 1 e x
 dx69.

y 1

1 1 2e x
2 e2x

 dxys3

1
 
s1 1 x 2

 

x 2
 dx

50.

51. 52.

53. 54.

55. 56.

58.

59. 60.

62.

63. 64.

65. 66. y3

2
 

u 3
1 1

u 3
2 u 2

 duy 1

sx 1 1 1 sx 
 dx

ypy3

py4
 

lnstan xd

sin x cos x
 dxy sin 2x

1 1 cos4 x
 dx

y 1

x 1 s3 x 
 dxy sx esx 

 dx61.

y dx

x 2s4x 2 2 1
y cos x cos3ssin xd dx

y x ln x

sx 2 2 1
 dxy xs3 x 1 c  dx57.

y dx

sx 
1 xsx y dx

x 1 xsx 

y sx 1 sin xd2 dxy x 2 sinh mx dx

y dx

x sx 4
1 1dy 1

xs4x 2 1 1
 dx

y 1

x 2s4x 1 1
 dxy 1

xs4x 1 1
 dx49.

INTEGRATION USING TABLES AND COMPUTER ALGEBRA SYSTEMS

In this section we describe how to use tables and computer algebra systems to integrate

functions that have elementary antiderivatives. You should bear in mind, though, that even

the most powerful computer algebra systems can’t find explicit formulas for the antideriv-

atives of functions like or the other functions described at the end of Section 7.5.

TABLES OF INTEGRALS

Tables of indefinite integrals are very useful when we are confronted by an integral that is

difficult to evaluate by hand and we don’t have access to a computer algebra system. A rel-

atively brief table of 120 integrals, categorized by form, is provided on the Reference Pages

at the back of the book. More extensive tables are available in CRC Standard Mathe-

matical Tables and Formulae, 31st ed. by Daniel Zwillinger (Boca Raton, FL: CRC 

Press, 2002) (709 entries) or in Gradshteyn and Ryzhik’s Table of Integrals, Series, and

Products, 6e (San Diego: Academic Press, 2000), which contains hundreds of pages of

integrals. It should be remembered, however, that integrals do not often occur in exactly

the form listed in a table. Usually we need to use substitution or algebraic manipulation to

transform a given integral into one of the forms in the table.

EXAMPLE 1 The region bounded by the curves , and is rotated

about the -axis. Find the volume of the resulting solid.

SOLUTION Using the method of cylindrical shells, we see that the volume is

V ­ y1

0
 2px arctan x dx

y

x ­ 1y ­ arctan x, y ­ 0

e x
2
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In the section of the Table of Integrals titled Inverse Trigonometric Forms we locate

Formula 92:

Thus the volume is

M

EXAMPLE 2 Use the Table of Integrals to find .

SOLUTION If we look at the section of the table titled Forms involving , we see

that the closest entry is number 34:

This is not exactly what we have, but we will be able to use it if we first make the substi-

tution :

Then we use Formula 34 with (so ):

M

EXAMPLE 3 Use the Table of Integrals to find .

SOLUTION If we look in the section called Trigonometric Forms, we see that none of 

the entries explicitly includes a factor. However, we can use the reduction formula 

in entry 84 with :

We now need to evaluate . We can use the reduction formula in entry 85

with , followed by entry 82:

 ­ x 2 sin x 2 2ssin x 2 x cos xd 1 K

 y x 2 cos x dx ­ x 2 sin x 2 2 y x sin x dx

n ­ 2

x x 2 cos x dx

y x 3 sin x dx ­ 2x 3 cos x 1 3 y x 2 cos x dx

n ­ 3

u 3

y x 3 sin x dx

 ­ 2
x

8
 s5 2 4x 2 1

5

16
 sin21S 2x

s5 D 1 C

 y x 2

s5 2 4x 2 
 dx ­

1

8
 y u 2

s5 2 u 2 
 du ­

1

8
 S2

u

2
 s5 2 u 2 1

5

2
 sin21 

u

s5 D 1 C

a ­ s5 a 2
­ 5

y x 2

s5 2 4x 2 
 dx ­ y suy2d2

s5 2 u 2 
 
du

2
­

1

8
 y u 2

s5 2 u 2 
 du 

u ­ 2x

y u 2

sa 2 2 u 2 
 du ­ 2

u

2
 sa 2 2 u 2 1

a 2

2
 sin21Su

a
D 1 C

sa 2 2 u 2 

y x 2

s5 2 4x 2 
 dxV

 ­ p f2spy4d 2 1g ­
1

2 p
2

2 p

 ­ p [sx 2
1 1d tan21x 2 x]0

1

­ p s2 tan21 1 2 1d

 V ­ 2p y1

0
 x tan21x dx ­ 2pF x 2

1 1

2
tan21x 2

x

2
G

0

1

y u tan21u du ­
u 2

1 1

2
 tan21u 2

u

2
1 C
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N The Table of Integrals appears on Reference

Pages 6–10 at the back of the book.

85.

­ u n sin u 2 n y u n21 sin u du

y u n cos u du



Combining these calculations, we get

where . M

EXAMPLE 4 Use the Table of Integrals to find .

SOLUTION Since the table gives forms involving , , and , but

not , we first complete the square:

If we make the substitution (so ), the integrand will involve the

pattern :

The first integral is evaluated using the substitution :

For the second integral we use Formula 21 with :

Thus

M

COMPUTER ALGEBRA SYSTEMS

We have seen that the use of tables involves matching the form of the given integrand with

the forms of the integrands in the tables. Computers are particularly good at matching pat-

terns. And just as we used substitutions in conjunction with tables, a CAS can perform sub-

stitutions that transform a given integral into one that occurs in its stored formulas. So it

isn’t surprising that computer algebra systems excel at integration. That doesn’t mean that

integration by hand is an obsolete skill. We will see that a hand computation sometimes

produces an indefinite integral in a form that is more convenient than a machine answer.

To begin, let’s see what happens when we ask a machine to integrate the relatively 

simple function . Using the substitution , an easy calculation

by hand gives

y 1

3x 2 2
 dx ­

1

3 ln | 3x 2 2 | 1 C

u ­ 3x 2 2y ­ 1ys3x 2 2d

­
1

3sx 2
1 2x 1 4d3y2

2
x 1 1

2
 sx 2 1 2x 1 4 2

3

2 ln(x 1 1 1 sx 2 1 2x 1 4 ) 1 C

y xsx 2 1 2x 1 4  dx

y su 2 1 3  du ­
u

2
 su 2 1 3 1

3

2 ln(u 1 su 2 1 3 )

a ­ s3 

y usu 2 1 3  du ­
1

2 y st  dt ­
1

2 ?
2

3 t 3y2 ­
1

3 su 2 1 3d3y2

t ­ u 2
1 3

 ­ y usu 2 1 3  du 2 y su 2 1 3  du

 y xsx 2 1 2x 1 4  dx ­ y su 2 1d su 2 1 3  du

sa 2 1 u 2 

x ­ u 2 1u ­ x 1 1

x 2
1 2x 1 4 ­ sx 1 1d2

1 3

sax 2 1 bx 1 c 

sx 2 2 a 2 sa 2 2 x 2 sa 2 1 x 2 

y xsx 2 1 2x 1 4  dxV

C ­ 3K

y x 3 sin x dx ­ 2x 3 cos x 1 3x 2 sin x 1 6x cos x 2 6 sin x 1 C
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21.

1
a 2

2
 ln(u 1 sa 2 1 u 2 ) 1 C

y sa 2 1 u 2  du ­
u

2
 sa 2 1 u 2 



whereas Derive, Mathematica, and Maple all return the answer

The first thing to notice is that computer algebra systems omit the constant of integra-

tion. In other words, they produce a particular antiderivative, not the most general one.

Therefore, when making use of a machine integration, we might have to add a constant.

Second, the absolute value signs are omitted in the machine answer. That is fine if our

problem is concerned only with values of greater than . But if we are interested in other

values of , then we need to insert the absolute value symbol.

In the next example we reconsider the integral of Example 4, but this time we ask a

machine for the answer.

EXAMPLE 5 Use a computer algebra system to find .

SOLUTION Maple responds with the answer

This looks different from the answer we found in Example 4, but it is equivalent because

the third term can be rewritten using the identity

Thus

The resulting extra term can be absorbed into the constant of integration.

Mathematica gives the answer

Mathematica combined the first two terms of Example 4 (and the Maple result) into a

single term by factoring.

Derive gives the answer

The first term is like the first term in the Mathematica answer, and the second term is

identical to the last term in Example 4. M

EXAMPLE 6 Use a CAS to evaluate .

SOLUTION Maple and Mathematica give the same answer:

1

18 x
18

1
5

2 x
16

1 50x 14
1

1750

3  x 12
1 4375x 10

1 21875x 8
1

218750

3  x 6
1 156250x 4

1
390625

2  x 2

y xsx 2
1 5d8 dx

1

6sx 2 1 2x 1 4  s2x 2 1 x 1 5d 2
3

2 ln(sx 2 1 2x 1 4 1 x 1 1)

S5

6
1

x

6
1

x 2

3
D sx 2 1 2x 1 4 2

3

2
 arcsinhS1 1 x

s3 D

2
3

2 ln(1ys3 )

 ­ ln 
1

s3 
1 ln(x 1 1 1 sx 2 1 2x 1 4 )

 ­ ln 
1

s3 
 [1 1 x 1 ss1 1 xd2 1 3 ]

 arcsinh 
s3 

3
 s1 1 xd ­ lnFs3 

3
 s1 1 xd 1 s|

1

3 s1 1 xd2
1 1G

arcsinh x ­ ln(x 1 sx 2 1 1 )

1

3 sx 2
1 2x 1 4d3y2

2
1

4 s2x 1 2dsx 2 1 2x 1 4 2
3

2
 arcsinh 

s3 

3
 s1 1 xd

y xsx 2 1 2x 1 4  dx

x

2

3x

1

3 lns3x 2 2d
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N This is Equation 3.11.3.



It’s clear that both systems must have expanded by the Binomial Theorem and

then integrated each term.

If we integrate by hand instead, using the substitution , we get

For most purposes, this is a more convenient form of the answer. M

EXAMPLE 7 Use a CAS to find .

SOLUTION In Example 2 in Section 7.2 we found that

Derive and Maple report the answer

whereas Mathematica produces

We suspect that there are trigonometric identities which show these three answers are

equivalent. Indeed, if we ask Derive, Maple, and Mathematica to simplify their expres-

sions using trigonometric identities, they ultimately produce the same form of the answer

as in Equation 1. M

2
5

64 cos x 2
1

192 cos 3x 1
3

320 cos 5x 2
1

448 cos 7x

2
1

7 sin4x cos3x 2
4

35 sin2x cos3x 2
8

105 cos3x

y sin5x cos2x dx ­ 2
1

3 cos3x 1
2

5 cos5x 2
1

7 cos7x 1 C1

y sin5x cos2x dx

y xsx 2
1 5d8 dx ­

1

18 sx 2
1 5d9

1 C

u ­ x 2
1 5

sx 2
1 5d8
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N Derive and the TI-89/92 also give this answer.

11. 12.

13. 14.

15. 16.

18.

20.

21. 22.

23. 24.

25. y1

0
 x 4e2x dx26.y s4 1 sln xd2

 

x
 dx

y sin6 2x dxy sec5x dx

y2

0
 x 3s4x 2 2 x 4  dxy e x

3 2 e2x
 dx

y sin 2u

s5 2 sin u  
 duy sin2x cos x lnssin xd dx19.

y dx

2x 3
2 3x 2y ys6 1 4y 2 4y2  dy17.

y x sinsx 2d coss3x 2d dxy e 2x arctanse xd dx

y sin21sx  dxy tan3s1yzd

z
2

 dz

y x 2 cschsx 3
1 1d dxy0

21
 t 2e2t dt1–4 Use the indicated entry in the Table of Integrals on the 

Reference Pages to evaluate the integral.

1. ; entry 33 2. ; entry 55

3. ; entry 71 4. ; entry 98

5–30 Use the Table of Integrals on Reference Pages 6–10 to evalu-

ate the integral.

5. 6.

7. 8.

9. y s2y 2 2 3 

y 2
 dy10.y dx

x 2s4x 2 1 9 

y ln(1 1 sx )
sx 

 dxy tan3spxd dx

y3

2
 

1

x 2s4x 2 2 7 
 dxy1

0
 2x cos21x dx

y e 2u
 sin 3u duy sec3spxd dx

y 3x

s3 2 2x 
 dxy s7 2 2x 2 

x 2
 dx

EXERCISES7.6



43. (a) Use the table of integrals to evaluate ,

where

What is the domain of and ?

(b) Use a CAS to evaluate . What is the domain of the

function that the CAS produces? Is there a discrepancy

between this domain and the domain of the function 

that you found in part (a)?

44. Computer algebra systems sometimes need a helping hand

from human beings. Try to evaluate

with a computer algebra system. If it doesn’t return an

answer, make a substitution that changes the integral into one

that the CAS can evaluate.

45–48 Use a CAS to find an antiderivative of such 

that . Graph and and locate approximately the 

-coordinates of the extreme points and inflection points of .

45.

46.

47. ,

48. f sxd ­
x 3

2 x

x 6
1 1

0 ø x ø pf sxd ­ sin4x cos6x

f sxd ­ xe2x sin x, 25 ø x ø 5

f sxd ­
x 2

2 1

x 4
1 x 2

1 1

Fx

FfFs0d ­ 0

fFCAS

y s1 1 ln xd s1 1 sx ln xd2  dx

CAS

F

F

Fsxd
Ff

f sxd ­
1

xs1 2 x 2
 

Fsxd ­ x f sxd dxCAS28.

30.

31. Find the volume of the solid obtained when the region under

the curve , , is rotated about the 

-axis.

32. The region under the curve from 0 to is

rotated about the -axis. Find the volume of the resulting

solid.

Verify Formula 53 in the Table of Integrals (a) by differentia-

tion and (b) by using the substitution .

34. Verify Formula 31 (a) by differentiation and (b) by substi-

tuting .

35–42 Use a computer algebra system to evaluate the integral.

Compare the answer with the result of using tables. If the answers

are not the same, show that they are equivalent.

35. 36.

37. 38.

39. 40.

41. 42. y 1

s1 1 s3 x  
 dxy tan5x dx

y sin4x dxy xs1 1 2x dx

y dx

e xs3e x
1 2dy x 2sx 2 1 4  dx

y  csc5x dxy sec4x dx

CAS

u ­ a sin u

t ­ a 1 bu

33.

x

py4y ­ tan2x

y

0 ø x ø 2y ­ xs4 2 x 2 

y sec2
u tan2

u

s9 2 tan2u
  
 duy x 4 dx

sx 10 2 2 
29.

y e t sinsat 2 3d dty se 2x 2 1 dx27.
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In this project a computer algebra system is used to investigate indefinite integrals of families of

functions. By observing the patterns that occur in the integrals of several members of the family,

you will first guess, and then prove, a general formula for the integral of any member of the

family.

1. (a) Use a computer algebra system to evaluate the following integrals.

(i) (ii)

(iii) (iv)

(b) Based on the pattern of your responses in part (a), guess the value of the integral

if . What if ?

(c) Check your guess by asking your CAS to evaluate the integral in part (b). Then prove it

using partial fractions.

a ­ ba ± b

y 1

sx 1 adsx 1 bd
 dx

y 1

sx 1 2d2
 dxy 1

sx 1 2dsx 2 5d
 dx

y 1

sx 1 1dsx 1 5d
 dxy 1

sx 1 2dsx 1 3d
 dx

PATTERNS IN INTEGRALSCASD I S C O V E R Y

P R O J E C T



2. (a) Use a computer algebra system to evaluate the following integrals.

(i) (ii) (iii)

(b) Based on the pattern of your responses in part (a), guess the value of the integral

(c) Check your guess with a CAS. Then prove it using the techniques of Section 7.2. For

what values of and is it valid?

3. (a) Use a computer algebra system to evaluate the following integrals.

(i) (ii) (iii)

(iv) (v)

(b) Based on the pattern of your responses in part (a), guess the value of

(c) Use integration by parts to prove the conjecture that you made in part (b). For what

values of is it valid?

4. (a) Use a computer algebra system to evaluate the following integrals.

(i) (ii) (iii)

(iv) (v)

(b) Based on the pattern of your responses in part (a), guess the value of . Then 

use your CAS to check your guess.

(c) Based on the patterns in parts (a) and (b), make a conjecture as to the value of the 

integral

when is a positive integer.

(d) Use mathematical induction to prove the conjecture you made in part (c).

n

y x ne x dx

x x 6e x dx

y x 5e x dxy x 4e x dx

y x 3e x dxy x 2e x dxy xe x dx

n

y x n ln x dx

y x7 ln x dxy x 3 ln x dx

y x 2 ln x dxy x ln x dxy ln x dx

ba

y sin ax cos bx dx

y sin 8x cos 3x dxy sin 3x cos 7x dxy sin x cos 2x dx
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APPROXIMATE INTEGRATION

There are two situations in which it is impossible to find the exact value of a definite 

integral.

The first situation arises from the fact that in order to evaluate using the

Fundamental Theorem of Calculus we need to know an antiderivative of . Sometimes,

however, it is difficult, or even impossible, to find an antiderivative (see Section 7.5). For

example, it is impossible to evaluate the following integrals exactly:

y1

21
 s1 1 x 3  dxy1

0
 ex

2 

dx

f

xb
a
 f sxd dx

7.7



The second situation arises when the function is determined from a scientific experi-

ment through instrument readings or collected data. There may be no formula for the func-

tion (see Example 5).

In both cases we need to find approximate values of definite integrals. We already know

one such method. Recall that the definite integral is defined as a limit of Riemann sums,

so any Riemann sum could be used as an approximation to the integral: If we divide 

into subintervals of equal length , then we have

where is any point in the th subinterval . If is chosen to be the left endpoint

of the interval, then and we have

If , then the integral represents an area and (1) represents an approximation of this

area by the rectangles shown in Figure 1(a). If we choose to be the right endpoint, then

and we have

[See Figure 1(b).] The approximations and defined by Equations 1 and 2 are called

the left endpoint approximation and right endpoint approximation, respectively.

In Section 5.2 we also considered the case where is chosen to be the midpoint of

the subinterval . Figure 1(c) shows the midpoint approximation , which appears

to be better than either or .

MIDPOINT RULE

and

Another approximation, called the Trapezoidal Rule, results from averaging the approx-

imations in Equations 1 and 2:

 ­
Dx

2
 f f sx0 d 1 2 f sx1d 1 2 f sx2 d 1 ? ? ? 1 2 f sxn21d 1 f sxn dg

 ­
Dx

2
 [( f sx0d 1 f sx1d) 1 ( f sx1d 1 f sx2d) 1 ? ? ? 1 ( f sxn21d 1 f sxn d)]

 yb

a
 f sxd dx <

1

2
 Fo

n

i­1

 f sxi21 d Dx 1 o
n

i­1

 f sxid DxG ­
Dx

2
 Fo

n

i­1

 ( f sxi21 d 1 f sxid)G

 xi ­
1

2 sxi21 1 xi d ­ midpoint of fxi21, xi g

 Dx ­
b 2 a

n
where

yb

a
 f sxd dx < Mn ­ Dx f f sx1d 1 f sx2 d 1 ? ? ? 1 f sxndg

RnLn

Mnfxi21, xig
xix i*

RnLn

yb

a
 f sxd dx < Rn ­ o

n

i­1

 f sxid Dx2

x i* ­ xi

x i*
f sxd ù 0

yb

a
 f sxd dx < Ln ­ o

n

i­1

 f sxi21d Dx1

x i* ­ xi21

x i*fxi21, xigix i*

yb

a
 f sxd dx < o

n

i­1

 f sxi*d Dx

Dx ­ sb 2 adynn

fa, bg
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(a) Left endpoint approximation
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(b) Right endpoint approximation
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(c) Midpoint approximation
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TRAPEZOIDAL RULE

where and .

The reason for the name Trapezoidal Rule can be seen from Figure 2, which illustrates

the case . The area of the trapezoid that lies above the th subinterval is

and if we add the areas of all these trapezoids, we get the right side of the Trapezoidal

Rule.

EXAMPLE 1 Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with to

approximate the integral .

SOLUTION

(a) With , and , we have , and so the Trape-

zoidal Rule gives

This approximation is illustrated in Figure 3.

(b) The midpoints of the five subintervals are , , , , and , so the Midpoint

Rule gives

This approximation is illustrated in Figure 4. M

In Example 1 we deliberately chose an integral whose value can be computed explicitly

so that we can see how accurate the Trapezoidal and Midpoint Rules are. By the Funda-

mental Theorem of Calculus,

The error in using an approximation is defined to be the amount that needs to be added to

the approximation to make it exact. From the values in Example 1 we see that the errors

in the Trapezoidal and Midpoint Rule approximations for are 

EM < 0.001239andET < 20.002488

n ­ 5

y2

1
 
1

x
 dx ­ ln x]1

2
­ ln 2 ­ 0.693147 . . .

 < 0.691908

 ­
1

5
 S 1

1.1
1

1

1.3
1

1

1.5
1

1

1.7
1

1

1.9
D

 y2

1
 
1

x
 dx < Dx f f s1.1d 1 f s1.3d 1 f s1.5d 1 f s1.7d 1 f s1.9dg

1.91.71.51.31.1

 < 0.695635

 ­ 0.1S1

1
1

2

1.2
1

2

1.4
1

2

1.6
1

2

1.8
1

1

2
D

 y2

1
 
1

x
 dx < T5 ­

0.2

2
 f f s1d 1 2 f s1.2d 1 2 f s1.4d 1 2 f s1.6d 1 2 f s1.8d 1 f s2dg

Dx ­ s2 2 1dy5 ­ 0.2b ­ 2n ­ 5, a ­ 1

x2
1
 s1yxd dx

n ­ 5

Dx S  f sxi21d 1 f sxid

2
D ­

Dx

2
 f f sxi21d 1 f sxi dg

if sxd ù 0

xi ­ a 1 i DxDx ­ sb 2 adyn

yb

a
 f sxd dx < Tn ­

Dx

2
 f f sx0 d 1 2 f sx1d 1 2 f sx2 d 1 ? ? ? 1 2 f sxn21d 1 f sxn dg
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FIGURE 3
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In general, we have

The following tables show the results of calculations similar to those in Example 1, but

for , and and for the left and right endpoint approximations as well as the

Trapezoidal and Midpoint Rules.

We can make several observations from these tables:

1. In all of the methods we get more accurate approximations when we increase the

value of . (But very large values of result in so many arithmetic operations that

we have to beware of accumulated round-off error.)

2. The errors in the left and right endpoint approximations are opposite in sign and

appear to decrease by a factor of about 2 when we double the value of .

3. The Trapezoidal and Midpoint Rules are much more accurate than the endpoint

approximations.

4. The errors in the Trapezoidal and Midpoint Rules are opposite in sign and appear

to decrease by a factor of about 4 when we double the value of .

5. The size of the error in the Midpoint Rule is about half the size of the error in the

Trapezoidal Rule.

Figure 5 shows why we can usually expect the Midpoint Rule to be more accurate than

the Trapezoidal Rule. The area of a typical rectangle in the Midpoint Rule is the same as

the area of the trapezoid whose upper side is tangent to the graph at . The area of

this trapezoid is closer to the area under the graph than is the area of the trapezoid 

used in the Trapezoidal Rule. [The midpoint error (shaded red) is smaller than the trape-

zoidal error (shaded blue).]

FIGURE 5

C

P

DA

B

R

Q

C

P

DA

B

xi-1 xii-1 x–i

AQRD

PABCD

n

n

nn

20n ­ 5, 10

EM ­ yb

a
 f sxd dx 2 MnandET ­ yb

a
 f sxd dx 2 Tn
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n

5 0.745635 0.645635 0.695635 0.691908

10 0.718771 0.668771 0.693771 0.692835

20 0.705803 0.680803 0.693303 0.693069

MnTnRnLn

n

5 20.052488 0.047512 20.002488 0.001239

10 20.025624 0.024376 20.000624 0.000312

20 20.012656 0.012344 20.000156 0.000078

EMETEREL

Approximations to y2

1
 
1

x
 dx

Corresponding errors

N It turns out that these observations are true 

in most cases.

Module 5.2/7.7 allows you to 

compare approximation methods.

TEC



These observations are corroborated in the following error estimates, which are proved

in books on numerical analysis. Notice that Observation 4 corresponds to the in each

denominator because . The fact that the estimates depend on the size of the

second derivative is not surprising if you look at Figure 5, because measures how

much the graph is curved. [Recall that measures how fast the slope of 

changes.]

ERROR BOUNDS Suppose for . If and are the

errors in the Trapezoidal and Midpoint Rules, then

Let’s apply this error estimate to the Trapezoidal Rule approximation in Example 1. If

, then and . Since , we have , so

Therefore, taking , and in the error estimate (3), we see that

Comparing this error estimate of with the actual error of about , we see

that it can happen that the actual error is substantially less than the upper bound for the

error given by (3).

EXAMPLE 2 How large should we take in order to guarantee that the Trapezoidal

and Midpoint Rule approximations for are accurate to within ?

SOLUTION We saw in the preceding calculation that for , so we can

take , , and in (3). Accuracy to within means that the size of

the error should be less than . Therefore we choose so that

Solving the inequality for , we get

or

Thus will ensure the desired accuracy.n ­ 41

 n .
1

s0.0006 
< 40.8

 n2
.

2

12s0.0001d

n

2s1d3

12n2
, 0.0001

n0.0001

0.0001b ­ 2a ­ 1K ­ 2

1 ø x ø 2| f 0sxd | ø 2

0.0001x2
1
 s1yxd dx

nV

0.0024880.006667

| ET | ø
2s2 2 1d3

12s5d2
­

1

150
< 0.006667

n ­ 5K ­ 2, a ­ 1, b ­ 2

| f 0sxd | ­ Z 2

x 3 Z ø
2

13
­ 2

1yx ø 11 ø x ø 2f 0sxd ­ 2yx 3f 9sxd ­ 21yx 2f sxd ­ 1yx

| EM | ø
Ksb 2 ad3

24n2
and| ET | ø

Ksb 2 ad3

12n2

EMETa ø x ø b| f 0sxd | ø K3

y ­ f sxdf 0sxd
f 0sxd

s2nd2
­ 4n2

n2
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N It’s quite possible that a lower value for 

would suffice, but is the smallest value for

which the error bound formula can guarantee us

accuracy to within .0.0001

41

n

N can be any number larger than all the 

values of , but smaller values of 

give better error bounds.

K| f 0sxd |
K



For the same accuracy with the Midpoint Rule we choose so that

which gives M

EXAMPLE 3

(a) Use the Midpoint Rule with to approximate the integral .

(b) Give an upper bound for the error involved in this approximation.

SOLUTION

(a) Since , and , the Midpoint Rule gives

Figure 6 illustrates this approximation.

(b) Since , we have and . Also, since

, we have and so

Taking , , , and in the error estimate (3), we see that an upper

bound for the error is

M

SIMPSON’S RULE

Another rule for approximate integration results from using parabolas instead of straight

line segments to approximate a curve. As before, we divide into subintervals of

equal length , but this time we assume that is an even number. Then

on each consecutive pair of intervals we approximate the curve by a parabola

as shown in Figure 7. If , then is the point on the curve lying above .

A typical parabola passes through three consecutive points , and .
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nfa, bg
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e

400
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n ­ 10b ­ 1a ­ 0K ­ 6e

0 ø f 0sxd ­ s2 1 4x 2dex
2

ø 6e

x 2
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f 0sxd ­ s2 1 4x 2dex
2

f 9sxd ­ 2xex
2

f sxd ­ ex
2

 < 1.460393

1 e 0.4225
1 e 0.5625

1 e 0.7225
1 e 0.9025g

 ­ 0.1fe 0.0025
1 e 0.0225

1 e 0.0625
1 e 0.1225

1 e 0.2025
1 e 0.3025

y1

0
 ex

2

dx < Dx f f s0.05d 1 f s0.15d 1 ? ? ? 1 f s0.85d 1 f s0.95dg

n ­ 10a ­ 0, b ­ 1

x1
0
 ex

2

dxn ­ 10

V

 n .
1

s0.0012 
< 29

 
2s1d3

24n2
, 0.0001

n
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y=ex
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N Error estimates give upper bounds for 

the error. They are theoretical, worst-case 

scenarios. The actual error in this case turns 

out to be about .0.0023



To simplify our calculations, we first consider the case where , and

. (See Figure 8.) We know that the equation of the parabola through , and 

is of the form and so the area under the parabola from to

is

But, since the parabola passes through , , and , we have

and therefore

Thus we can rewrite the area under the parabola as

Now, by shifting this parabola horizontally we do not change the area under it. This means

that the area under the parabola through , and from to in Figure 7

is still

Similarly, the area under the parabola through from to is

If we compute the areas under all the parabolas in this manner and add the results, we get

Although we have derived this approximation for the case in which , it is a rea-

sonable approximation for any continuous function and is called Simpson’s Rule after

the English mathematician Thomas Simpson (1710–1761). Note the pattern of coeffi-

cients: .1, 4, 2, 4, 2, 4, 2, . . . , 4, 2, 4, 1

f
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N Here we have used Theorem 5.5.7. 

Notice that is even and is odd.BxAx 2
1 C



SIMPSON’S RULE

where is even and .

EXAMPLE 4 Use Simpson’s Rule with to approximate .

SOLUTION Putting , and in Simpson’s Rule, we obtain

M

Notice that, in Example 4, Simpson’s Rule gives us a much better approximation

to the true value of the integral than does the

Trapezoidal Rule or the Midpoint Rule . It turns out

(see Exercise 48) that the approximations in Simpson’s Rule are weighted averages of

those in the Trapezoidal and Midpoint Rules:

(Recall that and usually have opposite signs and is about half the size of .)
In many applications of calculus we need to evaluate an integral even if no explicit for-

mula is known for y as a function of x. A function may be given graphically or as a table

of values of collected data. If there is evidence that the values are not changing rapidly,

then the Trapezoidal Rule or Simpson’s Rule can still be used to find an approximate value

for , the integral of y with respect to x. 

EXAMPLE 5 Figure 9 shows data traffic on the link from the United States to SWITCH,

the Swiss academic and research network, on February 10, 1998. is the data through-

put, measured in megabits per second . Use Simpson’s Rule to estimate the total

amount of data transmitted on the link up to noon on that day.
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Thomas Simpson was a weaver who taught 

himself mathematics and went on to become one

of the best English mathematicians of the 18th

century. What we call Simpson’s Rule was 

actually known to Cavalieri and Gregory in the

17th century, but Simpson popularized it in his

best-selling calculus textbook, A New Treatise 

of Fluxions.

SIMPSON



SOLUTION Because we want the units to be consistent and is measured in megabits 

per second, we convert the units for from hours to seconds. If we let be the 

amount of data (in megabits) transmitted by time , where is measured in seconds, then

. So, by the Net Change Theorem (see Section 5.4), the total amount of data

transmitted by noon (when ) is

We estimate the values of at hourly intervals from the graph and compile them in

the table.

Then we use Simpson’s Rule with and to estimate the integral:

Thus the total amount of data transmitted up to noon is about 144,000 megabits, or 

144 gigabits. M

The table in the margin shows how Simpson’s Rule compares with the Midpoint Rule

for the integral , whose true value is about 0.69314718. The second table shows

how the error in Simpson’s Rule decreases by a factor of about 16 when is doubled.

(In Exercises 27 and 28 you are asked to verify this for two additional integrals.) That is

consistent with the appearance of in the denominator of the following error estimate for

Simpson’s Rule. It is similar to the estimates given in (3) for the Trapezoidal and Midpoint

Rules, but it uses the fourth derivative of .

ERROR BOUND FOR SIMPSON’S RULE Suppose that for

. If is the error involved in using Simpson’s Rule, then
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0 0 3.2 7 25,200 1.3

1 3,600 2.7 8 28,800 2.8

2 7,200 1.9 9 32,400 5.7

3 10,800 1.7 10 36,000 7.1

4 14,400 1.3 11 39,600 7.7

5 18,000 1.0 12 43,200 7.9

6 21,600 1.1

Dstdt ssecondsdt shoursdDstdt ssecondsdt shoursd

4 0.69121989 0.69315453

8 0.69266055 0.69314765

16 0.69302521 0.69314721

SnMnn

4 0.00192729

8 0.00048663

16 0.00012197 20.00000003

20.00000047

20.00000735

ESEMn



EXAMPLE 6 How large should we take in order to guarantee that the Simpson’s Rule

approximation for is accurate to within ?

SOLUTION If , then . Since , we have and so

Therefore we can take in (4). Thus, for an error less than , we should

choose so that

This gives

or

Therefore ( must be even) gives the desired accuracy. (Compare this with 

Example 2, where we obtained for the Trapezoidal Rule and for the

Midpoint Rule.) M

EXAMPLE 7

(a) Use Simpson’s Rule with to approximate the integral .

(b) Estimate the error involved in this approximation.

SOLUTION

(a) If , then and Simpson’s Rule gives 

(b) The fourth derivative of is

and so, since , we have

Therefore, putting , and in (4), we see that the error is at

most

(Compare this with Example 3.) Thus, correct to three decimal places, we have
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N Many calculators and computer algebra sys-

tems have a built-in algorithm that computes an

approximation of a definite integral. Some of

these machines use Simpson’s Rule; others use

more sophisticated techniques such as adaptive

numerical integration. This means that if a func-

tion fluctuates much more on a certain part of

the interval than it does elsewhere, then that

part gets divided into more subintervals. This

strategy reduces the number of calculations

required to achieve a prescribed accuracy.

N Figure 10 illustrates the calculation in

Example 7. Notice that the parabolic arcs are 

so close to the graph of that they are

practically indistinguishable from it.

y ­ ex
2

0

y

x1

y=ex
2

FIGURE 10
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(Round your answers to six decimal places.) Compare your

results to the actual value to determine the error in each 

approximation.

5. , 6. ,

7–18 Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and

(c) Simpson’s Rule to approximate the given integral with the

specified value of . (Round your answers to six decimal places.)

7. , 8. ,

9. , 10. ,

11. , 12. ,

13. , 14. ,

15. , 16. ,

17. , 18. ,

19. (a) Find the approximations and for the integral

.

(b) Estimate the errors in the approximations of part (a).

(c) How large do we have to choose so that the approxima-

tions and to the integral in part (a) are accurate to

within ?

20. (a) Find the approximations and for .

(b) Estimate the errors in the approximations of part (a).

(c) How large do we have to choose so that the approxima-

tions and to the integral in part (a) are accurate to

within ?

21. (a) Find the approximations , , and for 

and the corresponding errors , , and .

(b) Compare the actual errors in part (a) with the error esti-

mates given by (3) and (4).

(c) How large do we have to choose so that the approxima-

tions , , and to the integral in part (a) are accurate

to within ?

22. How large should be to guarantee that the Simpson’s Rule

approximation to is accurate to within ?

23. The trouble with the error estimates is that it is often very 

difficult to compute four derivatives and obtain a good upper

bound for by hand. But computer algebra systems | f s4dsxd |K

CAS
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0
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 dxn ­ 8yp

0
 x 2 sin x dx

Let , where is the function whose graph is

shown.

(a) Use the graph to find .

(b) Are these underestimates or overestimates of ?

(c) Use the graph to find . How does it compare with ?

(d) For any value of , list the numbers and 

in increasing order.

2. The left, right, Trapezoidal, and Midpoint Rule approxi-

mations were used to estimate , where is the 

function whose graph is shown. The estimates were 0.7811,

0.8675, 0.8632, and 0.9540, and the same number of sub-

intervals were used in each case.

(a) Which rule produced which estimate?

(b) Between which two approximations does the true value of

lie?

; Estimate using (a) the Trapezoidal Rule and

(b) the Midpoint Rule, each with . From a graph of the

integrand, decide whether your answers are underestimates or

overestimates. What can you conclude about the true value of

the integral?

; Draw the graph of in the viewing rectangle

by and let .

(a) Use the graph to decide whether , and under-

estimate or overestimate .

(b) For any value of , list the numbers and 

in increasing order.

(c) Compute . From the graph, which do

you think gives the best estimate of ?

5–6 Use (a) the Midpoint Rule and (b) Simpson’s Rule to

approximate the given integral with the specified value of . n
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figure. Use Simpson’s Rule to estimate the area of the pool.

31. (a) Use the Midpoint Rule and the given data to estimate the

value of the integral .

(b) If it is known that for all , estimate the

error involved in the approximation in part (a).

32. A radar gun was used to record the speed of a runner during

the first 5 seconds of a race (see the table). Use Simpson’s 

Rule to estimate the distance the runner covered during those

5 seconds.

The graph of the acceleration of a car measured in 

is shown. Use Simpson’s Rule to estimate the increase in the

velocity of the car during the 6-second time interval.

34. Water leaked from a tank at a rate of liters per hour, where

the graph of is as shown. Use Simpson’s Rule to estimate the

total amount of water that leaked out during the first 6 hours.

r

0 642

2

4

t (seconds)

r

rstd

a

0 642

4

8

12

t (seconds)

ftys2astd33.

x24 ø f 0sxd ø 1

x3.2

0
 f sxd dx

6.2

5.0

7.2
6.8
5.6 4.8

4.8

have no problem computing and graphing it, so we can

easily find a value for from a machine graph. This exercise

deals with approximations to the integral ,

where .

(a) Use a graph to get a good upper bound for .

(b) Use to approximate .

(c) Use part (a) to estimate the error in part (b).

(d) Use the built-in numerical integration capability of your

CAS to approximate .

(e) How does the actual error compare with the error esti-

mate in part (c)?

(f) Use a graph to get a good upper bound for .

(g) Use to approximate .

(h) Use part (f) to estimate the error in part (g).

(i) How does the actual error compare with the error esti-

mate in part (h)?

( j) How large should be to guarantee that the size of the

error in using is less than ?

24. Repeat Exercise 23 for the integral .

25–26 Find the approximations , and for ,

and . Then compute the corresponding errors , and

. (Round your answers to six decimal places. You may wish to

use the sum command on a computer algebra system.) What

observations can you make? In particular, what happens to the

errors when is doubled?

25. 26.

27–28 Find the approximations , , and for and .

Then compute the corresponding errors , and . (Round

your answers to six decimal places. You may wish to use the sum

command on a computer algebra system.) What observations can

you make? In particular, what happens to the errors when is 

doubled?

27. 28.

29. Estimate the area under the graph in the figure by using

(a) the Trapezoidal Rule, (b) the Midpoint Rule, and

(c) Simpson’s Rule, each with .

30. The widths (in meters) of a kidney-shaped swimming pool

were measured at 2-meter intervals as indicated in the 
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x x

0.0 6.8 2.0 7.6

0.4 6.5 2.4 8.4

0.8 6.3 2.8 8.8

1.2 6.4 3.2 9.0

1.6 6.9

f sxdf sxd

t (s) (mys) t (s) (mys)

0 0 3.0 10.51

0.5 4.67 3.5 10.67

1.0 7.34 4.0 10.76

1.5 8.86 4.5 10.81

2.0 9.73 5.0 10.81

2.5 10.22

vv



39. The region bounded by the curves , , ,

and is rotated about the -axis. Use Simpson’s Rule

with to estimate the volume of the resulting solid.

40. The figure shows a pendulum with length that makes a

maximum angle with the vertical. Using Newton’s 

Second Law, it can be shown that the period (the time 

for one complete swing) is given by

where and is the acceleration due to gravity. 

If m and , use Simpson’s Rule with to

find the period.

41. The intensity of light with wavelength traveling through 

a diffraction grating with slits at an angle is given by

, where and is the 

distance between adjacent slits. A helium-neon laser with

wavelength is emitting a narrow band 

of light, given by , through a grating with

10,000 slits spaced apart. Use the Midpoint Rule 

with to estimate the total light intensity 

emerging from the grating.

42. Use the Trapezoidal Rule with to approximate

. Compare your result to the actual value. 

Can you explain the discrepancy?

43. Sketch the graph of a continuous function on for which

the Trapezoidal Rule with is more accurate than the

Midpoint Rule.

44. Sketch the graph of a continuous function on for which

the right endpoint approximation with is more accurate

than Simpson’s Rule.

If is a positive function and for , show

that

46. Show that if is a polynomial of degree 3 or lower, then 

Simpson’s Rule gives the exact value of .

47. Show that .

48. Show that .
1
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3 Mn ­ S2n

1

2 sTn 1 Mn d ­ T2n

xb
a
 f sxd dx

f

Tn , yb
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dx

s1 2 k 2 sin2x  

T

u0

LCAS

n ­ 8

xx ­ 5

x ­ 1y ­ 0y ­ e21yxThe table (supplied by San Diego Gas and Electric) gives the

power consumption in megawatts in San Diego County

from midnight to 6:00 AM on December 8, 1999. Use Simp-

son’s Rule to estimate the energy used during that time

period. (Use the fact that power is the derivative of energy.)

36. Shown is the graph of traffic on an Internet service pro-

vider’s T1 data line from midnight to 8:00 AM. is the data

throughput, measured in megabits per second. Use Simpson’s

Rule to estimate the total amount of data transmitted during

that time period.

37. If the region shown in the figure is rotated about the -axis to

form a solid, use Simpson’s Rule with to estimate the

volume of the solid.

38. The table shows values of a force function , where is

measured in meters and in newtons. Use Simpson’s Rule

to estimate the work done by the force in moving an object a

distance of 18 m.
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IMPROPER INTEGRALS

In defining a definite integral we dealt with a function defined on a finite inter-

val and we assumed that does not have an infinite discontinuity (see Section 5.2).

In this section we extend the concept of a definite integral to the case where the interval is

infinite and also to the case where has an infinite discontinuity in . In either case

the integral is called an improper integral. One of the most important applications of this

idea, probability distributions, will be studied in Section 8.5.

TYPE 1: INFINITE INTERVALS

Consider the infinite region that lies under the curve , above the -axis, and to

the right of the line . You might think that, since is infinite in extent, its area must

be infinite, but let’s take a closer look. The area of the part of that lies to the left of the

line (shaded in Figure 1) is

Notice that no matter how large is chosen.

We also observe that

The area of the shaded region approaches as (see Figure 2), so we say that the area

of the infinite region is equal to and we write

Using this example as a guide, we define the integral of (not necessarily a positive

function) over an infinite interval as the limit of integrals over finite intervals.
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DEFINITION OF AN IMPROPER INTEGRAL OF TYPE 1

(a) If exists for every number , then

provided this limit exists (as a finite number).

(b) If exists for every number , then

provided this limit exists (as a finite number).

The improper integrals and are called convergent if the

corresponding limit exists and divergent if the limit does not exist.

(c) If both and are convergent, then we define

In part (c) any real number can be used (see Exercise 74).

Any of the improper integrals in Definition 1 can be interpreted as an area provided that

is a positive function. For instance, in case (a) if and the integral 

is convergent, then we define the area of the region in

Figure 3 to be

This is appropriate because is the limit as of the area under the graph of

from to .

EXAMPLE 1 Determine whether the integral is convergent or divergent.

SOLUTION According to part (a) of Definition 1, we have

The limit does not exist as a finite number and so the improper integral is

divergent. M
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Let’s compare the result of Example 1 with the example given at the beginning of this 

section:

Geometrically, this says that although the curves and look very similar

for , the region under to the right of (the shaded region in Figure 4)

has finite area whereas the corresponding region under (in Figure 5) has infinite

area. Note that both and approach as but approaches faster than

. The values of 1yx don’t decrease fast enough for its integral to have a finite value.

EXAMPLE 2 Evaluate .

SOLUTION Using part (b) of Definition 1, we have

We integrate by parts with , so that , :

We know that as , and by l’Hospital’s Rule we have

Therefore

M

EXAMPLE 3 Evaluate .

SOLUTION It’s convenient to choose in Definition 1(c):

We must now evaluate the integrals on the right side separately:
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Since both of these integrals are convergent, the given integral is convergent and

Since , the given improper integral can be interpreted as the area of 

the infinite region that lies under the curve and above the -axis (see

Figure 6). M

EXAMPLE 4 For what values of is the integral

convergent?

SOLUTION We know from Example 1 that if , then the integral is divergent, so let’s

assume that . Then

If , then , so as , and . Therefore

and so the integral converges. But if , then and so

and the integral diverges. M

We summarize the result of Example 4 for future reference:

TYPE 2: DISCONTINUOUS INTEGRANDS

Suppose that is a positive continuous function defined on a finite interval but has

a vertical asymptote at . Let be the unbounded region under the graph of and above 

the -axis between and . (For Type 1 integrals, the regions extended indefinitely in a bax
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horizontal direction. Here the region is infinite in a vertical direction.) The area of the part

of between and (the shaded region in Figure 7) is

If it happens that approaches a definite number as , then we say that the

area of the region is and we write

We use this equation to define an improper integral of Type 2 even when is not a posi-

tive function, no matter what type of discontinuity has at .

DEFINITION OF AN IMPROPER INTEGRAL OF TYPE 2

(a) If is continuous on and is discontinuous at , then 

if this limit exists (as a finite number).

(b) If is continuous on and is discontinuous at , then 

if this limit exists (as a finite number).

The improper integral is called convergent if the corresponding limit

exists and divergent if the limit does not exist.

(c) If has a discontinuity at , where , and both and

are convergent, then we define

EXAMPLE 5 Find .

SOLUTION We note first that the given integral is improper because 

has the vertical asymptote . Since the infinite discontinuity occurs at the left end-

point of , we use part (b) of Definition 3:

Thus the given improper integral is convergent and, since the integrand is positive, we

can interpret the value of the integral as the area of the shaded region in Figure 10. M
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EXAMPLE 6 Determine whether converges or diverges.

SOLUTION Note that the given integral is improper because . Using

part (a) of Definition 3 and Formula 14 from the Table of Integrals, we have

because and as . Thus the given improper integral is

divergent. M

EXAMPLE 7 Evaluate if possible.

SOLUTION Observe that the line is a vertical asymptote of the integrand. Since it

occurs in the middle of the interval , we must use part (c) of Definition 3 with

:

where

because as . Thus is divergent. This implies that

is divergent. [We do not need to evaluate .] M

| WARNING If we had not noticed the asymptote in Example 7 and had instead 

confused the integral with an ordinary integral, then we might have made the following

erroneous calculation:

This is wrong because the integral is improper and must be calculated in terms of limits.

From now on, whenever you meet the symbol you must decide, by looking

at the function on , whether it is an ordinary definite integral or an improper 

integral.

EXAMPLE 8 Evaluate .

SOLUTION We know that the function has a vertical asymptote at 0 since

. Thus the given integral is improper and we have
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Now we integrate by parts with , , , and :

To find the limit of the first term we use l’Hospital’s Rule:

Therefore

Figure 11 shows the geometric interpretation of this result. The area of the shaded region

above and below the -axis is . M

A COMPARISON TEST FOR IMPROPER INTEGRALS

Sometimes it is impossible to find the exact value of an improper integral and yet it 

is important to know whether it is convergent or divergent. In such cases the following the-

orem is useful. Although we state it for Type 1 integrals, a similar theorem is true for

Type 2 integrals.

COMPARISON THEOREM Suppose that and are continuous functions with

for .

(a) If is convergent, then is convergent.

(b) If is divergent, then is divergent.

We omit the proof of the Comparison Theorem, but Figure 12 makes it seem plausible.

If the area under the top curve is finite, then so is the area under the bottom curve

. And if the area under is infinite, then so is the area under .

[Note that the reverse is not necessarily true: If is convergent, may 

or may not be convergent, and if is divergent, may or may not be

divergent.]

EXAMPLE 9 Show that is convergent.

SOLUTION We can’t evaluate the integral directly because the antiderivative of is not an

elementary function (as explained in Section 7.5). We write

and observe that the first integral on the right-hand side is just an ordinary definite inte-

gral. In the second integral we use the fact that for we have , so 

and therefore . (See Figure 13.) The integral of is easy to evaluate:
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Thus, taking and in the Comparison Theorem, we see that

is convergent. It follows that is convergent. M

In Example 9 we showed that is convergent without computing its value. In

Exercise 70 we indicate how to show that its value is approximately 0.8862. In probabil-

ity theory it is important to know the exact value of this improper integral, as we will see

in Section 8.5; using the methods of multivariable calculus it can be shown that the exact

value is . Table 1 illustrates the definition of an improper integral by showing how

the (computer-generated) values of approach as t becomes large. In fact,

these values converge quite quickly because very rapidly as .

EXAMPLE 10 The integral is divergent by the Comparison Theorem

because

and is divergent by Example 1 [or by (2) with ]. M

Table 2 illustrates the divergence of the integral in Example 10. It appears that the 

values are not approaching any fixed number.
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TABLE 1

t

1 0.7468241328

2 0.8820813908

3 0.8862073483

4 0.8862269118

5 0.8862269255

6 0.8862269255

x t
0
 e2x

2

 dx

TABLE 2

t

2 0.8636306042

5 1.8276735512

10 2.5219648704

100 4.8245541204

1000 7.1271392134

10000 9.4297243064

x t
1
 fs1 1 e2x dyxg dx

8.

9. 10.

11. 12.

14.

15. 16.

17. 18.

19. 20.

22.

23. 24.

25. 26.

27. 28. y3
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Explain why each of the following integrals is improper.

(a) (b)

(c) (d)

2. Which of the following integrals are improper? Why?

(a) (b)

(c) (d)

3. Find the area under the curve from to 

and evaluate it for , , and . Then find the total

area under this curve for .

; 4. (a) Graph the functions and in the

viewing rectangles by and by .

(b) Find the areas under the graphs of and from 

to and evaluate for , , , , ,

and .

(c) Find the total area under each curve for , if it exists.

5–40 Determine whether each integral is convergent or divergent.

Evaluate those that are convergent.
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51. 52.

53. 54.

55. The integral

is improper for two reasons: The interval is infinite and

the integrand has an infinite discontinuity at 0. Evaluate it by

expressing it as a sum of improper integrals of Type 2 and

Type 1 as follows:

56. Evaluate

by the same method as in Exercise 55.

57–59 Find the values of for which the integral converges and

evaluate the integral for those values of .

58.

59.

60. (a) Evaluate the integral for , , , and .

(b) Guess the value of when is an arbitrary posi-

tive integer.

(c) Prove your guess using mathematical induction.

(a) Show that is divergent.

(b) Show that

This shows that we can’t define

62. The average speed of molecules in an ideal gas is

where is the molecular weight of the gas, is the gas con-

stant, is the gas temperature, and is the molecular speed.

Show that
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 x dx61.
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 x ne2x dx
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 x p ln x dx
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x sln xd p
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 dx
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0
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2 1 e x
 dxy`

1
 

x 1 1

sx 4 2 x 
 dx30.

32.

33. 34.

35. 36.

37. 38.

39. 40.

41–46 Sketch the region and find its area (if the area is finite).

41.

42.

;

; 44.

; 45.

; 46.

; 47. (a) If , use your calculator or computer to

make a table of approximate values of for 

, 5, 10, 100, 1000, and 10,000. Does it appear that

is convergent?

(b) Use the Comparison Theorem with to show

that is convergent.

(c) Illustrate part (b) by graphing and on the same screen

for . Use your graph to explain intuitively

why is convergent.

; 48. (a) If , use your calculator or computer to

make a table of approximate values of for ,

10, 100, 1000, and 10,000. Does it appear that 

is convergent or divergent?

(b) Use the Comparison Theorem with to show

that is divergent.

(c) Illustrate part (b) by graphing and on the same screen

for . Use your graph to explain intuitively

why is divergent.

49–54 Use the Comparison Theorem to determine whether the

integral is convergent or divergent.
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70. Estimate the numerical value of by writing it as

the sum of and . Approximate the first inte-

gral by using Simpson’s Rule with and show that the

second integral is smaller than , which is less than

0.0000001.

71. If is continuous for , the Laplace transform of is

the function defined by

and the domain of is the set consisting of all numbers for

which the integral converges. Find the Laplace transforms of

the following functions.

(a) (b) (c)

72. Show that if for , where and are

constants, then the Laplace transform exists for .

73. Suppose that and for ,

where is continuous. If the Laplace transform of is

and the Laplace transform of is , show that

74. If is convergent and and are real numbers,

show that

75. Show that .

76. Show that by interpreting the 

integrals as areas.

77. Find the value of the constant for which the integral

converges. Evaluate the integral for this value of .

78. Find the value of the constant for which the integral

converges. Evaluate the integral for this value of .

79. Suppose is continuous on and . Is it

possible that is convergent?

80. Show that if and , then the following inte-

gral is convergent.
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63. We know from Example 1 that the region

has infinite area. Show 

that by rotating about the -axis we obtain a solid with 

finite volume.

64. Use the information and data in Exercises 29 and 30 of Sec-

tion 6.4 to find the work required to propel a 1000-kg satellite

out of the earth’s gravitational field.

65. Find the escape velocity that is needed to propel a rocket 

of mass out of the gravitational field of a planet with mass 

and radius . Use Newton’s Law of Gravitation (see Exer-

cise 29 in Section 6.4) and the fact that the initial kinetic

energy of supplies the needed work.

66. Astronomers use a technique called stellar stereography to

determine the density of stars in a star cluster from the

observed (two-dimensional) density that can be analyzed

from a photograph. Suppose that in a spherical cluster of

radius the density of stars depends only on the distance 

from the center of the cluster. If the perceived star density is

given by , where is the observed planar distance from

the center of the cluster, and is the actual density, it can

be shown that

If the actual density of stars in a cluster is ,

find the perceived density .

67. A manufacturer of lightbulbs wants to produce bulbs that last

about 700 hours but, of course, some bulbs burn out faster

than others. Let be the fraction of the company’s bulbs

that burn out before hours, so always lies between 0

and 1.

(a) Make a rough sketch of what you think the graph of 

might look like.

(b) What is the meaning of the derivative ?

(c) What is the value of ? Why?

68. As we saw in Section 3.8, a radioactive substance decays

exponentially: The mass at time is , where

is the initial mass and is a negative constant. The mean

life of an atom in the substance is

For the radioactive carbon isotope, , used in radiocarbon

dating, the value of is . Find the mean life of a 

atom.

Determine how large the number has to be so that

y`

a
 

1

x 2
1 1

 dx , 0.001

a69.

14C

20.000121k

14C

M ­ 2k y`

0
 te kt dt

M

kms0d
mstd ­ ms0de ktt

x`
0  rstd dt

rstd ­ F9std

F

Fstdt

Fstd

yssd
x srd ­

1

2 sR 2 rd2

yssd ­ yR

s
 

2r

sr 2 2 s 2 
 x srd dr

x srd
syssd

rR

1

2 mv
2
0

RM

m

v0

x5

5 ­ hsx, yd | x ù 1, 0 ø y ø 1yxj
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Note: Additional practice in techniques of integration is provided

in Exercises 7.5.

1–40 Evaluate the integral.

1. 2.

3. 4. y4

1
 

dt

s2t 1 1d3ypy2

0
 

cos u

1 1 sin u
 du

y5

0
 ye20.6y dyy5

0
 

x

x 1 10
 dx

5. 6.

7. 8.

9. 10. y1

0
 
sarctan x 

1 1 x 2
 dxy4

1
 x 3y2 ln x dx

y dx

se x
2 1

y sinsln td

t
 dt

y 1

y 2
2 4y 2 12

 dyypy2

0
 sin3 u cos2

u du

E X E R C I S E S
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7

5. State the rules for approximating the definite integral 

with the Midpoint Rule, the Trapezoidal Rule, and Simpson’s

Rule. Which would you expect to give the best estimate? How

do you approximate the error for each rule?

6. Define the following improper integrals.

(a) (b) (c)

7. Define the improper integral for each of the follow-

ing cases.

(a) has an infinite discontinuity at .

(b) has an infinite discontinuity at .

(c) has an infinite discontinuity at , where .

8. State the Comparison Theorem for improper integrals.

a , c , bcf

bf

af

xb
a
 f sxd dx

y`

2`

 f sxd dxyb

2`

 f sxd dxy`

a
 f sxd dx

xb
a 
 f sxd dx1. State the rule for integration by parts. In practice, how do you

use it?

2. How do you evaluate if is odd? What if is

odd? What if and are both even?

3. If the expression occurs in an integral, what sub-

stitution might you try? What if occurs? What if

occurs?

4. What is the form of the partial fraction expansion of a rational

function if the degree of is less than the degree of

and has only distinct linear factors? What if a linear

factor is repeated? What if has an irreducible quadratic

factor (not repeated)? What if the quadratic factor is repeated?

Qsxd
QsxdQ

PPsxdyQsxd

sx 2 2 a 2 

sa 2 1 x 2 

sa 2 2 x 2 

nm

nmx sinmx cosnx dx

Determine whether the statement is true or false. If it is true, explain why.

If it is false, explain why or give an example that disproves the statement.

1. can be put in the form .

2. can be put in the form .

3. can be put in the form .

4. can be put in the form .

5.

6. is convergent.

7. If is continuous, then .x`
2`

 f sxd dx ­ lim t 
l

 
` x t

2t
 f sxd dxf

y`

1
 

1

xs2
 dx

y4

0
 

x

x 2
2 1

 dx ­
1

2 ln 15

A

x
1

B

x 2
1 4

x 2
2 4

x sx 2
1 4d

A

x 2
1

B

x 2 4

x 2
1 4

x 2sx 2 4d

A

x
1

B

x 1 2
1

C

x 2 2

x 2
1 4

x sx 2
2 4d

A

x 1 2
1

B

x 2 2

x sx 2
1 4d

x 2
2 4

8. The Midpoint Rule is always more accurate than the

Trapezoidal Rule.

9. (a) Every elementary function has an elementary derivative.

(b) Every elementary function has an elementary anti-

derivative.

10. If is continuous on and is convergent, then

is convergent.

11. If is a continuous, decreasing function on and

, then is convergent.

12. If and are both convergent, then

is convergent.

13. If and are both divergent, then

is divergent.

14. If and diverges, then also

diverges.

x`
0

 f sxd dxx`
0

 tsxd dxf sxd ø tsxd

x`
a

 f f sxd 1 tsxdg dx

x`
a

 tsxd dxx`
a

 f sxd dx

x`
a

 f f sxd 1 tsxdg dx

x`
a

 tsxd dxx`
a

 f sxd dx

x`
1

 f sxd dxlimx 
l

 
` f sxd ­ 0

f1, `df

x`
0

 f sxd dx

x`
1

 f sxd dxf0, `df
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49. 50.

; 51–52 Evaluate the indefinite integral. Illustrate and check that

your answer is reasonable by graphing both the function and its

antiderivative (take ).

51. 52.

; 53. Graph the function and use the graph to

guess the value of the integral . Then evaluate the

integral to confirm your guess.

54. (a) How would you evaluate by hand? (Don’t

actually carry out the integration.)

(b) How would you evaluate using tables? 

(Don’t actually do it.)

(c) Use a CAS to evaluate .

(d) Graph the integrand and the indefinite integral on the

same screen.

55–58 Use the Table of Integrals on the Reference Pages to 

evaluate the integral.

55. 56.

57. 58.

59. Verify Formula 33 in the Table of Integrals (a) by differentia-

tion and (b) by using a trigonometric substitution.

60. Verify Formula 62 in the Table of Integrals.

61. Is it possible to find a number such that is 

convergent?

62. For what values of is convergent? Evaluate

the integral for those values of .

63–64 Use (a) the Trapezoidal Rule, (b) the Midpoint Rule,

and (c) Simpson’s Rule with to approximate the given

integral. Round your answers to six decimal places.

63. 64.

65. Estimate the errors involved in Exercise 63, parts (a) and (b).

How large should be in each case to guarantee an error of

less than 0.00001?

66. Use Simpson’s Rule with to estimate the area under

the curve from to .x ­ 4x ­ 1y ­ e xyx

n ­ 6

n

y4

1
sx  cos x dx y4

2
 

1

ln x
 dx

n ­ 10

a

x`
0

 e ax cos x dxa

x`
0

 x n dxn

y cot x

s1 1 2 sin x 
 dxy cos x s4 1 sin2 x  dx

y csc5t dty s4x 2 2 4x 2 3  dx

x x 5e22x dx

x x 5e22x dx

x x 5e22x dxCAS

x2p

0
 f sxd dx

f sxd ­ cos2x sin3x

y x 3

sx 2 1 1
 dxy lnsx 2

1 2x 1 2d dx

C ­ 0

y`

1
 
tan21x

x 2
 dxy`

2`

 
dx

4x 2
1 4x 1 5

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41–50 Evaluate the integral or show that it is divergent.

41. 42.

43. 44.

45. 46.

47. 48. y1

21
 

dx

x 2
2 2x

y1

0
 
x 2 1

sx 
 dx

y1

0
 

1

2 2 3x
 dxy4

0
 
ln x

sx 
 dx

y6

2
 

 y

sy 2 2 
 dyy`

2
 

dx

x ln x

y`

1
 
ln x

x 4
 dxy`

1
 

1

s2x 1 1d3
 dx

ypy3

py4
 
stan u 

 

sin 2u
 duy1y2

0
 

xe 2x

s1 1 2xd2
 dx

y x 2

sx 1 2d3
 dxy scos x 1 sin xd2 cos 2x dx

y 1 2 tan u

1 1 tan u
 duy 1

sx 1 x 3y2
  dx

y sarcsin xd2 dxy x 2

s4 2 x 2 d3y2
 dx

ypy4

0
 
x sin x

cos3x
 dxyln 10

0
 
e xse x 2 1

e x
1 8

 dx

y dx

e xs1 2 e22x y1

21
 x 5 sec x dx

y s
3 x 

1 1

s3 x 
2 1

 dxypy2

0
 cos3x sin 2x dx

y x sin x cos x dxy 3x 3
2 x 2

1 6x 2 4

sx 2
1 1dsx 2

1 2d
 dx

y e x cos x dxy dx

xsx 2 1 1

y test 

 dty dx

sx 2 2 4x  

y tan5
u sec3

u duy x 1 1

9x 2
1 6x 1 5

 dx

y x 2
1 8x 2 3

x 3
1 3x 2

 dxy x sec x tan x dx

y sec6
u

tan2
u

 duy x 2 1

x 2
1 2x

 dx

y x 2
1 2

x 1 2
 dxy es3 x 

 dx

y1

21
 

sin x

1 1 x 2
 dxy2

1
 
sx 2 2 1

x
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71. Use the Comparison Theorem to determine whether the 

integral 

is convergent or divergent.

72. Find the area of the region bounded by the hyperbola

and the line .

73. Find the area bounded by the curves and 

between and .

74. Find the area of the region bounded by the curves

, , and .

75. The region under the curve , is

rotated about the -axis. Find the volume of the resulting solid.

76. The region in Exercise 75 is rotated about the -axis. Find the

volume of the resulting solid.

77. If is continuous on and , show that

78. We can extend our definition of average value of a continuous

function to an infinite interval by defining the average value

of on the interval to be

(a) Find the average value of on the interval .

(b) If and is divergent, show that the

average value of on the interval is , if

this limit exists.

(c) If is convergent, what is the average value of 

on the interval ?

(d) Find the average value of on the interval .

79. Use the substitution to show that

80. The magnitude of the repulsive force between two point

charges with the same sign, one of size 1 and the other of size

, is

where is the distance between the charges and is a con-

stant. The potential at a point due to the charge is

defined to be the work expended in bringing a unit charge to

from infinity along the straight line that joins and . Find

a formula for .V

PqP

qPV

«0r

F ­

q

4p«0r 2

q

y`

0
 

ln x

1 1 x 2
 dx ­ 0

u ­ 1yx

f0, `dy ­ sin x

fa, `d
fx`

a
 f sxd dx

lim xl` f sxdfa, `df

x`
a

 f sxd dxf sxd ù 0

f0, `dy ­ tan21x

lim
t 
l

 
`

 
1

t 2 a
 yt

a
 f sxd dx

fa, `df

y`

0
 f 9sxd dx ­ 2f s0d

lim xl` f sxd ­ 0f0, `df 9

y

x

y ­ cos2x, 0 ø x ø py2

x ­ 1y ­ 1y(2 2 sx )y ­ 1y(2 1 sx )

x ­ px ­ 0

y ­ cos2xy ­ cos x

y ­ 3y 2
2 x 2

­ 1

y`

1
 

x 3

x 5
1 2

 dx

67. The speedometer reading ( ) on a car was observed at 

1-minute intervals and recorded in the chart. Use Simpson’s

Rule to estimate the distance traveled by the car.

68. A population of honeybees increased at a rate of bees per

week, where the graph of is as shown. Use Simpson’s Rule

with six subintervals to estimate the increase in the bee popu-

lation during the first 24 weeks.

69. (a) If , use a graph to find an upper bound 

for .

(b) Use Simpson’s Rule with to approximate 

and use part (a) to estimate the error.

(c) How large should be to guarantee that the size of the

error in using is less than ?

70. Suppose you are asked to estimate the volume of a football.

You measure and find that a football is 28 cm long. You use a

piece of string and measure the circumference at its widest

point to be 53 cm. The circumference 7 cm from each end is

45 cm. Use Simpson’s Rule to make your estimate.

28 cm

0.00001Sn

n

xp
0

 f sxd dx

n ­ 10
| f s4dsxd|

f sxd ­ sinssin xdCAS

r

0 2420161284
(weeks)

t

4000

8000

12000

r

rstd

v
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t (min) (miyh) t (min) (miyh)

0 40 6 56

1 42 7 57

2 45 8 57

3 49 9 55

4 52 10 56

5 54

vv
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EXAMPLE 1

(a) Prove that if is a continuous function, then

(b) Use part (a) to show that

for all positive numbers .

SOLUTION

(a) At first sight, the given equation may appear somewhat baffling. How is it possible

to connect the left side to the right side? Connections can often be made through one of

the principles of problem solving: introduce something extra. Here the extra ingredient is

a new variable. We often think of introducing a new variable when we use the Substitu-

tion Rule to integrate a specific function. But that technique is still useful in the present

circumstance in which we have a general function .

Once we think of making a substitution, the form of the right side suggests that it

should be . Then . When , ; when , . So 

But this integral on the right side is just another way of writing . So the given

equation is proved.

(b) If we let the given integral be and apply part (a) with , we get

A well-known trigonometric identity tells us that and

, so we get

Notice that the two expressions for are very similar. In fact, the integrands have the

same denominator. This suggests that we should add the two expressions. If we do so,

we get

Therefore, . MI ­ py4

2I ­ ypy2

0
 
sinnx 1 cosnx

sinnx 1 cosnx
 dx ­ ypy2

0
 1 dx ­

p

2

I

I ­ ypy2

0
 

cosnx

cosnx 1 sinnx
 dx

cosspy2 2 xd ­ sin x

sinspy2 2 xd ­ cos x

I ­ ypy2

0
 

sinnx

sinnx 1 cosnx
 dx ­ ypy2

0
 

sinnspy2 2 xd

sinnspy2 2 xd 1 cosnspy2 2 xd
 dx

a ­ py2I

xa
0
 f sxd dx

 ya

0
 f sa 2 xd dx ­ 2y0

a
 f sud du ­ ya

0
 f sud du

u ­ 0x ­ au ­ ax ­ 0du ­ 2dxu ­ a 2 x

f

n

 ypy2

0
 

sinnx

sinnx 1 cosnx
 dx ­

p

4

ya

0
 f sxd dx ­ ya

0
 f sa 2 xd dx

f

P R O B L E M S  P L U S

N The principles of problem solving are

discussed on page 76.

N Cover up the solution to the example and try it

yourself first.

N The computer graphs in Figure 1 make it 

seem plausible that all of the integrals in the

example have the same value. The graph of each

integrand is labeled with the corresponding

value of .n

1

0

124
3

π
2

FIGURE 1
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; 1. Three mathematics students have ordered a 14-inch pizza. Instead of slicing it in the tradi-

tional way, they decide to slice it by parallel cuts, as shown in the figure. Being mathematics

majors, they are able to determine where to slice so that each gets the same amount of pizza.

Where are the cuts made?

2. Evaluate .

The straightforward approach would be to start with partial fractions, but that would be brutal.

Try a substitution.

3. Evaluate .

4. The centers of two disks with radius 1 are one unit apart. Find the area of the union of the two

disks.

5. An ellipse is cut out of a circle with radius . The major axis of the ellipse coincides with a

diameter of the circle and the minor axis has length . Prove that the area of the remaining

part of the circle is the same as the area of an ellipse with semiaxes and .

6. A man initially standing at the point walks along a pier pulling a rowboat by a rope of

length . The man keeps the rope straight and taut. The path followed by the boat is a curve

called a tractrix and it has the property that the rope is always tangent to the curve (see the

figure). 

(a) Show that if the path followed by the boat is the graph of the function , then

(b) Determine the function .

7. A function is defined by

Find the minimum value of .

8. If is a positive integer, prove that

9. Show that

Hint: Start by showing that if denotes the integral, then

Ik11 ­

2k 1 2

2k 1 3
 Ik

In

y1

0
 s1 2 x 2 dn dx ­

22nsn!d2

s2n 1 1d!

y1

0
 sln xdn dx ­ s21dn n! 

n

f

0 ø x ø 2pf sxd ­ yp

0
 cos t cossx 2 td dt

f

y ­ f sxd

f 9sxd ­

dy

dx
­

2sL 2 2 x 2 

x

y ­ f sxd

L

O

a 2 ba

2b

a

y1

0
 (s3 1 2 x7 

2 s7 1 2 x 3
  

) dx

y 1

x 7
2 x

 dx

PROBLEMS

P R O B L E M S  P L U S

FIGURE FOR PROBLEM 1
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y
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(L, 0)

(x, y)Lp
ie

r

FIGURE FOR PROBLEM 6
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; 10. Suppose that is a positive function such that is continuous. 

(a) How is the graph of related to the graph of ? What happens 

as ?

(b) Make a guess as to the value of the limit

based on graphs of the integrand.

(c) Using integration by parts, confirm the guess that you made in part (b). [Use the fact that,

since is continuous, there is a constant such that for .]

11. If , find .

; 12. Graph and use the graph to estimate the value of such that is a

maximum. Then find the exact value of that maximizes this integral.

13. The circle with radius 1 shown in the figure touches the curve twice. Find the area

of the region that lies between the two curves.

14. A rocket is fired straight up, burning fuel at the constant rate of kilograms per second. Let

be the velocity of the rocket at time and suppose that the velocity of the exhaust

gas is constant. Let be the mass of the rocket at time and note that decreases as

the fuel burns. If we neglect air resistance, it follows from Newton’s Second Law that

where the force . Thus

Let be the mass of the rocket without fuel, the initial mass of the fuel, and

. Then, until the fuel runs out at time , the mass is .

(a) Substitute into Equation 1 and solve the resulting equation for . Use the

initial condition to evaluate the constant.

(b) Determine the velocity of the rocket at time . This is called the burnout velocity.

(c) Determine the height of the rocket at the burnout time.

(d) Find the height of the rocket at any time .

15. Use integration by parts to show that, for all ,

16. Suppose , is continuous on and for all . Show that

Z y1

0
 f sxd dx Z ø
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2 ub 
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b
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t

x t11

t
 f sxd dxtf sxd ­ sinse x d
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 Hy1

0
 fbx 1 as1 2 xdg t dxJ1yt
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0
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n l `
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EXERCISES 6.5 N PAGE 445

1. 3. 5. 7.

9. (a) 1 (b) 2, 4 (c)

11. (a) (b)

(c)

15. 17. 19.

21.

CHAPTER 6 REVIEW N PAGE 446

Exercises

1. 3. 5. 7. 9.

11. 13.

15. (a) (b) (c)

17. (a) 0.38 (b) 0.87

19. Solid obtained by rotating the region ,

about the y-axis

21. Solid obtained by rotating the region ,

about the -axis

23. 36 25. 27.

29. (a) (b) 2.1 ft 31.

PROBLEMS PLUS N PAGE 448

1. (a) (b) 3.

5. (b) 0.2261 (c) 0.6736 m

(d) (i) (ii)

9.

11. (a) (c)

Advantage: the markings on the container are equally spaced.

13. 15.

CHAPTER 7

EXERCISES 7.1 N PAGE 457

1. 3.

5. 2sr 2 2dery2
1 C

1

5 x sin 5x 1
1

25 cos 5x 1 C
1

3 x 3 ln x 2
1

9 x 3
1 C

B ­ 16Ab ­ 2a

f syd ­ skAyspCd y 1y4V ­ xh
0
 p f f sydg2 dy

y ­
32

9 x 2

370py3 s < 6.5 min1ys105pd < 0.003 inys

32

27f sxd ­ s2xyp
 f std ­ 3t 2

f sxd8000py3 < 8378 ft-lb

3.2 J
125

3 s3 m3

x0 ø y ø 2 2 sin x

0 ø x ø p

0 ø x ø py2

0 ø y ø cos x

8py15py62py15

xpy3

2py3
 2p (py2 2 x)(cos2x 2

1

4) dx
4

3 p s2ah 1 h 2 d3y2

1656py564py15
4

3 1 4yp
7

12

8

3

5ys4pd < 0.4 L

6 kgyms50 1 28ypd8F < 598F38
1

3

<1.24, 2.814yp

2ys5pd1

10s1 2 e225 d45

28

8

3

7.

9.

11.

13.

15.

17.

19. 21. 23. 25.

27. 29.

31.

33. 35.

37.

39.

41.

43. (b)

45. (b) 51.

53. 55. 57.

59. 61. 63.

65. 2

EXERCISES 7.2 N PAGE 465

1. 3.

5.

7. 9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29.

31.

33.

35. 37.

39. 41.

43. 45.

47. 49.
1

10 tan5st 2d 1 C
1

2 sin 2x 1 C

1

8 sin 4u 2
1

12 sin 6u 1 C2
1

6 cos 3x 2
1

26 cos 13x 1 C

ln | csc x 2 cot x | 1 C
1

3 csc3
a 2

1

5 csc5
a 1 C

s3 2
1

3px sec x 2 ln | sec x 1 tan x | 1 C

1

6 tan6
u 1

1

4 tan4
u 1 C

1

4 sec4x 2 tan2x 1 ln | sec x | 1 C

1

3 sec3x 2 sec x 1 C

117

8

1

5 tan5t 1
2

3 tan3t 1 tan t 1 C

tan x 2 x 1 C
1

2 tan2x 1 C

ln | sin x | 1 2 sin x 1 C
1

2 cos2x 2 ln | cos x | 1 C

2

45ssin a s45 2 18 sin2 a 1 15 sin4 ad 1 Cpy16

3

2u 1 2 sin u 1
1

4 sin 2u 1 C3py8py4

1

3p
 sin3spxd 2

2

5p
 sin5spxd 1

1

7p
 sin7spxd 1 C

2
11

384

1

5 cos5x 2
1

3 cos3x 1 C

2 2 e2tst 2
1 2t 1 2d m9

2 ln 3 2
13

92pe

4 2 8yp1.0475, 2.8731; 2.1828
25

4 2
75

4 e22

xsln xd3
2 3xsln xd2

1 6x ln x 2 6x 1 C
2

3 , 
8

15

2
1

4 cos x sin3x 1
3

8 x 2
3

16 sin 2x 1 C

4

_4

2_2

F

f

1

3 x 2s1 1 x 2d3y2
2

2

15s1 1 x 2d5y2
1 C

7

21

23.5 1.5

ƒ F

s2x 1 1de x
1 C

1

2sx 2
2 1d lns1 1 xd 2

1

4 x 2
1

1

2 x 1
3

4 1 C

2
1

2 2 py42sx sin sx 1 2 cos sx 1 C

32

5 sln 2d2
2

64

25 ln 2 1
62

125

sin x sln sin x 2 1d 1 C
1

6 (p 1 6 2 3s3 )

1

4 2
3

4 e221

2 2
1

2 ln 21 2 1yepy3

1

13 e 2us2 sin 3u 2 3 cos 3ud 1 C

x sln xd2
2 2x ln x 1 2x 1 C

1

2 t tan 2t 2
1

4 ln |sec 2t | 1 C

t arctan 4t 2
1

8 lns1 1 16t 2d 1 C

1

2s2x 1 1d lns2x 1 1d 2 x 1 C

2
1

p
x 2 cos px 1

2

p
2
 x sin px 1

2

p
3
 cos px 1 C
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51. 53.

55. 0 57. 1 59. 0 61. 63.

65.

EXERCISES 7.3 N PAGE 472

1. 3.

5. 7.

9. 11.

13.

15. 17.

19. 21.

23.

25.

27.

29.

33. 37. 0.81, 2; 2.10

41. 43.

EXERCISES 7.4 N PAGE 481

1. (a) (b)

3. (a)

(b)

5. (a)

(b)

7.

9. 11.

13. 15.

17.

19.

21.

23.

25.

27.

29.

31.

33. 35.
1

16 ln | x | 2
1

32 lnsx 2
1 4d 1

1

8sx 2
1 4d

1 C
1

4 ln 
8

3

1

3 ln | x 2 1 | 2
1

6 lnsx 2
1 x 1 1d 2

1

s3
 tan21 

2x 1 1

s3
1 C

1

2 lnsx 2
1 2x 1 5d 1

3

2 tan21S x 1 1

2
D 1 C

1

2 lnsx 2
1 1d 1 (1ys2 ) tan21(xys2 ) 1 C

ln | x 2 1 | 2
1

2 lnsx 2
1 9d 2

1

3 tan21sxy3d 1 C

2 ln | x | 1 s1yxd 1 3 ln | x 1 2 | 1 C

1

2 x 2
2 2 lnsx 2

1 4d 1 2 tan21sxy2d 1 C

2
1

36
 ln | x 1 5 | 1

1

6
 

1

x 1 5
1

1

36
 ln | x 2 1 | 1 C

27

5  ln 2 2
9

5 ln 3 (or 
9

5 ln 
8

3)

7

6 1 ln 
2

3a ln | x 2 b | 1 C

1

2 ln 
3

22 ln | x 1 5 | 2 ln | x 2 2 | 1 C

x 1 6 ln | x 2 6 | 1 C

At 1 B

t 2
1 1

1
Ct 1 D

t 2
1 4

1
Et 1 F

st 2
1 4d2

1 1
A

x 2 1
1

B

x 1 1
1

Cx 1 D

x 2
1 1

A

x 1 3
1

B

sx 1 3d2
1

C

x 2 3
1

D

sx 2 3d2

A

x
1

B

x 2
1

C

x 3
1

Dx 1 E

x 2
1 4

A

x
1

B

x 1 1
1

C

sx 1 1d2

A

x 1 3
1

B

3x 1 1

2p
2Rr 2rsR 2 2 r 2 1 pr 2y2 2 R 2 arcsinsryRd

1

6 (s48 2 sec21 7)

1

4 sin21sx 2d 1
1

4 x 2s1 2 x 4 1 C

1

2sx 1 1dsx 2 1 2x 
2

1

2 ln |x 1 1 1 sx 2 1 2x | 1 C

sx 2 1 x 1 1 2
1

2 ln(sx 2 1 x 1 1 1 x 1
1

2) 1 C

9

2 sin21ssx 2 2dy3d 1
1

2sx 2 2ds5 1 4x 2 x 2 1 C

9

500pln | (s1 1 x 2 2 1)yx | 1 s1 1 x 2 1 C

sx 2 2 7 1 C
1

16pa4

 
1

6 sec21sxy3d 2 sx 2 2 9ys2x 2d 1 C

1

4 sin21s2xd 1
1

2 xs1 2 4x 2 1 Cln(sx 2 1 16 1 x) 1 C

2s25 2 x 2ys25xd 1 Cpy24 1 s3y8 2
1

4

1

3 sx 2
2 18dsx 2 1 9 1 Csx 2 2 9ys9xd 1 C

s ­ s1 2 cos3
vtdys3vd

p (2s2 2
5

2)p
2y4

ƒ

1

21

_2 2

F

π

_π

π_π

F

f

1

6 sin 3x 2
1

18 sin 9x 1 C
1

4 x 2
2

1

4 sinsx 2d cossx 2d 1 C
37.

39.

41. 43.

45.

47.

49.

51.

53.

55. 59.

61. 63.

65. , where 

67. (a) 

(b)

The CAS omits the absolute value signs and the constant of 

integration.

EXERCISES 7.5 N PAGE 488

1.

3.

5. 7.

9. 11.

13.

15.

17.

19. 21.

23. 25.

27. 29.

31.

33.

35. 0 37. 39.

41. 43.

45.

47.

49. 51.

53.
1

m
x 2 coshsmxd 2

2

m2
x sinhsmxd 1

2

m3
 coshsmxd 1 C

2ln Z s4x 2 1 1 1 1

2x
Z 1 Cln Z s4x 1 1 2 1

s4x 1 1 1 1
Z 1 C

ln | x 2 1 | 2 3sx 2 1d21
2

3

2 sx 2 1d22
2

1

3 sx 2 1d23
1 C

2
1

3 sx 3
1 1de2x

3

1 C

2

3s1 1 e xd3y2
1 Cu tan u 2

1

2 u
2

2 ln | sec u | 1 C

ln | sec u 2 1 | 2 ln | sec u | 1 Cpy8 2
1

4

2 sin21S x 1 1

2
D 1

x 1 1

2
s3 2 2x 2 x 2 1 C

sin21x 2 s1 2 x 2 1 C

15 1 7 ln 
2

7x 2 ln s1 1 e xd 1 C

3x 1
23

3  ln | x 2 4 | 2
5

3 ln | x 1 2 | 1 C
4097

45

sx 1 1d arctan sx 
2 sx 

1 Ce e
x

1 C

(or  
1

4 x 2
2

1

4 x sin 2x 2
1

8 cos 2x 1 C)

1

4 x 2
2

1

2 x sin x cos x 1
1

4 sin2x 1 C

xys1 2 x 2 1 C

1

8 cos8
u 2

1

6 cos6
u 1 C  (or  

1

4 sin4
u 2

1

3 sin6
u 1

1

8  sin8
u 1 C)

1

2 lnsx 2
2 4x 1 5d 1 tan21sx 2 2d 1 C

243

5  ln 3 2
242

25

epy4
2 e2py44 2 ln 9

sin x 1 ln | csc x 2 cot x | 1 C

sin x 1
1

3 sin3x 1 C

75,772

260,015s19
 tan21 

2x 1 1

s19
1 C

11,049

260,015
 lnsx 2

1 x 1 5d 1

3146

80,155
 ln | 3x 2 7 | 1

4822

4879
 ln | 5x 1 2 | 2

334

323
 ln | 2x 1 1 | 2

1

260,015
 
22,098x 1 48,935

x 2
1 x 1 5

24,110

4879
 

1

5x 1 2
2

668

323
 

1

2x 1 1
2

9438

80,155
 

1

3x 2 7
1

C < 10.23t ­ 2ln P 2
1

9 lns0.9P 1 900d 1 C

21 1
11

3  ln 24 ln 
2

3 1 2

1

5 ln Z 2 tansxy2d 2 1

tansxy2d 1 2
Z 1 C

1

2 ln Z x 2 2

x
Z 1 C

2
1

2 ln 3 < 20.55

(x 2
1

2) lnsx 2
2 x 1 2d 2 2x 1 s7 tan21S2x 2 1

s7
D 1 C

ln | tan t 1 1| 2 ln | tan t 1 2 | 1 C

ln F se x
1 2d2

e x
1 1

G 1 C

2sx 1 3s3 x 1 6s6 x 1 6 ln |s6 x 2 1 | 1 C

3

10 sx 2
1 1d5y3

2
3

4 sx 2
1 1d2y3

1 C2 1 ln 
25

9

ln Z sx 1 1 2 1

sx 1 1 1 1
Z 1 C

7

8s2 tan21S x 2 2

s2
D 1

3x 2 8

4sx 2
2 4x 1 6d

1 C
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55.

57.

59. 61.

63. 65.

67.

69.

71.

73.

75.

77.

79. 81.

EXERCISES 7.6 N PAGE 493

1.

3.

5. 7.

9. 11.

13.

15.

17.

19.

21.

23.

25.

27.

29. 31.

35.

37.

39.

41.

43. (a) ; 

both have domain 

45. ;

max. at , min. at 1; IP at , 0, and 1.7

4

f

F

24

21.1

0.6

21.721

Fsxd ­
1

2 lnsx 2
2 x 1 1d 2

1

2 lnsx 2
1 x 1 1d

s21, 0d < s0, 1d

2ln Z 1 1 s1 2 x 2 

x
Z 1 C

2ln | cos x | 2
1

2 tan2x 1
1

4 tan4x 1 C

1

10 s1 1 2xd5y2
2

1

6 s1 1 2xd3y2
1 C

1

4 xsx 2
1 2dsx 2 1 4 

2 2 ln(sx 2 1 4 
1 x) 1 C

1

3 tan x sec2x 1
2

3 tan x 1 C

2p
21

5 ln | x 5
1 sx 10 2 2 | 1 C

se 2x 2 1 2 cos21se2x d 1 C

1

2sln xds4 1 sln xd2 1 2 ln[ln x 1 s4 1 sln xd2] 1 C

1

4 tan x sec3x 1
3

8 tan x sec x 1
3

8 ln | sec x 1 tan x | 1 C

1

2s3
 ln Z e x

1 s3

e x
2 s3

Z 1 C

1

9 sin3x f3 lnssin xd 2 1g 1 C

2
1

12 s6 1 4y 2 4y 2d3y2
1 C

2y 2 1

8
s6 1 4y 2 4y 2 1

7

8 sin21S2y 2 1

s7
D

1

2 se2x
1 1d arctanse xd 2

1

2 e x
1 C

2
1

2 tan2s1yzd 2 ln |coss1yzd | 1 C

e 2 22s4x 2 1 9ys9xd 1 C

1

2p
 tan2spxd 1

1

p
 ln | cosspxd | 1 Cpy4

1

2p
 secspxd tanspxd 1

1

2p
 ln | secspxd 1 tanspxd | 1 C

s21yxds7 2 2x 2 2 s2 sin21(s2xys7) 1 C

xe x
2

1 C
1

3 x sin3x 1
1

3 cos x 2
1

9 cos3x 1 C

2

3 tan21sx 3y2d 1 C

2sx 2 2ds1 1 e x 
1 2 ln 

s1 1 e x 
1 1

s1 1 e x 
2 1

1 C

1

8 ln | x 2 2 | 2
1

16 lnsx 2
1 4d 2

1

8 tan21sxy2d 1 C

2s1 2 x 2 
1

1

2 sarcsin xd2
1 C

e x
2 lns1 1 e x d 1 C

s2 2 2ys3 1 ln (2 1 s3 ) 2 ln (1 1 s2 )

2

3 fsx 1 1d3y2
2 x 3y2 g 1 C2tan21scos2xd 1 C

2(x 2 2sx 1 2)esx
1 Csinssin xd 2

1

3 sin3ssin xd 1 C

3

7 sx 1 cd7y3
2

3

4 csx 1 cd4y3
1 C

2 ln sx 
2 2 ln(1 1 sx ) 1 C 47.

;

max. at , min. at 0; IP at , , and 2.5

EXERCISES 7.7 N PAGE 505

1. (a)

(b) is an underestimate, and are overestimates.

(c) (d)

3. (a) (underestimate)

(b) (overestimate)

5. (a)

(b)

7. (a) 2.413790 (b) 2.411453 (c) 2.412232

9. (a) 0.146879 (b) 0.147391 (c) 0.147219

11. (a) 0.451948 (b) 0.451991 (c) 0.451976

13. (a) 4.513618 (b) 4.748256 (c) 4.675111

15. (a) (b) (c)

17. (a) 1.064275 (b) 1.067416 (c) 1.074915

19. (a)

(b) , 

(c) for , for 

21. (a) , ;

, ; 

, 

(b) , 

(c) for , for , for 

23. (a) 2.8 (b) 7.954926518 (c) 0.2894

(d) 7.954926521 (e) The actual error is much smaller.

(f ) 10.9 (g) 7.953789422 (h) 0.0593

(i) The actual error is smaller. ( j)

25.

Observations are the same as after Example 1.

n ù 50

Snn ­ 22Mnn ­ 360Tnn ­ 509
| ES | ø 0.000170| ET | ø 0.025839, | EM | ø 0.012919

ES < 20.000110S10 < 2.000110

EM < 20.008248M10 < 2.008248

ET < 0.016476T10 < 1.983524

Mnn ­ 50Tnn ­ 71
| EM | ø 0.0039| ET | ø 0.0078

T8 < 0.902333, M8 < 0.905620

20.52612320.54332120.495333

5.869247,  E S < 0.000357

5.932957,  EM < 20.063353

T4 , I , M4

M4 < 0.908907

T4 < 0.895759

Ln , Tn , I , Mn , RnT2 ­ 9 , I

M2R2L2

L2 ­ 6, R2 ­ 12, M2 < 9.6

0.04

π
0

F

ƒ

py20.7p

1
1

128 sin x cos3x 1
3

256 sin x cos x 1
3

256 x

Fsxd ­ 2
1

10 sin3x cos7x 2
3

80 sin x cos7x 1
1

160 sin x cos5x

n

5 0.742943 1.286599 1.014771 0.992621

10 0.867782 1.139610 1.003696 0.998152

20 0.932967 1.068881 1.000924 0.999538

MnTnRnLn

n

5 0.257057 20.286599 20.014771 0.007379

10 0.132218 20.139610 20.003696 0.001848

20 0.067033 20.068881 20.000924 0.000462

EMETEREL
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27.

Observations are the same as after Example 1.

29. (a) 19.8 (b) 20.6 (c)

31. (a) 23.44 (b) 33.

35. 37. 828 39. 6.0 41. 59.4

43.

EXERCISES 7.8 N PAGE 515

Abbreviations: C, convergent; D, divergent

1. (a) Infinite interval (b) Infinite discontinuity

(c) Infinite discontinuity (d) Infinite interval

3. ; 0.495, 0.49995, 0.4999995; 0.5

5. 7. D 9. 11. D 13. 0 15. D

17. D 19. 21. D 23.

25. 27. D 29. 31. D 33.

35. D 37. 39.

41. e 43.

45. Infinite area

47. (a)

It appears that the integral is convergent.

20

0
π
2

y=sec@ x

0.5

_7 7

2
9 y=

2
≈+9

0x

y

0

x 5 1
y 5 e x

1

2py3

8
3 ln 2 2

8
922ye

75
4

32
3

1
2

py9
1
25

2e221
12

1
2 2 1ys2t 2 d

0 x

y

1

1 20.5 1.5

10,177 megawatt-hours

37.73 ftys0.3413

20.53

(c)

49. C 51. D 53. D 55. 57.

59. 65.

67. (a)

(b) The rate at which the fraction increases as t increases

(c) 1; all bulbs burn out eventually

69. 1000

71. (a) (b)

(c)

77. 79. No

CHAPTER 7 REVIEW N PAGE 518

True-False Quiz

1. False 3. False 5. False 7. False

9. (a) True (b) False 11. False 13. False

Exercises

1. 3. 5.

7. 9.

11. 13.

15.

17.

19.

21.

23.

25.

27. 29. 0 31.

33.

35. 37.

39. 41. 43. D

45. 47. 49.

51.

53. 0

55.

ln | 2x 2 1 1 s4x 2 2 4x 2 3 | 1 C

1
4s2x 2 1ds4x 2 2 4x 2 3 2

sx 1 1d lnsx 2
1 2x 1 2d 1 2 arctansx 1 1d 2 2x 1 C

py42
4
34 ln 4 2 8

1
36

1
8 e 2

1
4

1
2 sin 2x 2

1
8 cos 4x 1 C4s1 1 sx 1 C

x

s4 2 x 2 
2 sin21S x

2
D 1 C

6 2
3
2p

2
5

3
2 lnsx 2

1 1d 2 3 tan21x 1 s2 tan21(xys2 ) 1 C

ln Z sx 2 1 1 2 1

x
Z 1 C

ln | x 2 2 1 sx 2 2 4x | 1 C

1
18 lns9x 2

1 6x 1 5d 1  
1
9 tan21[ 1

2 (3x 1 1)] 1 C

x sec x 2 ln | sec x 1 tan x | 1 C

2
1
2 ln | x | 1

3
2 ln | x 1 2 | 1 C

3es
3 x (s3 x 2

 

 2 2s3 x 
1 2) 1 Cs3 2

1
3p

64
5  ln 4 2

124
252cossln td 1 C

2
15ln 25 1 10 ln 

2
3

C ­ 1; ln 2

Fssd ­ 1ys 2, s . 0

Fssd ­ 1yss 2 1d, s . 1Fssd ­ 1ys, s . 0

Fstd

1

700 t0
(in hours)

y

y=F(t)

s2GMyRp . 21, 21ysp 1 1d2

p , 1, 1ys1 2 pdp

1

20.1

1 10

©=
sin@ x
≈

ƒ=
1

≈

t

2 0.447453

5 0.577101

10 0.621306

100 0.668479

1,000 0.672957

10,000 0.673407

y t

1
 fssin2xdyx 2 g dx

n

6 6.695473 6.252572 6.403292

12 6.474023 6.363008 6.400206

SnMnTn

n

6 20.295473 0.147428 20.003292

12 20.074023 0.036992 20.000206

ESEMET
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57.

61. No

63. (a) 1.925444 (b) 1.920915 (c) 1.922470

65. (a) 0.01348, (b) ,

67. 8.6 mi

69. (a) 3.8 (b) 1.7867, 0.000646 (c)

71. C 73. 2 75.

PROBLEMS PLUS N PAGE 521

1. About 1.85 inches from the center 3. 0

7. 11.

13.

CHAPTER 8

EXERCISES 8.1 N PAGE 530

1. 3. 5.

7. 9. 11.

13. 15.

17.

19. 21. 23. 5.115840

25. 1.569619

27. (a), (b) ,

,

(c) (d) 7.7988

29.

31. 6

33. 35.

37. 209.1 m 39. 29.36 in. 41. 12.4

EXERCISES 8.2 N PAGE 537

1. (a) (b) 

3. (a) 

(b) 

5. 7.
98
3 p

1
27p (145s145 2 1)

y1

0
 2pxÎ1 1

1

s1 1 x
2d2  dx

y1

0
 2p tan21

xÎ1 1
1

s1 1 x
2d2  dx

x1
0
 2pxs1 1 16x 6 dxx1

0
 2px

4s1 1 16x 6 dx

2s2 (s1 1 x 2 1)ssxd ­
2
27 [s1 1 9xd3y2

2 10s10 ]

s5 2 ln(1
2 (1 1 s5 )) 2 s2 1 ln(1 1 s2 )

x4
0
 s1 1 f4s3 2 xdys3s4 2 xd2y3 dg2 dx

L4 < 7.50

L2 < 6.43

L1 ­ 4

46
3s2 1 ln(1 1 s2 )

s1 1 e 2 2 s2 1 ln(s1 1 e 2 2 1) 2 1 2 ln(s2 2 1)
ln 3 2

1
2ln(s2 1 1)

32
3

1261
240

2
243 (82s82 2 1)

y4

1
 s9y 4 1 6y 2 1 2 dyx2p

0
 s1 1 sin2 x dx4s5

2 2 sin21(2ys5 )
sb ba2a d1ysb2ade21f spd ­ 2py2

3
16p

2

n ù 30

n ù 2600.00674n ù 368

1
2 sin xs4 1 sin2x 

1 2 ln(sin x 1 s4 1 sin2x ) 1 C 9. 11.

13. 15.

17. 19.

21.

23.

27. (a) (b)

29. (a)

(b)

31. 33.

EXERCISES 8.3 N PAGE 547

1. (a) (b) 1875 lb (c) 562.5 lb

3. 6000 lb 5. 7.

9. 11. 13.

15. (a) 314 N (b) 353 N

17. (a) (b)

(c) (d)

19. 21. 23.

25. 27. 29.

31. 33. (2, 0)

35. 37. 41.

45.

EXERCISES 8.4 N PAGE 553

1. $38,000 3. $43,866,933.33 5. $407.25

7. $12,000 9. 3727; $37,753

11. 13.

15.

17. 19.

EXERCISES 8.5 N PAGE 560

1. (a) The probability that a randomly chosen tire will have a 

lifetime between 30,000 and 40,000 miles

(b) The probability that a randomly chosen tire will have a 

lifetime of at least 25,000 miles

3. (a) for all x and 

(b)

5. (a) (b)

7. (a) for all x and (b) 5

11. (a) (b) (c) If you

aren’t served within 10 minutes, you get a free hamburger.

13.

15. (a) (b)

17. <0.9545

<5.21%0.0668

<44%

1 2 e22y2.5 < 0.55e24y2.5 < 0.20

x`
2`

 f sxd dx ­ 1f sxd ù 0

1
21yp

1 2
3
8s3 < 0.35

x`
2`

 f sxd dx ­ 1f sxd ù 0

5.77 Lymin6.60 Lymin

1.19 3 1024 cm3ys

s1 2 kdsb 22k
2 a 22kd

s2 2 kdsb12k
2 a12kd

2
3 (16s2 2 8) < $9.75 million

1
3 pr 2h

(0, 
1

12 )s0.781, 1.330d60; 160; ( 8
3, 1)

S ps2 2 4

4 (s2 2 1)
, 

1

4 (s2 2 1)D
( 9

20 , 
9

20)S 1

e 2 1
, 

e 1 1

4
Ds0, 1.6d

10; 1; ( 1
21 , 

10
21)230; 

23
72.5 3 10 5 N

3.03 3 105 lb4.88 3 104 lb

5.06 3 104 lb5.63 3 103 lb

5.27 3 105 N
2
3dah1.2 3 10 4 lb

9.8 3 103 N6.7 3 10 4 N

187.5 lbyft2

4p
2r 2xb

a
 2pfc 2 f sxdgs1 1 f f 9sxdg2 dx

2pFa2
1

ab 2 sin21(sb 2 2 a 2yb)
sb 2 2 a 2 G

2pFb 2
1

a 2b sin21(sa 2 2 b 2ya)
sa 2 2 b 2 G

56
45ps3a 21

3pa 2

1
6p [ln(s10 1 3) 1 3s10 ]

1
4p [4 ln(s17 1 4) 2 4 ln(s2 1 1) 2 s17 1 4s2 ]

13.5272969.023754

pa 21
27p (145s145 2 10s10 )

21
2 p2s1 1 p 2 1 s2ypd ln(p 1 s1 1 p 2 )
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