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We have already investigated some of the applications of derivatives, but now that we

know the differentiation rules we are in a better position to pursue the applications of

differentiation in greater depth. Here we learn how derivatives affect the shape of a

graph of a function and, in particular, how they help us locate maximum and minimum

values of functions. Many practical problems require us to minimize a cost or maximize

an area or somehow find the best possible outcome of a situation. In particular, we will

be able to investigate the optimal shape of a can and to explain the location of rainbows

in the sky.

Calculus reveals all the important aspects of graphs of functions.

Members of the family of functions are illustrated.f �x� � cx � sin x
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MAXIMUM AND MINIMUM VALUES

Some of the most important applications of differential calculus are optimization prob-

lems, in which we are required to find the optimal (best) way of doing something. Here are

examples of such problems that we will solve in this chapter:

� What is the shape of a can that minimizes manufacturing costs?

� What is the maximum acceleration of a space shuttle? (This is an important 

question to the astronauts who have to withstand the effects of acceleration.)

� What is the radius of a contracted windpipe that expels air most rapidly during 

a cough?

� At what angle should blood vessels branch so as to minimize the energy expended

by the heart in pumping blood?

These problems can be reduced to finding the maximum or minimum values of a function.

Let’s first explain exactly what we mean by maximum and minimum values.

DEFINITION A function has an absolute maximum (or global maximum)

at if for all in , where is the domain of . The number is

called the maximum value of on . Similarly, has an absolute minimum at 

if for all in and the number is called the minimum value of 

on . The maximum and minimum values of are called the extreme values of .

Figure 1 shows the graph of a function with absolute maximum at and absolute 

minimum at . Note that is the highest point on the graph and is the low-

est point. If we consider only values of near [for instance, if we restrict our attention

to the interval ], then is the largest of those values of and is called a local

maximum value of . Likewise, is called a local minimum value of because

for near [in the interval , for instance]. The function also has a local

minimum at . In general, we have the following definition.

DEFINITION A function has a local maximum (or relative maximum) at 

if when x is near c. [This means that for all in some

open interval containing c.] Similarly, has a local minimum at if 

when is near c.

EXAMPLE 1 The function takes on its (local and absolute) maximum value

of 1 infinitely many times, since for any integer and for

all . Likewise, is its minimum value, where is any integer. M

EXAMPLE 2 If , then because for all . Therefore 

is the absolute (and local) minimum value of . This corresponds to the fact that the

origin is the lowest point on the parabola . (See Figure 2.) However, there is no

highest point on the parabola and so this function has no maximum value. M

EXAMPLE 3 From the graph of the function , shown in Figure 3, we see that

this function has neither an absolute maximum value nor an absolute minimum value. In

fact, it has no local extreme values either. M
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EXAMPLE 4 The graph of the function

is shown in Figure 4. You can see that is a local maximum, whereas the

absolute maximum is . (This absolute maximum is not a local maximum

because it occurs at an endpoint.) Also, is a local minimum and 

is both a local and an absolute minimum. Note that has neither a local nor an absolute

maximum at . M

We have seen that some functions have extreme values, whereas others do not. The 

following theorem gives conditions under which a function is guaranteed to possess

extreme values.

THE EXTREME VALUE THEOREM If is continuous on a closed interval ,

then attains an absolute maximum value and an absolute minimum value

at some numbers and in .

The Extreme Value Theorem is illustrated in Figure 5. Note that an extreme value can

be taken on more than once. Although the Extreme Value Theorem is intuitively very plau-

sible, it is difficult to prove and so we omit the proof.

Figures 6 and 7 show that a function need not possess extreme values if either hypoth-

esis (continuity or closed interval) is omitted from the Extreme Value Theorem.

The function f whose graph is shown in Figure 6 is defined on the closed interval [0, 2]

but has no maximum value. (Notice that the range of f is [0, 3). The function takes on val-

ues arbitrarily close to 3, but never actually attains the value 3.) This does not contradict

the Extreme Value Theorem because f is not continuous. [Nonetheless, a discontinuous

function could have maximum and minimum values. See Exercise 13(b).]
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The function t shown in Figure 7 is continuous on the open interval (0, 2) but has nei-

ther a maximum nor a minimum value. [The range of t is . The function takes on

arbitrarily large values.] This does not contradict the Extreme Value Theorem because the

interval (0, 2) is not closed.

The Extreme Value Theorem says that a continuous function on a closed interval has a

maximum value and a minimum value, but it does not tell us how to find these extreme

values. We start by looking for local extreme values.

Figure 8 shows the graph of a function with a local maximum at and a local minimum

at . It appears that at the maximum and minimum points the tangent lines are horizontal

and therefore each has slope 0. We know that the derivative is the slope of the tangent line,

so it appears that and . The following theorem says that this is always

true for differentiable functions.

FERMAT’S THEOREM If has a local maximum or minimum at , and if 

exists, then .

PROOF Suppose, for the sake of definiteness, that has a local maximum at c. Then,

according to Definition 2, if is sufficiently close to . This implies that if 

is sufficiently close to 0, with being positive or negative, then

and therefore

We can divide both sides of an inequality by a positive number. Thus, if and is

sufficiently small, we have

Taking the right-hand limit of both sides of this inequality (using Theorem 2.3.2), we get

But since exists, we have

and so we have shown that .

If , then the direction of the inequality (5) is reversed when we divide by :

So, taking the left-hand limit, we have
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N Fermat’s Theorem is named after Pierre 

Fermat (1601–1665), a French lawyer who took

up mathematics as a hobby. Despite his amateur

status, Fermat was one of the two inventors of

analytic geometry (Descartes was the other). His

methods for finding tangents to curves and maxi-

mum and minimum values (before the invention

of limits and derivatives) made him a forerunner

of Newton in the creation of differential calculus.

0 xc d

y

{c, f (c)}

{d, f (d)}

FIGURE 8



We have shown that and also that . Since both of these inequalities

must be true, the only possibility is that .

We have proved Fermat’s Theorem for the case of a local maximum. The case of a

local minimum can be proved in a similar manner, or we could use Exercise 76 to

deduce it from the case we have just proved (see Exercise 77). M

The following examples caution us against reading too much into Fermat’s Theorem.

We can’t expect to locate extreme values simply by setting and solving for .

EXAMPLE 5 If , then , so . But has no maximum or

minimum at 0, as you can see from its graph in Figure 9. (Or observe that for

but for .) The fact that simply means that the curve 

has a horizontal tangent at . Instead of having a maximum or minimum at ,

the curve crosses its horizontal tangent there. M

EXAMPLE 6 The function has its (local and absolute) minimum value at 0,

but that value can’t be found by setting because, as was shown in Example 5

in Section 2.8, does not exist. (See Figure 10.) M

| WARNING Examples 5 and 6 show that we must be careful when using Fermat’s 

Theorem. Example 5 demonstrates that even when there need not be a maximum

or minimum at . (In other words, the converse of Fermat’s Theorem is false in general.)

Furthermore, there may be an extreme value even when does not exist (as in 

Example 6).

Fermat’s Theorem does suggest that we should at least start looking for extreme values

of at the numbers where or where does not exist. Such numbers are

given a special name.

DEFINITION A critical number of a function is a number in the domain of

such that either or does not exist.

EXAMPLE 7 Find the critical numbers of .

SOLUTION The Product Rule gives

[The same result could be obtained by first writing .] Therefore

if , that is, , and does not exist when . Thus the

critical numbers are and . M

In terms of critical numbers, Fermat’s Theorem can be rephrased as follows (compare

Definition 6 with Theorem 4):

If f has a local maximum or minimum at c, then c is a critical number of f.7
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To find an absolute maximum or minimum of a continuous function on a closed interval,

we note that either it is local [in which case it occurs at a critical number by (7)] or it occurs

at an endpoint of the interval. Thus the following three-step procedure always works.

THE CLOSED INTERVAL METHOD To find the absolute maximum and minimum

values of a continuous function on a closed interval :

1. Find the values of at the critical numbers of in .

2. Find the values of at the endpoints of the interval.

3. The largest of the values from Steps 1 and 2 is the absolute maximum value; 

the smallest of these values is the absolute minimum value.

EXAMPLE 8 Find the absolute maximum and minimum values of the function

SOLUTION Since is continuous on , we can use the Closed Interval Method:

Since exists for all , the only critical numbers of occur when , that is,

or . Notice that each of these critical numbers lies in the interval .

The values of at these critical numbers are

The values of at the endpoints of the interval are

Comparing these four numbers, we see that the absolute maximum value is 

and the absolute minimum value is .

Note that in this example the absolute maximum occurs at an endpoint, whereas the

absolute minimum occurs at a critical number. The graph of is sketched in Figure 12. M

If you have a graphing calculator or a computer with graphing software, it is possible

to estimate maximum and minimum values very easily. But, as the next example shows,

calculus is needed to find the exact values.

EXAMPLE 9

(a) Use a graphing device to estimate the absolute minimum and maximum values of

the function .

(b) Use calculus to find the exact minimum and maximum values.

SOLUTION

(a) Figure 13 shows a graph of in the viewing rectangle by . By mov-

ing the cursor close to the maximum point, we see that the -coordinates don’t change

very much in the vicinity of the maximum. The absolute maximum value is about 6.97

and it occurs when . Similarly, by moving the cursor close to the minimum point,

we see that the absolute minimum value is about and it occurs when . It is x � 1.0�0.68
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possible to get more accurate estimates by zooming in toward the maximum and mini-

mum points, but instead let’s use calculus.

(b) The function is continuous on . Since ,

we have when and this occurs when or . The values

of at these critical points are

and

The values of at the endpoints are 

Comparing these four numbers and using the Closed Interval Method, we see that the

absolute minimum value is and the absolute maximum value is

. The values from part (a) serve as a check on our work. M

EXAMPLE 10 The Hubble Space Telescope was deployed on April 24, 1990, by the space

shuttle Discovery. A model for the velocity of the shuttle during this mission, from liftoff

at until the solid rocket boosters were jettisoned at , is given by

(in feet per second). Using this model, estimate the absolute maximum and minimum

values of the acceleration of the shuttle between liftoff and the jettisoning of the boosters.

SOLUTION We are asked for the extreme values not of the given velocity function, but

rather of the acceleration function. So we first need to differentiate to find the acceleration:

We now apply the Closed Interval Method to the continuous function a on the interval

. Its derivative is

The only critical number occurs when :

Evaluating at the critical number and at the endpoints, we have
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(c) Sketch the graph of a function that has a local maximum 

at 2 and is not continuous at 2.

12. (a) Sketch the graph of a function on [�1, 2] that has an

absolute maximum but no local maximum.

(b) Sketch the graph of a function on [�1, 2] that has a local

maximum but no absolute maximum.

(a) Sketch the graph of a function on [�1, 2] that has an

absolute maximum but no absolute minimum.

(b) Sketch the graph of a function on [�1, 2] that is discontin-

uous but has both an absolute maximum and an absolute

minimum.

14. (a) Sketch the graph of a function that has two local maxima,

one local minimum, and no absolute minimum.

(b) Sketch the graph of a function that has three local minima,

two local maxima, and seven critical numbers.

15–28 Sketch the graph of by hand and use your sketch to 

find the absolute and local maximum and minimum values of .

(Use the graphs and transformations of Sections 1.2 and 1.3.)

15. ,

16. ,

17. ,

18. ,

19. ,

20. ,

21. ,

22. ,

23. ,

24. ,

26.

27.

28.

29–44 Find the critical numbers of the function.

29. 30.

31. 32.

33. 34.

35. 36. h�p� �
p � 1

p2 � 4
t�y� �

y � 1

y 2 � y � 1

t�t� � � 3t � 4 �s�t� � 3t 4 � 4t 3 � 6t 2

f �x� � x 3 � x 2 � xf �x� � x 3 � 3x 2 � 24x

f �x� � x 3 � x 2 � xf �x� � 5x 2 � 4x

f �x� � �4 � x2

2x � 1

if �2 � x � 0

if 0 � x � 2

f �x� � �1 � x

2x � 4

if 0 � x � 2

if 2 � x � 3

f �x� � e x

f �x� � 1 � sx 
25.

�3�2 � t � 3�2f �t� � cos t

0 � x � 2f �x� � ln x

�2 � x � 5f �x� � 1 � �x � 1�2

�3 � x � 2f �x� � x 2

0 � x � 2f �x� � x 2

0 � x � 2f �x� � x 2

0 � x � 2f �x� � x 2

0 � x � 2f �x� � x 2

x � 5f �x� � 3 � 2x

x � 1f �x� � 8 � 3x

f

f

13.

1. Explain the difference between an absolute minimum and a

local minimum.

2. Suppose is a continuous function defined on a closed 

interval .

(a) What theorem guarantees the existence of an absolute max-

imum value and an absolute minimum value for ?

(b) What steps would you take to find those maximum and

minimum values?

3–4 For each of the numbers a, b, c, d, r, and s, state whether the

function whose graph is shown has an absolute maximum or min-

imum, a local maximum or minimum, or neither a maximum 

nor a minimum.

3. 4.

5–6 Use the graph to state the absolute and local maximum and

minimum values of the function.

5. 6.

7–10 Sketch the graph of a function that is continuous on 

[1, 5] and has the given properties.

7. Absolute minimum at 2, absolute maximum at 3, 

local minimum at 4

8. Absolute minimum at 1, absolute maximum at 5, 

local maximum at 2, local minimum at 4

Absolute maximum at 5, absolute minimum at 2, 

local maximum at 3, local minima at 2 and 4

10. has no local maximum or minimum, but 2 and 4 are critical

numbers

(a) Sketch the graph of a function that has a local maximum 

at 2 and is differentiable at 2.

(b) Sketch the graph of a function that has a local maximum 

at 2 and is continuous but not differentiable at 2.

11.

f

9.

f

y

0 x

y=©

1

1

y

0 x

y=ƒ
1

1

x

y

0 a b c d r sx

y

0 a b c d r s

f

�a, b�
f

EXERCISES4.1



278 | | | | CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

68.

69. Between and , the volume (in cubic centimeters)

of 1 kg of water at a temperature is given approximately by

the formula

Find the temperature at which water has its maximum

density.

70. An object with weight is dragged along a horizontal plane

by a force acting along a rope attached to the object. If the

rope makes an angle with the plane, then the magnitude of

the force is

where is a positive constant called the coefficient of friction

and where . Show that is minimized when

.

71. A model for the US average price of a pound of white sugar

from 1993 to 2003 is given by the function

where is measured in years since August of 1993. Estimate

the times when sugar was cheapest and most expensive dur-

ing the period 1993–2003.

; 72. On May 7, 1992, the space shuttle Endeavour was launched 

on mission STS-49, the purpose of which was to install a new

perigee kick motor in an Intelsat communications satellite.

The table gives the velocity data for the shuttle between

liftoff and the jettisoning of the solid rocket boosters.

(a) Use a graphing calculator or computer to find the cubic

polynomial that best models the velocity of the shuttle for

the time interval . Then graph this polynomial.

(b) Find a model for the acceleration of the shuttle and use it

to estimate the maximum and minimum values of the

acceleration during the first 125 seconds.

t � �0, 125�

t

� 0.03629t 2 � 0.04458t � 0.4074

 S�t� � �0.00003237t 5 � 0.0009037t 4 � 0.008956t 3

tan � � �

F0 � � � �2

�

F �
�W

� sin � � cos �

�

W

V � 999.87 � 0.06426T � 0.0085043T 2 � 0.0000679T 3

T

V30�C0�C

f �x� � x � 2 cos x,  �2 � x � 0

f �x� � xsx � x 2 67.37. 38.

40.

42.

43. 44.

; 45–46 A formula for the derivative of a function is given. How

many critical numbers does have?

45. 46.

47–62 Find the absolute maximum and absolute minimum values

of on the given interval.

47. ,

48. ,

,

50. ,

51. ,

52. ,

53. ,

54. ,

55. ,

56. ,

57. ,

58. ,

59. ,

60. ,

61.

62.

63. If and are positive numbers, find the maximum value 

of , .

; 64. Use a graph to estimate the critical numbers of

correct to one decimal place.

; 65–68

(a) Use a graph to estimate the absolute maximum and minimum

values of the function to two decimal places.

(b) Use calculus to find the exact maximum and minimum

values.

65.

66. f �x� � ex
3�x, �1 � x � 0

f �x� � x5 � x3 � 2,  �1 � x � 1

f �x� � � x 3 � 3x 2 � 2 �

0 � x � 1f �x� � x a�1 � x�b

ba

f �x� � e�x � e�2x, �0, 1�

f �x� � ln�x 2 � x � 1�, ��1, 1�

[ 1

2 , 2]f �x� � x � ln x

��1, 4�f �x� � xe�x
2�8

��4, 7�4�f �t� � t � cot �t�2�

�0,�2�f �t� � 2cos t � sin 2t

�0, 8�f �t� � s3 t �8 � t�

��1, 2�f �t� � ts4 � t 2 

��4, 4�f �x� �
x2 � 4

x2 � 4

�0, 2�f �x� �
x

x 2 � 1

��1, 2�f �x� � �x2 � 1�3

��2, 3�f �x� � x 4 � 2x 2 � 3

��1, 4�f �x� � x 3 � 6x 2 � 9x � 2

��2, 3�f �x� � 2x 3 � 3x 2 � 12x � 149.

�0, 3�f �x� � x 3 � 3x � 1

�0, 3�f �x� � 3x 2 � 12x � 5

f

f ��x� �
100 cos2 x

10 � x 2
� 1f ��x� � 5e�0.1 � x � sinx � 1

f

f

f �x� � x �2 ln xf �x� � x 2e�3x

t��� � 4� � tan �f ��� � 2 cos � � sin2�41.

t�x� � x 1�3 � x�2�3F�x� � x 4�5�x � 4�2 39.

t�x� � s1 � x 2 h�t� � t 3�4 � 2 t 1�4

Event Time (s) Velocity (ft�s)

Launch 0 0

Begin roll maneuver 10 185

End roll maneuver 15 319

Throttle to 89% 20 447

Throttle to 67% 32 742

Throttle to 104% 59 1325

Maximum dynamic pressure 62 1445

Solid rocket booster separation 125 4151
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(b) What is the absolute maximum value of on the interval?

(c) Sketch the graph of on the interval .

74. Show that 5 is a critical number of the function

but does not have a local extreme value at 5.

75. Prove that the function

has neither a local maximum nor a local minimum.

76. If has a minimum value at , show that the function

has a maximum value at .

77. Prove Fermat’s Theorem for the case in which has a local

minimum at .

A cubic function is a polynomial of degree 3; that is, it has the

form , where .

(a) Show that a cubic function can have two, one, or no critical

number(s). Give examples and sketches to illustrate the

three possibilities.

(b) How many local extreme values can a cubic function have?

a � 0f �x� � ax 3 � bx 2 � cx � d

78.

c

f

ct�x� � �f �x�
cf

f �x� � x 101 � x 51 � x � 1

t

t�x� � 2 � �x � 5�3

�0, r0 �v

v73. When a foreign object lodged in the trachea (windpipe) forces

a person to cough, the diaphragm thrusts upward causing an

increase in pressure in the lungs. This is accompanied by a

contraction of the trachea, making a narrower channel for the

expelled air to flow through. For a given amount of air to

escape in a fixed time, it must move faster through the

narrower channel than the wider one. The greater the velocity

of the airstream, the greater the force on the foreign object.

X rays show that the radius of the circular tracheal tube

contracts to about two-thirds of its normal radius during a

cough. According to a mathematical model of coughing, the

velocity of the airstream is related to the radius of the

trachea by the equation

where is a constant and is the normal radius of the trachea.

The restriction on is due to the fact that the tracheal wall stiff-

ens under pressure and a contraction greater than is

prevented (otherwise the person would suffocate).

(a) Determine the value of in the interval at which 

has an absolute maximum. How does this compare with

experimental evidence?

v[ 1

2 r0, r0]r

1

2 r0

r

r0k

1

2 r0 � r � r0v�r� � k�r0 � r�r 2

rv

Rainbows are created when raindrops scatter sunlight. They have fascinated mankind since

ancient times and have inspired attempts at scientific explanation since the time of Aristotle. In

this project we use the ideas of Descartes and Newton to explain the shape, location, and colors

of rainbows. 

1. The figure shows a ray of sunlight entering a spherical raindrop at . Some of the light is

reflected, but the line shows the path of the part that enters the drop. Notice that the light

is refracted toward the normal line and in fact Snell’s Law says that ,

where is the angle of incidence, is the angle of refraction, and is the index of

refraction for water. At some of the light passes through the drop and is refracted into the

air, but the line shows the part that is reflected. (The angle of incidence equals the angle

of reflection.) When the ray reaches , part of it is reflected, but for the time being we are

more interested in the part that leaves the raindrop at . (Notice that it is refracted away

from the normal line.) The angle of deviation is the amount of clockwise rotation that

the ray has undergone during this three-stage process. Thus

Show that the minimum value of the deviation is and occurs when .

The significance of the minimum deviation is that when we have , so

. This means that many rays with become deviated by approximately

the same amount. It is the concentration of rays coming from near the direction of minimum

deviation that creates the brightness of the primary rainbow. The figure at the left shows 

that the angle of elevation from the observer up to the highest point on the rainbow is

. (This angle is called the rainbow angle.)

2. Problem 1 explains the location of the primary rainbow, but how do we explain the colors?

Sunlight comprises a range of wavelengths, from the red range through orange, yellow,

180� � 138� � 42�


 � 59.4��D��
 � 0

D��
� � 0
 � 59.4�


 � 59.4�D�
� � 138�

D�
� � �
 � �� � � � 2�� � �
 � �� �  � 2
 � 4�

D�
�
C

C
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B

k � 4

3�


sin 
 � k sin �AO
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green, blue, indigo, and violet. As Newton discovered in his prism experiments of 1666, the

index of refraction is different for each color. (The effect is called dispersion.) For red light

the refractive index is whereas for violet light it is . By repeating the

calculation of Problem 1 for these values of , show that the rainbow angle is about for

the red bow and for the violet bow. So the rainbow really consists of seven individual

bows corresponding to the seven colors.

3. Perhaps you have seen a fainter secondary rainbow above the primary bow. That results from

the part of a ray that enters a raindrop and is refracted at , reflected twice (at and ), and

refracted as it leaves the drop at (see the figure). This time the deviation angle is the

total amount of counterclockwise rotation that the ray undergoes in this four-stage process.

Show that

and has a minimum value when

Taking , show that the minimum deviation is about and so the rainbow angle for

the secondary rainbow is about , as shown in the figure.

4. Show that the colors in the secondary rainbow appear in the opposite order from those in the

primary rainbow.

42° 51°

51�

129�k �
4

3

cos 
 �  k 2 � 1

8

D

�

D

� � 2
 � 6� � 2�
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CBA
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42.3�k
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THE MEAN VALUE THEOREM

We will see that many of the results of this chapter depend on one central fact, which is

called the Mean Value Theorem. But to arrive at the Mean Value Theorem we first need the

following result.

ROLLE’S THEOREM Let be a function that satisfies the following three hypotheses:

1. is continuous on the closed interval .

2. is differentiable on the open interval .

3.

Then there is a number in such that .f �
c� � 0
a, b�c

f 
a� � f 
b�


a, b�f

�a, b�f

f

4.2

N Rolle’s Theorem was first published in 

1691 by the French mathematician Michel Rolle

(1652–1719) in a book entitled Méthode pour

résoudre les égalitéz. He was a vocal critic of the

methods of his day and attacked calculus as

being a “collection of ingenious fallacies.” Later,

however, he became convinced of the essential

correctness of the methods of calculus.
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Before giving the proof let’s take a look at the graphs of some typical functions that sat-

isfy the three hypotheses. Figure 1 shows the graphs of four such functions. In each case

it appears that there is at least one point on the graph where the tangent is hori-

zontal and therefore . Thus Rolle’s Theorem is plausible.

PROOF There are three cases:

CASE I N , a constant

Then , so the number can be taken to be any number in .

CASE II N for some x in [as in Figure 1(b) or (c)]

By the Extreme Value Theorem (which we can apply by hypothesis 1), has a maxi-

mum value somewhere in . Since , it must attain this maximum value at

a number in the open interval . Then has a local maximum at and, by hypoth-

esis 2, is differentiable at . Therefore by Fermat’s Theorem.

CASE III N for some x in [as in Figure 1(c) or (d)]

By the Extreme Value Theorem, has a minimum value in and, since , 

it attains this minimum value at a number in . Again by Fermat’s

Theorem. M

EXAMPLE 1 Let’s apply Rolle’s Theorem to the position function of a moving

object. If the object is in the same place at two different instants and , then

. Rolle’s Theorem says that there is some instant of time between and

when ; that is, the velocity is 0. (In particular, you can see that this is true

when a ball is thrown directly upward.) M

EXAMPLE 2 Prove that the equation has exactly one real root.

SOLUTION First we use the Intermediate Value Theorem (2.5.10) to show that a root exists.

Let . Then and . Since is a polynomi-

al, it is continuous, so the Intermediate Value Theorem states that there is a number 

between 0 and 1 such that . Thus the given equation has a root.

To show that the equation has no other real root, we use Rolle’s Theorem and argue by

contradiction. Suppose that it had two roots and . Then and, since 

is a polynomial, it is differentiable on and continuous on . Thus, by Rolle’s

Theorem, there is a number between and such that . But

(since ) so can never be 0. This gives a contradiction. Therefore the equation

can’t have two real roots. M

f �
x�x 2 � 0

for all xf �
x� � 3x 2 � 1 � 1

f �
c� � 0bac

�a, b�
a, b�
ff 
a� � 0 � f 
b�ba

f 
c� � 0

c

ff 
1� � 1 � 0f 
0� � �1 � 0f 
x� � x 3 � x � 1

x 3 � x � 1 � 0

f �
c� � 0b

at � cf 
a� � f 
b�
t � bt � a

s � f 
t�

f �
c� � 0
a, b�c

f 
a� � f 
b��a, b�f


a, b�f 
x� � f 
a�

f �
c� � 0cf

cf
a, b�c

f 
a� � f 
b��a, b�
f


a, b�f 
x� � f 
a�


a, b�cf �
x� � 0

f 
x� � k

FIGURE 1  

(a)

ba c¡ c™ x

y

0

(b)

a c b x

y

0

(c)

ba c¡ c™ x

y

0

(d)

ba c

y

x0

f �
c� � 0


c, f 
c��
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N Take cases

N Figure 2 shows a graph of the function

discussed in Example 2.

Rolle’s Theorem shows that, no matter how much

we enlarge the viewing rectangle, we can never

find a second -intercept.x

f 
x� � x 3 � x � 1

FIGURE 2

_2

3

_3

2



Our main use of Rolle’s Theorem is in proving the following important theorem, which

was first stated by another French mathematician, Joseph-Louis Lagrange.

THE MEAN VALUE THEOREM Let be a function that satisfies the following

hypotheses:

1. is continuous on the closed interval .

2. is differentiable on the open interval .

Then there is a number in such that

or, equivalently,

Before proving this theorem, we can see that it is reasonable by interpreting it geomet-

rically. Figures 3 and 4 show the points and on the graphs of two dif-

ferentiable functions. The slope of the secant line is

which is the same expression as on the right side of Equation 1. Since is the slope of

the tangent line at the point , the Mean Value Theorem, in the form given by Equa-

tion 1, says that there is at least one point on the graph where the slope of the

tangent line is the same as the slope of the secant line . In other words, there is a point

where the tangent line is parallel to the secant line .

PROOF We apply Rolle’s Theorem to a new function defined as the difference between

and the function whose graph is the secant line . Using Equation 3, we see that the

equation of the line can be written as

or as y � f 
a� �
 f 
b� � f 
a�

b � a
 
x � a�

y � f 
a� �
 f 
b� � f 
a�

b � a
 
x � a�

AB

ABf

h

FIGURE 3 FIGURE 4

0 x

y

a c b

B{b, f(b)}

P{c, f(c)}

A{a, f(a)}

0 x

y

c¡ c™

BP¡

A P™

ba

ABP

AB

P
c, f 
c��

c, f 
c��

f �
c�

mAB �
 f 
b� � f 
a�

b � a
3

AB

B
b, f 
b��A
a, f 
a��

f 
b� � f 
a� � f �
c�
b � a�2

f �
c� �
 f 
b� � f 
a�

b � a
1


a, b�c


a, b�f

�a, b�f

f
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N The Mean Value Theorem is an example of

what is called an existence theorem. Like the

Intermediate Value Theorem, the Extreme Value

Theorem, and Rolle’s Theorem, it guarantees that

there exists a number with a certain property,

but it doesn’t tell us how to find the number.



So, as shown in Figure 5,

First we must verify that satisfies the three hypotheses of Rolle’s Theorem.

1. The function is continuous on because it is the sum of and a first-degree

polynomial, both of which are continuous.

2. The function is differentiable on because both and the first-degree poly-

nomial are differentiable. In fact, we can compute directly from Equation 4:

(Note that and are constants.)

3.

Therefore, .

Since satisfies the hypotheses of Rolle’s Theorem, that theorem says there is a num-

ber in such that . Therefore

and so M

EXAMPLE 3 To illustrate the Mean Value Theorem with a specific function, let’s con-

sider . Since is a polynomial, it is continuous and differ-

entiable for all , so it is certainly continuous on and differentiable on .

Therefore, by the Mean Value Theorem, there is a number in such that

Now , and , so this equation becomes

which gives , that is, . But must lie in , so . 

Figure 6 illustrates this calculation: The tangent line at this value of is parallel to the

secant line . M

EXAMPLE 4 If an object moves in a straight line with position function , then

the average velocity between and is

 f 
b� � f 
a�

b � a

t � bt � a

s � f 
t�V

OB

c

c � 2�s3 
0, 2�cc � �2�s3 c 2
�

4

3

6 � 
3c 2 � 1�2 � 6c 2 � 2

f �
x� � 3x 2 � 1f 
2� � 6, f 
0� � 0

f 
2� � f 
0� � f �
c�
2 � 0�


0, 2�c


0, 2��0, 2�x

ff 
x� � x 3 � x, a � 0, b � 2

V

f �
c� �
 f 
b� � f 
a�

b � a

0 � h�
c� � f �
c� �
 f 
b� � f 
a�

b � a

h�
c� � 0
a, b�c

h

h
a� � h
b�

 � f 
b� � f 
a� � � f 
b� � f 
a�� � 0

 h
b� � f 
b� � f 
a� �
 f 
b� � f 
a�

b � a
 
b � a�

 h
a� � f 
a� � f 
a� �
 f 
b� � f 
a�

b � a
 
a � a� � 0

� f 
b� � f 
a���
b � a�f 
a�

h�
x� � f �
x� �
 f 
b� � f 
a�

b � a

h�

f
a, b�h

f�a, b�h

h

h
x� � f 
x� � f 
a� �
 f 
b� � f 
a�

b � a
 
x � a�4
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FIGURE 5

0 x

y

x

h(x)
y=ƒ

ƒ

A

B

f(a)+ (x-a)
f(b)-f(a)

b-a

The Mean Value Theorem was first formulated by

Joseph-Louis Lagrange (1736–1813), born in Italy

of a French father and an Italian mother. He was a

child prodigy and became a professor in Turin at

the tender age of 19. Lagrange made great con-

tributions to number theory, theory of functions, 

theory of equations, and analytical and celestial

mechanics. In particular, he applied calculus to the

analysis of the stability of the solar system. At 

the invitation of Frederick the Great, he succeeded

Euler at the Berlin Academy and, when Frederick

died, Lagrange accepted King Louis XVI’s invitation

to Paris, where he was given apartments in the

Louvre and became a professor at the Ecole Poly-

technique. Despite all the trappings of luxury and

fame, he was a kind and quiet man, living only for

science.

LAGRANGE AND THE MEAN VALUE THEOREM

FIGURE 6
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and the velocity at is . Thus the Mean Value Theorem (in the form of Equa-

tion 1) tells us that at some time between and the instantaneous velocity 

is equal to that average velocity. For instance, if a car traveled 180 km in 2 hours, then

the speedometer must have read 90 km�h at least once.

In general, the Mean Value Theorem can be interpreted as saying that there is a num-

ber at which the instantaneous rate of change is equal to the average rate of change over

an interval. M

The main significance of the Mean Value Theorem is that it enables us to obtain infor-

mation about a function from information about its derivative. The next example provides

an instance of this principle.

EXAMPLE 5 Suppose that and for all values of . How large can

possibly be?

SOLUTION We are given that is differentiable (and therefore continuous) everywhere. 

In particular, we can apply the Mean Value Theorem on the interval . There exists a

number such that

so

We are given that for all , so in particular we know that . Multiply-

ing both sides of this inequality by 2, we have , so

The largest possible value for is 7. M

The Mean Value Theorem can be used to establish some of the basic facts of differen-

tial calculus. One of these basic facts is the following theorem. Others will be found in the

following sections.

THEOREM If for all in an interval , then is constant on .

PROOF Let and be any two numbers in with . Since is differen-

tiable on , it must be differentiable on and continuous on . By apply-

ing the Mean Value Theorem to on the interval , we get a number such that

and

Since for all , we have , and so Equation 6 becomes

Therefore has the same value at any two numbers and in . This means that 

is constant on . M

COROLLARY If for all in an interval , then is con-

stant on ; that is, where is a constant.cf 
x� � t
x� � c
a, b�
f � t
a, b�xf �
x� � t�
x�7


a, b�
f
a, b�x2x1f

f 
x2 � � f 
x1�orf 
x2� � f 
x1� � 0

f �
c� � 0xf �
x� � 0

f 
x2� � f 
x1� � f �
c�
x2 � x1�6

x1 � c � x2

c�x1, x2�f

�x1, x2 �
x1, x2�
a, b�
fx1 � x2
a, b�x2x1


a, b�f
a, b�xf �
x� � 05

f 
2�

f 
2� � �3 � 2 f �
c�  �3 � 10 � 7

2 f �
c�  10

f �
c�  5xf �
x�  5

f 
2� � f 
0� � 2 f �
c� � �3 � 2 f �
c�

f 
2� � f 
0� � f �
c�
2 � 0�

c

�0, 2�
f

f 
2�
xf �
x�  5f 
0� � �3V

f �
c�bat � c

f �
c�t � c

284 | | | | CHAPTER 4 APPLICATIONS OF DIFFERENTIATION



PROOF Let . Then

for all in . Thus, by Theorem 5, is constant; that is, is constant. M

Care must be taken in applying Theorem 5. Let

The domain of is and for all in . But is obviously not a

constant function. This does not contradict Theorem 5 because is not an interval. Notice

that is constant on the interval and also on the interval .

EXAMPLE 6 Prove the identity .

SOLUTION Although calculus isn’t needed to prove this identity, the proof using calculus is

quite simple. If , then

for all values of . Therefore , a constant. To determine the value of , we put

[because we can evaluate exactly]. Then

Thus . Mtan�1x � cot�1x � ��2

C � f 
1� � tan�1 1 � cot�1 1 �
�

4
�

�

4
�

�

2

f 
1�x � 1

Cf 
x� � Cx

f �
x� �
1

1 � x 2
�

1

1 � x 2
� 0

f 
x� � tan�1x � cot�1x

tan�1x � cot�1x � ��2


�	, 0�
0, 	�f

D

fDxf �
x� � 0D � �x � x � 0	f

f 
x� �
x

� x �
� �1

�1

if x � 0

if x � 0

NOTE

f � tF
a, b�x

F�
x� � f �
x� � t�
x� � 0

F
x� � f 
x� � t
x�
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7. Use the graph of to estimate the values of that satisfy the

conclusion of the Mean Value Theorem for the interval .

8. Use the graph of given in Exercise 7 to estimate the values

of that satisfy the conclusion of the Mean Value Theorem

for the interval .�1, 7�
c

f

y

y =ƒ

1

x0 1

�0, 8�
cf1–4 Verify that the function satisfies the three hypotheses of

Rolle’s Theorem on the given interval. Then find all numbers 

that satisfy the conclusion of Rolle’s Theorem.

1.

2.

3.

4.

Let . Show that but there is no

number in such that . Why does this not

contradict Rolle’s Theorem?

6. Let . Show that but there is no 

number in such that . Why does this not

contradict Rolle’s Theorem?

f �
c� � 0
0, ��c

f 
0� � f 
��f 
x� � tan x

f �
c� � 0
�1, 1�c

f 
�1� � f 
1�f 
x� � 1 � x 2�3
5.

���8, 7��8�f 
x� � cos 2x,

�0, 9�f 
x� � sx �
1

3 x,

�0, 3�f 
x� � x 3 � x 2 � 6x � 2,

�1, 3�f 
x� � 5 � 12x � 3x 2,

c

EXERCISES4.2



(b) Suppose is twice differentiable on and has three

roots. Show that has at least one real root.

(c) Can you generalize parts (a) and (b)?

If and for , how small can

possibly be?

24. Suppose that for all values of . Show that

.

Does there exist a function such that , ,

and for all ?

26. Suppose that and are continuous on and differentiable

on . Suppose also that and for

. Prove that . [Hint: Apply the Mean

Value Theorem to the function .]

27. Show that if .

28. Suppose is an odd function and is differentiable every-

where. Prove that for every positive number , there exists 

a number in such that .

29. Use the Mean Value Theorem to prove the inequality

30. If (c a constant) for all , use Corollary 7 to show

that for some constant .

31. Let and

Show that for all in their domains. Can we

conclude from Corollary 7 that is constant?

32. Use the method of Example 6 to prove the identity 

33. Prove the identity

34. At 2:00 PM a car’s speedometer reads 30 mi�h. At 2:10 PM it

reads 50 mi�h. Show that at some time between 2:00 and

2:10 the acceleration is exactly 120 mi�h .

Two runners start a race at the same time and finish in a tie.

Prove that at some time during the race they have the same

speed. [Hint: Consider , where and are

the position functions of the two runners.]

36. A number a is called a fixed point of a function if

. Prove that if for all real numbers x, then

has at most one fixed point.f

f �
x� � 1f 
a� � a

f

htf 
t� � t
t� � h
t�

35.

2

arcsin 
x � 1

x � 1
� 2 arctan sx �

�

2

x � 02 sin�1x � cos�1
1 � 2x 2 �

f � t
xf �
x� � t�
x�

t
x� �

1

x

1 �
1

x

if

if

x � 0

x � 0

f 
x� � 1�x

df 
x� � cx � d

xf �
x� � c

for all a and b� sin a � sin b �  � a � b �

f �
c� � f 
b��b
�b, b�c

b

f

x � 0s1 � x � 1 �
1

2 x

h � f � t
f 
b� � t
b�a � x � b

f �
x� � t�
x�f 
a� � t
a�
a, b�
�a, b�tf

xf �
x�  2

f 
2� � 4f 
0� � �1f25.

18  f 
8� � f 
2�  30

x3  f �
x�  5

f 
4�
1  x  4f �
x� � 2f 
1� � 1023.

f �

�f; 9. (a) Graph the function in the viewing rect-

angle by .

(b) Graph the secant line that passes through the points 

and on the same screen with .

(c) Find the number that satisfies the conclusion of the

Mean Value Theorem for this function and the interval

. Then graph the tangent line at the point 

and notice that it is parallel to the secant line.

; 10. (a) In the viewing rectangle by , graph the

function and its secant line through the

points and . Use the graph to estimate 

the -coordinates of the points where the tangent line is

parallel to the secant line.

(b) Find the exact values of the numbers that satisfy the

conclusion of the Mean Value Theorem for the interval

and compare with your answers to part (a).

11–14 Verify that the function satisfies the hypotheses of the

Mean Value Theorem on the given interval. Then find all numbers 

that satisfy the conclusion of the Mean Value Theorem.

,

12. ,

13.

14. ,

15. Let . Show that there is no value of in

such that . Why does this

not contradict the Mean Value Theorem?

16. Let . Show that there is no value of 

such that . Why does this not con-

tradict the Mean Value Theorem?

17. Show that the equation has exactly

one real root.

18. Show that the equation has exactly one

real root.

Show that the equation has at most one

root in the interval .

20. Show that the equation has at most two 

real roots.

21. (a) Show that a polynomial of degree 3 has at most three 

real roots.

(b) Show that a polynomial of degree has at most real

roots.

22. (a) Suppose that is differentiable on and has two roots.

Show that has at least one root.f �

�f

nn

x 4 � 4x � c � 0

��2, 2�
x 3 � 15x � c � 019.

2x � 1 � sin x � 0

1 � 2x � x 3 � 4x 5
� 0

f 
3� � f 
0� � f �
c�
3 � 0�
cf 
x� � 2 � �2x � 1�

f 
4� � f 
1� � f �
c�
4 � 1�
1, 4�
cf 
x� � 
x � 3��2

�1, 4�f 
x� �
x

x � 2

f 
x� � e�2x, �0, 3�

�0, 2�f 
x� � x 3 � x � 1

��1, 1�f 
x� � 3x 2 � 2x � 511.

c

��2, 2�

c

x


2, 4�
�2, �4�
f 
x� � x 3 � 2x

��5, 5���3, 3�


c, f 
c���1, 8�
f

c

f
8, 8.5�

1, 5�

�0, 10��0, 10�
f 
x� � x � 4�x
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HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH

Many of the applications of calculus depend on our ability to deduce facts about a func-

tion f from information concerning its derivatives. Because represents the slope of

the curve at the point , it tells us the direction in which the curve proceeds

at each point. So it is reasonable to expect that information about will provide us with

information about .

WHAT DOES SAY ABOUT ?

To see how the derivative of can tell us where a function is increasing or decreasing, look

at Figure 1. (Increasing functions and decreasing functions were defined in Section 1.1.)

Between A and B and between C and D, the tangent lines have positive slope and so

. Between B and C, the tangent lines have negative slope and so . Thus

it appears that f increases when is positive and decreases when is negative. To

prove that this is always the case, we use the Mean Value Theorem.

INCREASING/DECREASING TEST

(a) If on an interval, then is increasing on that interval.

(b) If on an interval, then is decreasing on that interval.

PROOF

(a) Let and be any two numbers in the interval with . According to the defi-

nition of an increasing function (page 20) we have to show that .

Because we are given that , we know that is differentiable on . So,

by the Mean Value Theorem there is a number c between and such that

Now by assumption and because . Thus the right side of

Equation 1 is positive, and so

This shows that f is increasing.

Part (b) is proved similarly. M

EXAMPLE 1 Find where the function is increasing and

where it is decreasing.

SOLUTION

To use the I�D Test we have to know where and where . This

depends on the signs of the three factors of , namely, , , and . We

divide the real line into intervals whose endpoints are the critical numbers , and 

and arrange our work in a chart. A plus sign indicates that the given expression is posi-

tive, and a minus sign indicates that it is negative. The last column of the chart gives the 

2

�1, 0

x � 1x � 212xf �
x�
f �
x� � 0f �
x� � 0

f �
x� � 12x 3 � 12x 2 � 24x � 12x
x � 2�
x � 1�

f 
x� � 3x 4 � 4x 3 � 12x 2 � 5V

f 
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x2 �orf 
x2� � f 
x1� � 0

x1 � x2x2 � x1 � 0f �
c� � 0

f 
x2 � � f 
x1� � f �
c�
x2 � x1�1

x2x1

�x1, x2�ff �
x� � 0

f 
x1� � f 
x2�
x1 � x2x2x1

ff �
x� � 0

ff �
x� � 0

f �
x�f �
x�
f �
x� � 0f �
x� � 0

f

ff �

f 
x�
f �
x�


x, f 
x��y � f 
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FIGURE 1  

N Let’s abbreviate the name of this test to 

the I/D Test.



conclusion based on the I�D Test. For instance, for , so is decreas-

ing on (0, 2). (It would also be true to say that f is decreasing on the closed interval .)

The graph of f shown in Figure 2 confirms the information in the chart. M

Recall from Section 4.1 that if has a local maximum or minimum at , then must be

a critical number of (by Fermat’s Theorem), but not every critical number gives rise to a

maximum or a minimum. We therefore need a test that will tell us whether or not has a

local maximum or minimum at a critical number.

You can see from Figure 2 that is a local maximum value of because 

increases on and decreases on . Or, in terms of derivatives, for

and for . In other words, the sign of changes from

positive to negative at . This observation is the basis of the following test.

THE FIRST DERIVATIVE TEST Suppose that is a critical number of a continuous 

function .

(a) If changes from positive to negative at , then has a local maximum at .

(b) If changes from negative to positive at , then has a local minimum at .

(c) If does not change sign at (for example, if is positive on both sides of c

or negative on both sides), then has no local maximum or minimum at .

The First Derivative Test is a consequence of the I�D Test. In part (a), for instance, since

the sign of changes from positive to negative at c, is increasing to the left of c and

decreasing to the right of c. It follows that has a local maximum at c.

It is easy to remember the First Derivative Test by visualizing diagrams such as those

in Figure 3.

FIGURE 3  
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c0 x

y
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c0 x
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(b) Local minimum
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cfcf �
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f
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f �
x�0 � x � 2f �
x� � 0�1 � x � 0

f �
x� � 0
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fff 
0� � 5

f

f
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Interval x � 2 x � 1 f

� � � � decreasing on (�	, �1)

� � � � increasing on (�1, 0)

� � � � decreasing on (0, 2)

� � � � increasing on (2, 	) x � 2

 0 � x � 2

 �1 � x � 0

 x � �1

f �
x�12x

20

_30

_2 3

FIGURE 2  



EXAMPLE 2 Find the local minimum and maximum values of the function f in 

Example 1.

SOLUTION From the chart in the solution to Example 1 we see that changes from neg-

ative to positive at �1, so is a local minimum value by the First Derivative

Test. Similarly, changes from negative to positive at 2, so is also a local

minimum value. As previously noted, is a local maximum value because 

changes from positive to negative at 0. M

EXAMPLE 3 Find the local maximum and minimum values of the function

SOLUTION To find the critical numbers of , we differentiate:

So when . The solutions of this equation are and .

Because is differentiable everywhere, the only critical numbers are and 

and so we analyze in the following table.

Because changes from positive to negative at , the First Derivative Test tells us

that there is a local maximum at and the local maximum value is

Likewise, changes from negative to positive at and so

is a local minimum value. The graph of in Figure 4 supports our conclusion.

M

FIGURE 4  
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Interval

� increasing on 

� decreasing on 

� increasing on 
4��3, 2�� 4��3 � x � 2�


2�3, 4��3� 2��3 � x � 4��3


0, 2��3� 0 � x � 2��3

tt�
x� � 1 � 2 cos x
N The + signs in the table come from the fact

that when . From the

graph of , this is true in the indicated

intervals.

y � cos x

cos x � �
1

2t�
x� � 0



WHAT DOES SAY ABOUT ?

Figure 5 shows the graphs of two increasing functions on . Both graphs join point 

to point but they look different because they bend in different directions. How can we

distinguish between these two types of behavior? In Figure 6 tangents to these curves have

been drawn at several points. In (a) the curve lies above the tangents and is called con-

cave upward on . In (b) the curve lies below the tangents and is called concave

downward on .

DEFINITION If the graph of lies above all of its tangents on an interval , then it

is called concave upward on . If the graph of lies below all of its tangents on I,

it is called concave downward on .

Figure 7 shows the graph of a function that is concave upward (abbreviated CU) on the

intervals , , and and concave downward (CD) on the intervals , ,

and .

Let’s see how the second derivative helps determine the intervals of concavity. Looking

at Figure 6(a), you can see that, going from left to right, the slope of the tangent increases.

FIGURE 7  
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This means that the derivative is an increasing function and therefore its derivative 

is positive. Likewise, in Figure 6(b) the slope of the tangent decreases from left to right,

so decreases and therefore is negative. This reasoning can be reversed and suggests

that the following theorem is true. A proof is given in Appendix F with the help of the

Mean Value Theorem.

CONCAVITY TEST

(a) If for all in , then the graph of is concave upward on .

(b) If for all in , then the graph of is concave downward on .

EXAMPLE 4 Figure 8 shows a population graph for Cyprian honeybees raised in an 

apiary. How does the rate of population increase change over time? When is this rate

highest? Over what intervals is P concave upward or concave downward?

SOLUTION By looking at the slope of the curve as t increases, we see that the rate of

increase of the population is initially very small, then gets larger until it reaches a maxi-

mum at about t � 12 weeks, and decreases as the population begins to level off. As the

population approaches its maximum value of about 75,000 (called the carrying capac-

ity), the rate of increase, , approaches 0. The curve appears to be concave upward on

(0, 12) and concave downward on (12, 18). M

In Example 4, the population curve changed from concave upward to concave down-

ward at approximately the point (12, 38,000). This point is called an inflection point of the

curve. The significance of this point is that the rate of population increase has its maximum

value there. In general, an inflection point is a point where a curve changes its direction of

concavity.

DEFINITION A point on a curve is called an inflection point if is

continuous there and the curve changes from concave upward to concave down-

ward or from concave downward to concave upward at .

For instance, in Figure 7, , and are the points of inflection. Notice that if a

curve has a tangent at a point of inflection, then the curve crosses its tangent there.

In view of the Concavity Test, there is a point of inflection at any point where the sec-

ond derivative changes sign.

PB, C, D
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P	�t�

t
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20

0
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FIGURE 8 
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EXAMPLE 5 Sketch a possible graph of a function that satisfies the following 

conditions:

SOLUTION Condition (i) tells us that is increasing on and decreasing on .

Condition (ii) says that is concave upward on and , and concave down-

ward on . From condition (iii) we know that the graph of has two horizontal

asymptotes: and .

We first draw the horizontal asymptote as a dashed line (see Figure 9). We

then draw the graph of approaching this asymptote at the far left, increasing to its maxi-

mum point at and decreasing toward the x-axis at the far right. We also make sure

that the graph has inflection points when and 2. Notice that we made the curve

bend upward for and , and bend downward when x is between �2 and 2.

M

Another application of the second derivative is the following test for maximum and

minimum values. It is a consequence of the Concavity Test.

THE SECOND DERIVATIVE TEST Suppose is continuous near .

(a) If and , then has a local minimum at .

(b) If and , then has a local maximum at .

For instance, part (a) is true because near c and so is concave upward near

c. This means that the graph of lies above its horizontal tangent at c and so has a local

minimum at c. (See Figure 10.)

EXAMPLE 6 Discuss the curve with respect to concavity, points of

inflection, and local maxima and minima. Use this information to sketch the curve.

SOLUTION If , then

To find the critical numbers we set and obtain and . To use the

Second Derivative Test we evaluate at these critical numbers:

Since and , is a local minimum. Since , the

Second Derivative Test gives no information about the critical number 0. But since

for and also for , the First Derivative Test tells us that does

not have a local maximum or minimum at 0. [In fact, the expression for shows that

f decreases to the left of 3 and increases to the right of 3.]

f 	�x�
f0 � x � 3x � 0f 	�x� � 0

f ��0� � 0f �3� � �27f ��3� � 0f 	�3� � 0
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f �
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y � x 4 � 4x 3
V

ff

ff ��x� � 0
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cf �

x � 2x � �2

x � �2

x � 1

f

y � �2

y � 0y � �2

f��2, 2�
�2, �����, �2�f

�1, �����, 1�f

 �iii� lim
 

xl��
 f �x� � �2, lim

 

xl�
 f �x� � 0

 �ii� f ��x� � 0 on ���, �2� and �2, ��, f ��x� � 0 on ��2, 2�
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Since when or , we divide the real line into intervals with these

numbers as endpoints and complete the following chart.

The point is an inflection point since the curve changes from concave upward to

concave downward there. Also, is an inflection point since the curve changes

from concave downward to concave upward there.

Using the local minimum, the intervals of concavity, and the inflection points, we

sketch the curve in Figure 11. M

The Second Derivative Test is inconclusive when . In other words, at

such a point there might be a maximum, there might be a minimum, or there might be nei-

ther (as in Example 6). This test also fails when does not exist. In such cases the First

Derivative Test must be used. In fact, even when both tests apply, the First Derivative Test

is often the easier one to use.

EXAMPLE 7 Sketch the graph of the function .

SOLUTION You can use the differentiation rules to check that the first two derivatives are

Since when and does not exist when or , the critical

numbers are , and .

To find the local extreme values we use the First Derivative Test. Since changes

from negative to positive at 0, is a local minimum. Since changes from

positive to negative at 4, is a local maximum. The sign of does not change

at 6, so there is no minimum or maximum there. (The Second Derivative Test could be

used at 4, but not at 0 or 6 since does not exist at either of these numbers.)

Looking at the expression for and noting that for all , we have

for and for and for . So is concave down-

ward on and and concave upward on , and the only inflection point

is . The graph is sketched in Figure 12. Note that the curve has vertical tangents at

and because as and as . M

EXAMPLE 8 Use the first and second derivatives of , together with asymp-

totes, to sketch its graph.

SOLUTION Notice that the domain of is , so we check for vertical asymptotes

by computing the left and right limits as . As , we know that ,t � 1	xl �xl 0�xl 0

�x 
 x � 0�f

f �x� � e 1	x

xl 6xl 0
 f 	�x� 
l ��6, 0��0, 0�
�6, 0�

�6, ���0, 6����, 0�
fx � 6f ��x� � 00 � x � 6x � 0f ��x� � 0
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f �

f 	f �4� � 25	3

f 	f �0� � 0

f 	
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Interval Concavity

(��, 0) � upward

(0, 2) � downward

(2, �) � upward

f ��x� � 12x�x � 2�

FIGURE 11
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N Try reproducing the graph in Figure 12 

with a graphing calculator or computer. Some

machines produce the complete graph, some 

produce only the portion to the right of the 

-axis, and some produce only the portion

between and . For an explanation

and cure, see Example 7 in Section 1.4. An

equivalent expression that gives the correct

graph is

y � �x 2 �1	3
�

6 � x


 6 � x 
 
 6 � x 
1	3

x � 6x � 0

y



so

and this shows that is a vertical asymptote. As , we have ,

so

As , we have and so

This shows that is a horizontal asymptote.

Now let’s compute the derivative. The Chain Rule gives

Since and for all , we have for all . Thus is

decreasing on and on . There is no critical number, so the function has no

maximum or minimum. The second derivative is

Since and , we have when and 

when . So the curve is concave downward on and concave upward on

and on . The inflection point is .

To sketch the graph of we first draw the horizontal asymptote (as a dashed

line), together with the parts of the curve near the asymptotes in a preliminary sketch

[Figure 13(a)]. These parts reflect the information concerning limits and the fact that is

decreasing on both and . Notice that we have indicated that as

even though does not exist. In Figure 13(b) we finish the sketch by incorpo-

rating the information concerning concavity and the inflection point. In Figure 13(c) we

check our work with a graphing device.

M

(a) Preliminary sketch (b) Finished sketch

FIGURE 13
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In Module 4.3 you can practice using

graphical information about to determine

the shape of the graph of .f

f 	

TEC
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(c) On what intervals is concave upward or concave down-

ward? Explain.

(d) What are the -coordinates of the inflection points of ?

Why?

9–18

(a) Find the intervals on which is increasing or decreasing.

(b) Find the local maximum and minimum values of .

(c) Find the intervals of concavity and the inflection points.

9.

10.

12.

13.

14. ,

15. 16.

18.

19–21 Find the local maximum and minimum values of using

both the First and Second Derivative Tests. Which method do you

prefer?

19. 20.

21.

22. (a) Find the critical numbers of .

(b) What does the Second Derivative Test tell you about the

behavior of at these critical numbers?

(c) What does the First Derivative Test tell you?

23. Suppose is continuous on .

(a) If and , what can you say about ?

(b) If and , what can you say about ?

24–29 Sketch the graph of a function that satisfies all of the

given conditions.

24. for all , vertical asymptote ,

if or , if 

,

if or ,

if or ,

if , if or x � 3x � 1f ��x� � 01 � x � 3f ��x� � 0

x � 40 � x � 2f 	�x� � 0

2 � x � 4x � 0f 	�x� � 0

f 	�0� � f 	�2� � f 	�4� � 025.

1 � x � 3f ��x� � 0x � 3x � 1f ��x� � 0

x � 1x � 1f 	�x� � 0

ff ��6� � 0f 	�6� � 0

ff ��2� � �5f 	�2� � 0

���, ��f �

f

f �x� � x 4�x � 1�3

f �x� � x � s1 � x 

f �x� �
x

x 2 � 4
f �x� � x 5 � 5x � 3

f

f �x� � sx e�xf �x� � �ln x�	sx 
17.

f �x� � x 2 ln xf �x� � e2x � e�x

0 � x � 2f �x� � cos2x � 2 sin x

f �x� � sin x � cos x,  0 � x � 2

f �x� �
x 2

x 2 � 3

f �x� � x4 � 2x2 � 311.

f �x� � 4x 3 � 3x 2 � 6x � 1

f �x� � 2x 3 � 3x 2 � 36x

f

f

3

y

0 x5 71 9

y=fª(x)

fx

f
1–2 Use the given graph of to find the following.

(a) The open intervals on which is increasing.

(b) The open intervals on which is decreasing.

(c) The open intervals on which is concave upward.

(d) The open intervals on which is concave downward.

(e) The coordinates of the points of inflection.

1. 2.

3. Suppose you are given a formula for a function .

(a) How do you determine where is increasing or 

decreasing?

(b) How do you determine where the graph of is concave

upward or concave downward?

(c) How do you locate inflection points?

4. (a) State the First Derivative Test.

(b) State the Second Derivative Test. Under what circum-

stances is it inconclusive? What do you do if it fails?

5–6 The graph of the derivative of a function is shown.

(a) On what intervals is increasing or decreasing?

(b) At what values of x does have a local maximum or

minimum?

6.

The graph of the second derivative of a function is

shown. State the -coordinates of the inflection points of .

Give reasons for your answers.

8. The graph of the first derivative of a function is shown.

(a) On what intervals is increasing? Explain.

(b) At what values of does have a local maximum or 

minimum? Explain.

fx

f

ff 	

y=f·(x)

2

y

0 x4 6 8

fx

ff �7.

2 4 6 x

y

0

y=fª(x)

2 4 6 x

y

0

y=fª(x)
5.

f

f

ff 	

f

f

f

y

0 x

1

1

y

0 x

1

1

f

f

f

f

f
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(d) Use the information from parts (a)–(c) to sketch the graph.

Check your work with a graphing device if you have one.

33. 34.

35. 36.

37. 38.

40.

42.

43. ,

44. ,

45–52

(a) Find the vertical and horizontal asymptotes.

(b) Find the intervals of increase or decrease.

(c) Find the local maximum and minimum values.

(d) Find the intervals of concavity and the inflection points.

(e) Use the information from parts (a)–(d) to sketch the graph 

of .

45. 46.

47.

48. ,

49. 50.

52.

53. Suppose the derivative of a function is

. On what interval is 

increasing?

54. Use the methods of this section to sketch the curve

, where is a positive constant. What

do the members of this family of curves have in common?

How do they differ from each other?

; 55–56

(a) Use a graph of to estimate the maximum and minimum 

values. Then find the exact values.

(b) Estimate the value of at which increases most rapidly.

Then find the exact value.

56.

; 57–58

(a) Use a graph of to give a rough estimate of the intervals of

concavity and the coordinates of the points of inflection.

(b) Use a graph of to give better estimates.

57. , 0 � x � 2f �x� � cos x �
1

2 cos 2x

f �

f

f �x� � x 2 e�xf �x� �
x � 1

sx 2 � 1
55.

fx

f

ay � x3 � 3a2x � 2a3

ff 	�x� � �x � 1�2�x � 3�5�x � 6�4

f

f �x� � earctan xf �x� � e �1	�x�1�
51.

f �x� �
e x

1 � e x
f �x� � ln�1 � ln x�

�	2 � x � 	2f �x� � x tan x

f �x� � sx 2 � 1 � x

f �x� �
x2

�x � 2�2
f �x� �

x 2

x 2 � 1

f

�2 � t � 2f �t� � t � cos t

0 � � � 2f ��� � 2 cos � � cos2�

f �x� � ln�x 4 � 27�C�x� � x1	3�x � 4�41.

B�x� � 3x 2	3 � xA�x� � xsx � 3 
39.

h�x� � x5 � 2x 3 � xh�x� � �x � 1�5 � 5x � 2

t�x� � 200 � 8x 3 � x 4f �x� � 2 � 2x 2 � x 4

f �x� � 2 � 3x � x 3f �x� � 2x 3 � 3x 2 � 12x

26. , if ,

if , if ,

if , inflection point 

27. if , if ,

, , if 

28. if , if ,

, , ,

if , if 

29. and for all 

30. Suppose , and and 

for all .

(a) Sketch a possible graph for .

(b) How many solutions does the equation have?

Why?

(c) Is it possible that ? Why?

31–32 The graph of the derivative of a continuous function 

is shown.

(a) On what intervals is increasing or decreasing?

(b) At what values of x does have a local maximum or

minimum?

(c) On what intervals is concave upward or downward?

(d) State the x-coordinate(s) of the point(s) of inflection.

(e) Assuming that , sketch a graph of f.

32.

33–44

(a) Find the intervals of increase or decrease.

(b) Find the local maximum and minimum values.

(c) Find the intervals of concavity and the inflection points.

y

0 x2 4 6 8

_2

y=fª(x)

2

2 4 6 8

y

0 x

_2

y=fª(x)

2

31.

f �0� � 0

f

f

f

ff 	

f 	�2� �
1

3

f �x� � 0

f

x

f ��x� � 0f 	�x� � 0f �3� � 2,  f 	�3� �
1

2

xf ��x� � 0f 	�x� � 0

x � 3f ��x� � 00 � x � 3f ��x� � 0

f ��x� � �f �x�lim
x 
l

 �
 f �x� � 1f 	�2� � 0


 x 
 � 2f 	�x� � 0
 x 
 � 2f 	�x� � 0

x � 2f ��x� � 0lim
x 
l

 2
 
 f 	�x� 
 � �f 	��2� � 0


 x 
 � 2f 	�x� � 0
 x 
 � 2f 	�x� � 0

�0, 1��2 � x � 0f ��x� � 0


 x 
 � 2f 	�x� � �11 � 
 x 
 � 2f 	�x� � 0


 x 
 � 1f 	�x� � 0f 	�1� � f 	��1� � 0
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; 65. A drug response curve describes the level of medication in

the bloodstream after a drug is administered.  A surge func-

tion is often used to model the response

curve, reflecting an initial surge in the drug level and then a

more gradual decline.  If, for a particular drug,

, and is measured in minutes, estimate the

times corresponding to the inflection points and explain

their significance.  If you have a graphing device, use it to

graph the drug response curve.

66. The family of bell-shaped curves

occurs in probability and statistics, where it is called the nor-

mal density function. The constant is called the mean and

the positive constant is called the standard deviation. For

simplicity, let’s scale the function so as to remove the factor

and let’s analyze the special case where .

So we study the function

(a) Find the asymptote, maximum value, and inflection points

of .

(b) What role does play in the shape of the curve?

; (c) Illustrate by graphing four members of this family on the

same screen.

Find a cubic function that has a

local maximum value of at and a local minimum value

of 0 at 1.

68. For what values of the numbers and does the function

have the maximum value ?

69. Show that the curve has three points

of inflection and they all lie on one straight line.

70. Show that the curves and touch the curve

at its inflection points.

71. Suppose is differentiable on an interval and for

all numbers in except for a single number . Prove that 

is increasing on the entire interval .

72–74 Assume that all of the functions are twice differentiable

and the second derivatives are never 0.

72. (a) If and are concave upward on , show that is

concave upward on .

(b) If is positive and concave upward on , show that the

function is concave upward on .

73. (a) If and are positive, increasing, concave upward func-

tions on , show that the product function is concave

upward on .

(b) Show that part (a) remains true if and are both 

decreasing.

tf

I

ftI

tf

It�x� � � f �x�� 2

If

I

f � tItf

I

fcIx

f 	�x� � 0If

y � e�x sin x

y � �e�xy � e�x

y � �1 � x�	�1 � x 2�

f �2� � 1

f �x� � axe bx
2

ba

�23

f �x� � ax 3 � bx 2 � cx � d67.

�

f

f �x� � e�x
2	�2� 2�

� � 01	(�s2 )

�

�

y �
1

�s2 
 e��x���2	�2� 2�

tp � 4, k � 0.07

A � 0.01,

S�t� � At pe�kt

58.

59–60 Estimate the intervals of concavity to one decimal place

by using a computer algebra system to compute and graph .

59. 60.

61. A graph of a population of yeast cells in a new laboratory

culture as a function of time is shown.

(a) Describe how the rate of population increase varies.

(b) When is this rate highest?

(c) On what intervals is the population function concave

upward or downward?

(d) Estimate the coordinates of the inflection point.

62. Let be the temperature at time where you live and sup-

pose that at time you feel uncomfortably hot. How do

you feel about the given data in each case?

(a) (b)

(c) (d)

Let be a measure of the knowledge you gain by studying

for a test for t hours. Which do you think is larger,

or ? Is the graph of K concave

upward or concave downward? Why?

Coffee is being poured into the mug shown in the figure at a

constant rate (measured in volume per unit time). Sketch a

rough graph of the depth of the coffee in the mug as a func-

tion of time. Account for the shape of the graph in terms of

concavity. What is the significance of the inflection point?

64.

K�3� � K�2�K�8� � K�7�

K�t�63.

f 	�3� � �2,  f ��3� � �4f 	�3� � �2,  f ��3� � 4

f 	�3� � 2,  f ��3� � �4f 	�3� � 2,  f ��3� � 4

t � 3

tf �t�

2 6 10 14 184 8 12 160

Time (in hours)

Number
of

yeast cells

100

200

300

400

500

600

700

f �x� �
x 2 tan�1 x

1 � x 3
f �x� �

x 4 � x 3 � 1

sx 2 � x � 1 

f �

CAS

f �x� � x 3�x � 2�4
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79. Prove that if is a point of inflection of the graph 

of and exists in an open interval that contains , then

. [Hint: Apply the First Derivative Test and 

Fermat’s Theorem to the function .]

80. Show that if , then , but is not an

inflection point of the graph of .

81. Show that the function has an inflection point at

but does not exist.

82. Suppose that is continuous and , but

. Does have a local maximum or minimum at ?

Does have a point of inflection at ?

83. The three cases in the First Derivative Test cover the

situations one commonly encounters but do not exhaust all

possibilities. Consider the functions whose values

at 0 are all 0 and, for 

(a) Show that 0 is a critical number of all three functions but

their derivatives change sign infinitely often on both sides

of 0.

(b) Show that has neither a local maximum nor a local mini-

mum at 0, has a local minimum, and has a local 

maximum.

ht
f

h�x� � x 4 ��2 � sin 
1

x
�

t�x� � x 4 �2 � sin 
1

x
�f �x� � x 4 sin 

1

x

x � 0,

f, t, and h

cf

cff ��c� � 0

f 	�c� � f ��c� � 0f �

t��0��0, 0�
t�x� � x 
 x 


f

�0, 0�f ��0� � 0f �x� � x 4

t � f 	

f ��c� � 0

cf �f

�c, f �c��(c) Suppose is increasing and is decreasing. Show, by 

giving three examples, that may be concave upward,

concave downward, or linear. Why doesn’t the argument

in parts (a) and (b) work in this case?

74. Suppose and are both concave upward on . 

Under what condition on will the composite function

be concave upward?

Show that for . [Hint: Show that

is increasing on .]

76. (a) Show that for .

(b) Deduce that for .

(c) Use mathematical induction to prove that for and

any positive integer ,

77. Show that a cubic function (a third-degree polynomial)

always has exactly one point of inflection. If its graph has 

three -intercepts , and , show that the -coordinate of

the inflection point is .

; 78. For what values of does the polynomial

have two inflection points? One inflec-

tion point? None? Illustrate by graphing for several values

of . How does the graph change as decreases?cc

P

P�x� � x 4 � cx 3 � x 2

c

�x1 � x2 � x3 �	3

xx3x1, x2x

e x � 1 � x �
x 2

2!
� 
 
 
 �

x n

n!

n

x � 0

x � 0e x � 1 � x �
1

2 x 2

x � 0e x � 1 � x

�0, 	2�f �x� � tan x � x

0 � x � 	2tan x � x75.

h�x� � f �t�x��
f

���, ��tf

ft
tf
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INDETERMINATE FORMS AND L’HOSPITAL’S RULE

Suppose we are trying to analyze the behavior of the function

Although is not defined when , we need to know how behaves near 1. In partic-

ular, we would like to know the value of the limit

In computing this limit we can’t apply Law 5 of limits (the limit of a quotient is the quo-

tient of the limits, see Section 2.3) because the limit of the denominator is 0. In fact,

although the limit in (1) exists, its value is not obvious because both numerator and denom-

inator approach and is not defined.

In general, if we have a limit of the form

where both and as , then this limit may or may not exist and is

called an indeterminate form of type . We met some limits of this type in Chapter 2. For
0

0

xl at�x�l 0f �x�l 0

lim
xl a

 
 f �x�

t�x�

0

00

lim
xl1

 
ln x

x � 1
1

Fx � 1F

F�x� �
ln x

x � 1

4.4



rational functions, we can cancel common factors:

We used a geometric argument to show that

But these methods do not work for limits such as (1), so in this section we introduce a sys-

tematic method, known as l’Hospital’s Rule, for the evaluation of indeterminate forms.

Another situation in which a limit is not obvious occurs when we look for a horizontal

asymptote of F and need to evaluate the limit

It isn’t obvious how to evaluate this limit because both numerator and denominator become

large as . There is a struggle between numerator and denominator. If the numerator

wins, the limit will be ; if the denominator wins, the answer will be 0. Or there may be

some compromise, in which case the answer may be some finite positive number.

In general, if we have a limit of the form

where both (or ) and (or ), then the limit may or may not exist

and is called an indeterminate form of type . We saw in Section 2.6 that this type of

limit can be evaluated for certain functions, including rational functions, by dividing

numerator and denominator by the highest power of that occurs in the denominator. For

instance,

This method does not work for limits such as (2), but l’Hospital’s Rule also applies to this

type of indeterminate form.

L’HOSPITAL’S RULE Suppose and are differentiable and on an open 

interval that contains (except possibly at ). Suppose that

and

or that and

(In other words, we have an indeterminate form of type or .) Then

if the limit on the right side exists (or is or ).���

lim
xl a

 
 f �x�

t�x�
� lim

xl a
 
 f 	�x�

t	�x�

�	�
0

0

 lim
xl a

 t�x� � �� lim
xl a

 f �x� � ��

 lim
xl a

 t�x� � 0 lim
xl a

 f �x� � 0

aaI

t	�x� � 0tf

lim
xl�

 
x 2 � 1

2x 2 � 1
� lim

xl�
 

1 �
1

x 2

2 �
1

x 2

�
1 � 0

2 � 0
�

1

2

x

�	�

��t�x�l ���f �x�l �

lim
xl a

 
 f �x�

t�x�

�

xl �

lim
xl�

 
ln x

x � 12

lim
xl 0

 
sin x

x
� 1

lim
xl1

 
x 2 � x

x 2 � 1
� lim

xl1
 

x�x � 1�

�x � 1��x � 1�
� lim

xl1
 

x

x � 1
�

1

2
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L’Hospital’s Rule is named after a 

French nobleman, the Marquis de l’Hospital

(1661–1704), but was discovered by a Swiss 

mathematician, John Bernoulli (1667–1748). You

might sometimes see l’Hospital spelled as 

l’Hôpital, but he spelled his own name l’Hospital,

as was common in the 17th century. See Exer-

cise 77 for the example that the Marquis used to

illustrate his rule. See the project on page 307 

for further historical details.

L’HOSPITAL



L’Hospital’s Rule says that the limit of a quotient of functions is equal to the

limit of the quotient of their derivatives, provided that the given conditions are satisfied. It

is especially important to verify the conditions regarding the limits of and before using

l’Hospital’s Rule.

L’Hospital’s Rule is also valid for one-sided limits and for limits at infinity or

negative infinity; that is, “ ” can be replaced by any of the symbols , ,

, or .

For the special case in which , and are continuous, and

, it is easy to see why l’Hospital’s Rule is true. In fact, using the alternative form

of the definition of a derivative, we have

It is more difficult to prove the general version of l’Hospital’s Rule. See Appendix F.

EXAMPLE 1 Find .

SOLUTION Since

we can apply l’Hospital’s Rule:

M

EXAMPLE 2 Calculate .

SOLUTION We have and , so l’Hospital’s Rule gives

Since and as , the limit on the right side is also indeterminate,

but a second application of l’Hospital’s Rule gives

Mlim
x 
l

 
�

 
e x

x 2
� lim

x 
l

 
�

 
e x

2x
� lim

x 
l

 
�

 
e x

2
� �

xl �2xl �e x
l �

lim
xl�

 
e x

x 2
� lim

x 
l

 
�

 

d

dx
	e x�

d

dx
	x 2�

� lim
xl�

 
e x

2x

lim xl� x 2
� �lim xl� e x

� �

lim
xl�

 
e x

x 2

� lim
xl1

 
1

x
� 1 lim

xl1
 

ln x

x � 1
� lim

xl1
 

d

dx
 	ln x�

d

dx
 	x � 1�

� lim
xl1

 
1
x

1

lim
xl1

 	x � 1� � 0andlim
xl1

 ln x � ln 1 � 0

lim
 

xl1
 

ln x

x � 1
V

� lim
xl a

 
 f 	x�

t	x�
� lim

xl a
 
 f 	x� � f 	a�

t	x� � t	a�

� lim
xl a

 

 f 	x� � f 	a�

x � a

t	x� � t	a�

x � a

 lim
xl a

 
 f �	x�

t�	x�
�

 f �	a�

t�	a�
�

lim
 

xl a
 
 f 	x� � f 	a�

x � a

lim
 

xl a
 
t	x� � t	a�

x � a

t�	a� � 0

t�f �f 	a� � t	a� � 0NOTE 3

xl ��xl �

xl a�xl a�xl a
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FIGURE 1

N Figure 1 suggests visually why l’Hospital’s

Rule might be true. The first graph shows two

differentiable functions and , each of which

approaches as . If we were to zoom in

toward the point , the graphs would start

to look almost linear. But if the functions actually

were linear, as in the second graph, then their

ratio would be

which is the ratio of their derivatives. This sug-

gests that

lim
x 
l

 a
 
 f 	x�

t	x�
� lim

x 
l

 a
 
 f �	x�

t�	x�

m1	x � a�

m2	x � a�
�

m1

m2

	a, 0�
x l a0

tf

| Notice that when using l’Hospital’s Rule we

differentiate the numerator and denominator

separately. We do not use the Quotient Rule.

N The graph of the function of Example 2 is

shown in Figure 2. We have noticed previously

that exponential functions grow far more rapidly

than power functions, so the result of Example 2

is not unexpected. See also Exercise 69.

y=´
≈

10

20

0

FIGURE 2



EXAMPLE 3 Calculate .

SOLUTION Since and as , l’Hospital’s Rule applies:

Notice that the limit on the right side is now indeterminate of type . But instead of

applying l’Hospital’s Rule a second time as we did in Example 2, we simplify the

expression and see that a second application is unnecessary:

M

EXAMPLE 4 Find . (See Exercise 38 in Section 2.2.)

SOLUTION Noting that both and as , we use l’Hospital’s Rule:

Since the limit on the right side is still indeterminate of type , we apply l’Hospital’s

Rule again:

Because , we simplify the calculation by writing

We can evaluate this last limit either by using l’Hospital’s Rule a third time or by

writing as and making use of our knowledge of trigonometric limits.

Putting together all the steps, we get

M

EXAMPLE 5 Find .

SOLUTION If we blindly attempted to use l’Hospital’s Rule, we would get

|

This is wrong! Although the numerator as , notice that the denomi-

nator does not approach , so l’Hospital’s Rule can’t be applied here.0	1 � cos x�
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N The graph of the function of Example 3 is

shown in Figure 3. We have discussed previously

the slow growth of logarithms, so it isn’t surpris-

ing that this ratio approaches as . See

also Exercise 70.

x l �0

0

_1

2

10,000

y= ln x
Œ„x

FIGURE 3

N The graph in Figure 4 gives visual confirma-

tion of the result of Example 4. If we were to 

zoom in too far, however, we would get an 

inaccurate graph because is close to 

when is small. See Exercise 38(d) in 

Section 2.2.

x
xtan x

FIGURE 4

y= tan x-x
˛

0
_1 1
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The required limit is, in fact, easy to find because the function is continuous at and

the denominator is nonzero there:

M

Example 5 shows what can go wrong if you use l’Hospital’s Rule without thinking.

Other limits can be found using l’Hospital’s Rule but are more easily found by other meth-

ods. (See Examples 3 and 5 in Section 2.3, Example 3 in Section 2.6, and the discussion

at the beginning of this section.) So when evaluating any limit, you should consider other

methods before using l’Hospital’s Rule.

INDETERMINATE PRODUCTS

If and (or ), then it isn’t clear what the value of

, if any, will be. There is a struggle between and . If wins, the answer

will be ; if wins, the answer will be (or ). Or there may be a compromise where

the answer is a finite nonzero number. This kind of limit is called an indeterminate form

of type . We can deal with it by writing the product as a quotient:

or

This converts the given limit into an indeterminate form of type or so that we can

use l’Hospital’s Rule.

EXAMPLE 6 Evaluate .

SOLUTION The given limit is indeterminate because, as , the first factor 

approaches 0 while the second factor approaches . Writing , we

have as , so l’Hospital’s Rule gives

M

In solving Example 6 another possible option would have been to write

This gives an indeterminate form of the type , but if we apply l’Hospital’s Rule we get

a more complicated expression than the one we started with. In general, when we rewrite

an indeterminate product, we try to choose the option that leads to the simpler limit.

INDETERMINATE DIFFERENCES

If and , then the limit

is called an indeterminate form of type . Again there is a contest between and .

Will the answer be ( wins) or will it be ( wins) or will they compromise on a finite

number? To find out, we try to convert the difference into a quotient (for instance, by using
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0

y

x1

y=x ln x

FIGURE 5

N Figure 5 shows the graph of the function in

Example 6. Notice that the function is undefined

at ; the graph approaches the origin but

never quite reaches it.

x � 0



a common denominator, or rationalization, or factoring out a common factor) so that we

have an indeterminate form of type or .

EXAMPLE 7 Compute .

SOLUTION First notice that and as , so the limit is inde-

terminate. Here we use a common denominator:

Note that the use of l’Hospital’s Rule is justified because and 

as . M

INDETERMINATE POWERS

Several indeterminate forms arise from the limit

1. and type 

2. and type 

3. and type 

Each of these three cases can be treated either by taking the natural logarithm:

,

or by writing the function as an exponential:

(Recall that both of these methods were used in differentiating such functions.) In either

method we are led to the indeterminate product , which is of type .

EXAMPLE 8 Calculate .

SOLUTION First notice that as , we have and , so the

given limit is indeterminate. Let

Then

so l’Hospital’s Rule gives

So far we have computed the limit of , but what we want is the limit of . To find this yln y
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we use the fact that :

M

EXAMPLE 9 Find .

SOLUTION Notice that this limit is indeterminate since for any but 

for any . We could proceed as in Example 8 or by writing the function as an 

exponential:

In Example 6 we used l’Hospital’s Rule to show that

Therefore
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N The graph of the function , , is

shown in Figure 6. Notice that although is not

defined, the values of the function approach as

. This confirms the result of Example 9.x l 0�

1

00

x � 0y � x x

2

0
2_1

FIGURE 6

5–64 Find the limit. Use l’Hospital’s Rule where appropriate. If

there is a more elementary method, consider using it. If l’Hospital’s

Rule doesn’t apply, explain why.

5. 6.

7. 8.

9. 10.

11. 12.
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1–4 Given that

which of the following limits are indeterminate forms? For those

that are not an indeterminate form, evaluate the limit where 

possible.

(a) (b)
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63. 64.

; 65–66 Use a graph to estimate the value of the limit. Then use

l’Hospital’s Rule to find the exact value.

65. 66.

; 67–68 Illustrate l’Hospital’s Rule by graphing both and

near to see that these ratios have the same limit

as . Also calculate the exact value of the limit.

67. ,

68. ,

Prove that

for any positive integer . This shows that the exponential

function approaches infinity faster than any power of .

70. Prove that

for any number . This shows that the logarithmic func-

tion approaches more slowly than any power of .

71. What happens if you try to use l’Hospital’s Rule to evaluate

Evaluate the limit using another method.

72. If an object with mass is dropped from rest, one model for

its speed after seconds, taking air resistance into account,

is

where is the acceleration due to gravity and is a positive

constant. (In Chapter 9 we will be able to deduce this equa-

tion from the assumption that the air resistance is propor-

tional to the speed of the object; is the proportionality 

constant.)

(a) Calculate . What is the meaning of this limit?

(b) For fixed , use l’Hospital’s Rule to calculate .

What can you conclude about the velocity of a falling

object in a vacuum?
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the arc . Let be the area of the triangle . Find

.

79. If is continuous, , and , evaluate

80. For what values of and is the following equation true?

If is continuous, use l’Hospital’s Rule to show that

Explain the meaning of this equation with the aid of a 

diagram.

82. If is continuous, show that

83. Let

(a) Use the definition of derivative to compute .

(b) Show that has derivatives of all orders that are defined

on . [Hint: First show by induction that there is a

polynomial and a nonnegative integer such that

for .]

; 84. Let

(a) Show that is continuous at .

(b) Investigate graphically whether is differentiable at by

zooming in several times toward the point on the

graph of .

(c) Show that is not differentiable at . How can you 

reconcile this fact with the appearance of the graphs in

part (b)?
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PQRB	�PR73. If an initial amount of money is invested at an interest rate

compounded times a year, the value of the investment

after years is

If we let , we refer to the continuous compounding

of interest. Use l’Hospital’s Rule to show that if interest is

compounded continuously, then the amount after years is

74. If a metal ball with mass is projected in water and the force

of resistance is proportional to the square of the velocity, then

the distance the ball travels in time is

where is a positive constant. Find .

75. If an electrostatic field acts on a liquid or a gaseous polar

dielectric, the net dipole moment per unit volume is

Show that .

76. A metal cable has radius and is covered by insulation, so

that the distance from the center of the cable to the exterior of

the insulation is . The velocity of an electrical impulse in

the cable is

where is a positive constant. Find the following limits and

interpret your answers.

(a) (b)

77. The first appearance in print of l’Hospital’s Rule was in 

the book Analyse des Infiniment Petits published by the 

Marquis de l’Hospital in 1696. This was the first calculus 

textbook ever published and the example that the Marquis 

used in that book to illustrate his rule was to find the limit 

of the function

as approaches , where . (At that time it was common

to write instead of .) Solve this problem.

78. The figure shows a sector of a circle with central angle . Let

be the area of the segment between the chord and PRA	�
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L’Hospital’s Rule was first published in 1696 in the Marquis de l’Hospital’s calculus textbook

Analyse des Infiniment Petits, but the rule was discovered in 1694 by the Swiss mathematician

John (Johann) Bernoulli. The explanation is that these two mathematicians had entered into a

curious business arrangement whereby the Marquis de l’Hospital bought the rights to Bernoulli’s

mathematical discoveries. The details, including a translation of l’Hospital’s letter to Bernoulli

proposing the arrangement, can be found in the book by Eves [1].

Write a report on the historical and mathematical origins of l’Hospital’s Rule. Start by pro-

viding brief biographical details of both men (the dictionary edited by Gillispie [2] is a good

source) and outline the business deal between them. Then give l’Hospital’s statement of his rule,

which is found in Struik’s sourcebook [4] and more briefly in the book of Katz [3]. Notice that

l’Hospital and Bernoulli formulated the rule geometrically and gave the answer in terms of dif-

ferentials. Compare their statement with the version of l’Hospital’s Rule given in Section 4.4 and

show that the two statements are essentially the same.

1. Howard Eves, In Mathematical Circles (Volume 2: Quadrants III and IV) (Boston: Prindle,

Weber and Schmidt, 1969), pp. 20–22.

2. C. C. Gillispie, ed., Dictionary of Scientific Biography (New York: Scribner’s, 1974). See the

article on Johann Bernoulli by E. A. Fellmann and J. O. Fleckenstein in Volume II and the

article on the Marquis de l’Hospital by Abraham Robinson in Volume VIII.

3. Victor Katz, A History of Mathematics: An Introduction (New York: HarperCollins, 1993),

p. 484.

4. D. J. Struik, ed., A Sourcebook in Mathematics, 1200–1800 (Princeton, NJ: Princeton Uni-

versity Press, 1969), pp. 315–316.

THE ORIGINS OF L’HOSPITAL’S RULEW R I T I N G

P R O J E C T

www.stewartcalculus.com
The Internet is another source of infor-

mation for this project. Click on History 

of Mathematics for a list of reliable websites.
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SUMMARY OF CURVE SKETCHING

So far we have been concerned with some particular aspects of curve sketching: domain,

range, and symmetry in Chapter 1; limits, continuity, and asymptotes in Chapter 2; deriva-

tives and tangents in Chapters 2 and 3; and extreme values, intervals of increase and

decrease, concavity, points of inflection, and l’Hospital’s Rule in this chapter. It is now

time to put all of this information together to sketch graphs that reveal the important fea-

tures of functions.

You might ask: Why don’t we just use a graphing calculator or computer to graph a

curve? Why do we need to use calculus?

It’s true that modern technology is capable of producing very accurate graphs. But even

the best graphing devices have to be used intelligently. We saw in Section 1.4 that it is

extremely important to choose an appropriate viewing rectangle to avoid getting a mis-

leading graph. (See especially Examples 1, 3, 4, and 5 in that section.) The use of calculus

enables us to discover the most interesting aspects of graphs and in many cases to calcu-

late maximum and minimum points and inflection points exactly instead of approximately.

For instance, Figure 1 shows the graph of . At first

glance it seems reasonable: It has the same shape as cubic curves like , and it

appears to have no maximum or minimum point. But if you compute the derivative, you

will see that there is a maximum when and a minimum when . Indeed, if

we zoom in to this portion of the graph, we see that behavior exhibited in Figure 2. Without

calculus, we could easily have overlooked it.

In the next section we will graph functions by using the interaction between calculus

and graphing devices. In this section we draw graphs by first considering the following 
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information. We don’t assume that you have a graphing device, but if you do have one you

should use it as a check on your work.

GUIDELINES FOR SKETCHING A CURVE

The following checklist is intended as a guide to sketching a curve by hand. Not

every item is relevant to every function. (For instance, a given curve might not have an

asymptote or possess symmetry.) But the guidelines provide all the information you need

to make a sketch that displays the most important aspects of the function.

A. Domain It’s often useful to start by determining the domain of , that is, the set of

values of for which is defined.

B. Intercepts The -intercept is and this tells us where the curve intersects the -axis.

To find the -intercepts, we set and solve for . (You can omit this step if the

equation is difficult to solve.)

C. Symmetry

(i) If for all in , that is, the equation of the curve is unchanged

when is replaced by , then is an even function and the curve is symmetric about

the -axis. This means that our work is cut in half. If we know what the curve looks like

for , then we need only reflect about the -axis to obtain the complete curve [see

Figure 3(a)]. Here are some examples: , and .

(ii) If for all in , then is an odd function and the curve is

symmetric about the origin. Again we can obtain the complete curve if we know what

it looks like for . [Rotate 180° about the origin; see Figure 3(b).] Some simple

examples of odd functions are , and .

(iii) If for all in , where is a positive constant, then is called

a periodic function and the smallest such number is called the period. For instance,

has period and has period . If we know what the graph looks

like in an interval of length , then we can use translation to sketch the entire graph (see

Figure 4).

D. Asymptotes

(i) Horizontal Asymptotes. Recall from Section 2.6 that if either 

or , then the line is a horizontal asymptote of the curve .

If it turns out that (or ), then we do not have an asymptote to the

right, but that is still useful information for sketching the curve.

(ii) Vertical Asymptotes. Recall from Section 2.2 that the line is a vertical

asymptote if at least one of the following statements is true:
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FIGURE 3

(a) Even function: reflectional symmetry
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(For rational functions you can locate the vertical asymptotes by equating the denomi-

nator to 0 after canceling any common factors. But for other functions this method does

not apply.) Furthermore, in sketching the curve it is very useful to know exactly which

of the statements in (1) is true. If is not defined but is an endpoint of the domain

of , then you should compute or , whether or not this limit is

infinite.

(iii) Slant Asymptotes. These are discussed at the end of this section.

E. Intervals of Increase or Decrease Use the I /D Test. Compute and find the intervals 

on which is positive ( is increasing) and the intervals on which is negative

( is decreasing).

F. Local Maximum and Minimum Values Find the critical numbers of [the numbers 

where or does not exist]. Then use the First Derivative Test. If 

changes from positive to negative at a critical number , then is a local maximum.

If changes from negative to positive at , then is a local minimum. Although it

is usually preferable to use the First Derivative Test, you can use the Second Derivative

Test if and . Then implies that is a local minimum,

whereas implies that is a local maximum.

G. Concavity and Points of Inflection Compute and use the Concavity Test. The curve

is concave upward where and concave downward where . Inflec-

tion points occur where the direction of concavity changes.

H. Sketch the Curve Using the information in items A–G, draw the graph. Sketch the

asymptotes as dashed lines. Plot the intercepts, maximum and minimum points, and

inflection points. Then make the curve pass through these points, rising and falling

according to E, with concavity according to G, and approaching the asymptotes. If addi-

tional accuracy is desired near any point, you can compute the value of the derivative

there. The tangent indicates the direction in which the curve proceeds.

EXAMPLE 1 Use the guidelines to sketch the curve .

A. The domain is

B. The - and -intercepts are both 0.

C. Since , the function is even. The curve is symmetric about the -axis.

D.

Therefore the line is a horizontal asymptote. 

Since the denominator is 0 when , we compute the following limits:

Therefore the lines and are vertical asymptotes. This information

about limits and asymptotes enables us to draw the preliminary sketch in Figure 5,

showing the parts of the curve near the asymptotes.
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E.

Since when and when , is

increasing on and and decreasing on and .

F. The only critical number is . Since changes from positive to negative at 0,

is a local maximum by the First Derivative Test.

G.

Since for all , we have

and . Thus the curve is concave upward on the intervals

and and concave downward on . It has no point of inflection

since 1 and are not in the domain of .

H. Using the information in E–G, we finish the sketch in Figure 6. M

EXAMPLE 2 Sketch the graph of .

A. Domain

B. The - and -intercepts are both 0.

C. Symmetry: None

D. Since

there is no horizontal asymptote. Since as and is always

positive, we have

and so the line is a vertical asymptote.

E.

We see that when (notice that is not in the domain of ), so the

only critical number is 0. Since when and when

, is decreasing on and increasing on .

F. Since and changes from negative to positive at 0, is a local

(and absolute) minimum by the First Derivative Test.

G.

Note that the denominator is always positive. The numerator is the quadratic

, which is always positive because its discriminant is ,

which is negative, and the coefficient of is positive. Thus for all in the

domain of , which means that is concave upward on and there is no point

of inflection.

H. The curve is sketched in Figure 7. M
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EXAMPLE 3 Sketch the graph of .

A. The domain is .

B. The x- and -intercepts are both 0.

C. Symmetry: None

D. Because both x and become large as , we have . As ,

however, and so we have an indeterminate product that requires the use of

l’Hospital’s Rule:

Thus the x-axis is a horizontal asymptote.

E.

Since is always positive, we see that when , and when

. So f is increasing on and decreasing on .

F. Because and changes from negative to positive at ,

is a local (and absolute) minimum.

G.

Since if and if , is concave upward on 

and concave downward on . The inflection point is .

H. We use this information to sketch the curve in Figure 8. M

EXAMPLE 4 Sketch the graph of .

A. The domain is .

B. The -intercept is . The -intercepts occur when , that is,

, where is an integer.

C. is neither even nor odd, but for all and so is periodic and

has period . Thus, in what follows, we need to consider only and then

extend the curve by translation in part H.

D. Asymptotes: None

E.

Thus when 

. So is increasing on and decreasing on 

and .

F. From part E and the First Derivative Test, we see that the local minimum value 

is and the local maximum value is .

G. If we use the Quotient Rule again and simplify, we get

Because and for all , we know that when

, that is, . So is concave upward on and

concave downward on and . The inflection points are 
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H. The graph of the function restricted to is shown in Figure 9. Then we

extend it, using periodicity, to the complete graph in Figure 10.

M

EXAMPLE 5 Sketch the graph of .

A. The domain is

B. The -intercept is . To find the -intercept we set

We know that , so we have and therefore the 

-intercepts are .

C. Since , is even and the curve is symmetric about the -axis.

D. We look for vertical asymptotes at the endpoints of the domain. Since as

and also as , we have

Thus the lines and are vertical asymptotes.

E.

Since when and when , is increasing 

on and decreasing on .

F. The only critical number is . Since changes from positive to negative at ,

is a local maximum by the First Derivative Test.

G.

Since for all , the curve is concave downward on and has no

inflection point.

H. Using this information, we sketch the curve in Figure 11. M

SLANT ASYMPTOTES

Some curves have asymptotes that are oblique, that is, neither horizontal nor vertical. If

then the line is called a slant asymptote because the vertical distance y � mx � b
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Interval x f

� � � � CU on 

� � � � CD on 
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� x � 0
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f �	x�	x 2
� 1�33 � x 2

between the curve and the line approaches 0, as in Figure 12. (A

similar situation exists if we let .) For rational functions, slant asymptotes occur

when the degree of the numerator is one more than the degree of the denominator. In such

a case the equation of the slant asymptote can be found by long division as in the follow-

ing example.

EXAMPLE 6 Sketch the graph of .

A. The domain is .

B. The - and -intercepts are both 0.

C. Since , is odd and its graph is symmetric about the origin.

D. Since is never 0, there is no vertical asymptote. Since as and

as , there is no horizontal asymptote. But long division gives

as

So the line is a slant asymptote.

E.

Since for all (except 0), is increasing on .

F. Although , does not change sign at 0, so there is no local maximum or

minimum.

G.

Since when or , we set up the following chart:

The points of inflection are , and .

H. The graph of is sketched in Figure 13. Mf
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51. 52.

53. In the theory of relativity,  the mass of a particle is

where is the rest mass of the particle, is the mass when

the particle moves with speed relative to the observer, and 

is the speed of light. Sketch the graph of as a function of .

54. In the theory of relativity, the energy of a particle is

where is the rest mass of the particle, is its wave length,

and is Planck’s constant. Sketch the graph of as a function

of . What does the graph say about the energy?

55. The figure shows a beam of length embedded in concrete

walls. If a constant load is distributed evenly along its

length, the beam takes the shape of the deflection curve

where and are positive constants. ( is Young’s modulus of

elasticity and is the moment of inertia of a cross-section of

the beam.) Sketch the graph of the deflection curve.

56. Coulomb’s Law states that the force of attraction between two

charged particles is directly proportional to the product of the

charges and inversely proportional to the square of the distance

between them. The figure shows particles with charge 1 located

at positions 0 and 2 on a coordinate line and a particle with

charge at a position between them. It follows from Cou-

lomb’s Law that the net force acting on the middle particle is

where is a positive constant. Sketch the graph of the net force

function. What does the graph say about the force?

_1
x

x

+1

2

+1

0

k

Fsxd  2
k

x 2
1

k

sx 2 2d2
    0 , x , 2

x21

Wy

0

L

I

EIE

y  2
W

24EI
 x 4

1
WL

12EI
 x 3

2
WL2

24EI
 x 2

W

L

l

Eh

lm0

E  sm0
2 c4

1 h2 c 2yl
2 

vm

cv

mm0

m 

m0

s1 2 v
2yc2 

y  tan21S x 2 1

x 1 1
Dy  e3x

1 e22x
1–52 Use the guidelines of this section to sketch the curve.
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x
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68. Show that the curve has two slant asymptotes:

and . Use this fact to help sketch the

curve.

69. Show that the lines and are slant

asymptotes of the hyperbola .

70. Let . Show that

This shows that the graph of approaches the graph of ,

and we say that the curve is asymptotic to the

parabola . Use this fact to help sketch the graph of .

71. Discuss the asymptotic behavior of in the

same manner as in Exercise 70. Then use your results to help

sketch the graph of .

72. Use the asymptotic behavior of to sketch

its graph without going through the curve-sketching procedure

of this section.

f 	x� � cos x � 1
x 2

f

f 	x� � 	x 4
� 1�
x

fy � x 2

y � f 	x�
y � x 2f

lim
xl�


 � f 	x� � x 2 � � 0

f 	x� � 	x 3
� 1�
x

	x 2
a 2 � � 	y 2
b 2 � � 1

y � �	b
a�xy � 	b
a�x

y � �x � 2y � x � 2

y � sx2 � 4x 57–60 Find an equation of the slant asymptote. Do not sketch the

curve.

58.

59. 60.

61–66 Use the guidelines of this section to sketch the curve. In

guideline D find an equation of the slant asymptote.

61. 62.

63. 64.

65. 66.

67. Show that the curve has two slant asymptotes:

and . Use this fact to help sketch

the curve.

y � x � �
2y � x � �
2

y � x � tan�1x

y �
	x � 1�3

	x � 1�2
y �

2x 3
� x 2

� 1

x 2
� 1

y � e x
� xxy � x 2

� 4

y �
x 2

� 12

x � 2
y �

�2x 2
� 5x � 1

2x � 1

y �
5x 4

� x 2
� x

x 3
� x 2

� 2
y �

4x 3
� 2x 2

� 5

2x 2
� x � 3

y �
2x 3

� x 2
� x � 3

x 2
� 2x

y �
x2

� 1

x � 1
57.

GRAPHING WITH CALCULUS AND CALCULATORS

The method we used to sketch curves in the preceding section was a culmination of much

of our study of differential calculus. The graph was the final object that we produced. In

this section our point of view is completely different. Here we start with a graph produced

by a graphing calculator or computer and then we refine it. We use calculus to make sure

that we reveal all the important aspects of the curve. And with the use of graphing devices

we can tackle curves that would be far too complicated to consider without technology.

The theme is the interaction between calculus and calculators.

EXAMPLE 1 Graph the polynomial . Use the graphs of 

and to estimate all maximum and minimum points and intervals of concavity.

SOLUTION If we specify a domain but not a range, many graphing devices will deduce a

suitable range from the values computed. Figure 1 shows the plot from one such device

if we specify that . Although this viewing rectangle is useful for showing

that the asymptotic behavior (or end behavior) is the same as for , it is obviously

hiding some finer detail. So we change to the viewing rectangle by 

shown in Figure 2.

From this graph it appears that there is an absolute minimum value of about 3

when (by using the cursor) and is decreasing on and increas-

ing on . Also, there appears to be a horizontal tangent at the origin and inflec-

tion points when and when is somewhere between and .

Now let’s try to confirm these impressions using calculus. We differentiate and get 

 f �	x� � 60x 4
� 60x 3

� 18x � 4

 f 		x� � 12x 5
� 15x 4

� 9x 2
� 4x

�1�2xx � 0

	�1.62, 
�
	�
, �1.62�fx � �1.62

�15.3

��50, 100���3, 2�
y � 2x 6

�5  x  5

f �

f 	f 	x� � 2x 6
� 3x 5

� 3x 3
� 2x 2

4.6

41,000

_1000
_5 5

y=ƒ

FIGURE 1

100

_50

_3 2

y=ƒ

FIGURE 2

N If you have not already read Section 1.4, you

should do so now. In particular, it explains how

to avoid some of the pitfalls of graphing devices

by choosing appropriate viewing rectangles.



When we graph in Figure 3 we see that changes from negative to positive when

; this confirms (by the First Derivative Test) the minimum value that we

found earlier. But, perhaps to our surprise, we also notice that changes from posi-

tive to negative when and from negative to positive when . This means

that has a local maximum at 0 and a local minimum when , but these were

hidden in Figure 2. Indeed, if we now zoom in toward the origin in Figure 4, we see

what we missed before: a local maximum value of 0 when and a local minimum

value of about when .

What about concavity and inflection points? From Figures 2 and 4 there appear to be

inflection points when is a little to the left of and when is a little to the right of 0.

But it’s difficult to determine inflection points from the graph of , so we graph the sec-

ond derivative in Figure 5. We see that changes from positive to negative when

and from negative to positive when . So, correct to two decimal

places, is concave upward on and and concave downward on

. The inflection points are and .

We have discovered that no single graph reveals all the important features of this

polynomial. But Figures 2 and 4, when taken together, do provide an accurate picture. M

EXAMPLE 2 Draw the graph of the function

in a viewing rectangle that contains all the important features of the function. Estimate

the maximum and minimum values and the intervals of concavity. Then use calculus to

find these quantities exactly.

SOLUTION Figure 6, produced by a computer with automatic scaling, is a disaster. Some

graphing calculators use by as the default viewing rectangle, so let’s

try it. We get the graph shown in Figure 7; it’s a major improvement.

The -axis appears to be a vertical asymptote and indeed it is because 

Figure 7 also allows us to estimate the -intercepts: about and . The exact val-

ues are obtained by using the quadratic formula to solve the equation ;

we get .

To get a better look at horizontal asymptotes, we change to the viewing rectangle

by in Figure 8. It appears that is the horizontal asymptote and

this is easily confirmed:

lim
xl�


 
x 2

� 7x � 3

x 2
� lim

xl�


 �1 �
7

x
�

3

x 2� � 1

y � 1��5, 10���20, 20�

3 � 10!*

_5 5

y=ƒ

FIGURE 6

10

_10

_10 10

y=ƒ

FIGURE 7

10

_5

_20 20

y=ƒ

y=1

FIGURE 8

x � (�7 � s37 )
2

x 2
� 7x � 3 � 0

�6.5�0.5x

lim
xl 0

 
x 2

� 7x � 3

x 2
� 


y

��10, 10���10, 10�

f 	x� �
x 2

� 7x � 3

x 2

V

	0.19, �0.05�	�1.23, �10.18�	�1.23, 0.19�
	0.19, 
�	�
, �1.23�f

x � 0.19x � �1.23

f �f �

f

x�1x

x � 0.35�0.1

x � 0

x � 0.35f

x � 0.35x � 0

f 		x�
x � �1.62

f 		x�f 	
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To estimate the minimum value we zoom in to the viewing rectangle by

in Figure 9. The cursor indicates that the absolute minimum value is about 

when , and we see that the function decreases on and and

increases on . The exact values are obtained by differentiating:

This shows that when and when and when

. The exact minimum value is .

Figure 9 also shows that an inflection point occurs somewhere between and

. We could estimate it much more accurately using the graph of the second deriv-

ative, but in this case it’s just as easy to find exact values. Since

we see that when . So is concave upward on and

and concave downward on . The inflection point is .

The analysis using the first two derivatives shows that Figures 7 and 8 display all the

major aspects of the curve. M

EXAMPLE 3 Graph the function .

SOLUTION Drawing on our experience with a rational function in Example 2, let’s start by

graphing in the viewing rectangle by . From Figure 10 we have

the feeling that we are going to have to zoom in to see some finer detail and also zoom

out to see the larger picture. But, as a guide to intelligent zooming, let’s first take a close

look at the expression for . Because of the factors and in the

denominator, we expect and to be the vertical asymptotes. Indeed

To find the horizontal asymptotes we divide numerator and denominator by :

This shows that , so the -axis is a horizontal asymptote.

It is also very useful to consider the behavior of the graph near the -intercepts using

an analysis like that in Example 11 in Section 2.6. Since is positive, does not

change sign at 0 and so its graph doesn’t cross the -axis at 0. But, because of the factor

, the graph does cross the -axis at and has a horizontal tangent there.

Putting all this information together, but without using derivatives, we see that the curve

has to look something like the one in Figure 11.
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	x � 2�2

x 2
�

	x � 4�4

x 4

�

1

x
�1 �

1

x
�3

�1 �
2

x
�2�1 �

4

x
�4

x 6

lim
xl 4

 
x 2	x � 1�3

	x � 2�2	x � 4�4
� 
andlim

xl2
 

x 2	x � 1�3

	x � 2�2	x � 4�4
� 


x � 4x � 2

	x � 4�4	x � 2�2f 	x�

��10, 10���10, 10�f

f 	x� �
x 2	x � 1�3

	x � 2�2	x � 4�4
V

(�9

7, �
71

27 )(�
, �
9

7 )	0, 
�

(�9

7, 0)f	x � 0�x � �
9

7f �	x� � 0

f �	x� �
14

x 3
�

18

x 4
�

2(7x � 9�

x 4

x � �2

x � �1

f (� 6

7 ) � �
37

12 � �3.08x � 0

x � �
6

7f 		x� � 0�
6

7 � x � 0f 		x� � 0

f 		x� � �
7

x 2
�

6

x 3
� �

7x � 6

x 3

	�0.9, 0�
	0, 
�	�
, �0.9�x � �0.9

�3.1��4, 2�
��3, 0�

SECTION 4.6 GRAPHING WITH CALCULUS AND CALCULATORS | | | | 317

2

_4

_3 0

y=ƒ

FIGURE 9

10

_10

_10 10
y=ƒ

FIGURE 10

FIGURE 11

x

y

1 2 3_1 4



Now that we know what to look for, we zoom in (several times) to produce the graphs

in Figures 12 and 13 and zoom out (several times) to get Figure 14.

We can read from these graphs that the absolute minimum is about and occurs

when . There is also a local maximum when and a local

minimum when . These graphs also show three inflection points near 

and and two between and . To estimate the inflection points closely we

would need to graph , but to compute by hand is an unreasonable chore. If you

have a computer algebra system, then it’s easy to do (see Exercise 15).

We have seen that, for this particular function, three graphs (Figures 12, 13, and 14)

are necessary to convey all the useful information. The only way to display all these

features of the function on a single graph is to draw it by hand. Despite the exaggera-

tions and distortions, Figure 11 does manage to summarize the essential nature of the

function. M

EXAMPLE 4 Graph the function . For , estimate all

maximum and minimum values, intervals of increase and decrease, and inflection points

correct to one decimal place.

SOLUTION We first note that is periodic with period . Also, is odd and 

for all . So the choice of a viewing rectangle is not a problem for this function: We start

with by . (See Figure 15.) 

It appears that there are three local maximum values and two local minimum values in

that window. To confirm this and locate them more accurately, we calculate that

and graph both and in Figure 16.f 	f

f 		x� � cos	x � sin 2x� � 	1 � 2 cos 2x�

1.1

_1.1

0

FIGURE 15

1.2

_1.2

0π π

y=ƒ

y=fª(x)

FIGURE 16

��1.1, 1.1��0, ��
x

� f 	x� �  1f2�f

0  x  �f 	x� � sin	x � sin 2x�

f �f �

0�1�1�5,

�35,x � 2.5�211

x � �0.3�0.00002x � �20

�0.02

0.05

_0.05

_100 1
y=ƒ

FIGURE 12

0.0001

_0.0001

_1.5 0.5
y=ƒ

FIGURE 13

500

_10
_1 10

y=ƒ

FIGURE 14

318 | | | | CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

N The family of functions

where is a constant, occurs in applications to

frequency modulation (FM) synthesis. A sine

wave is modulated by a wave with a different

frequency . The case where is

studied in Example 4. Exercise 25 explores

another special case.

c � 2	sin cx�

c

f 	x� � sin	x � sin cx�



Using zoom-in and the First Derivative Test, we find the following values to one deci-

mal place.

The second derivative is

Graphing both and in Figure 17, we obtain the following approximate values:

Having checked that Figure 15 does indeed represent accurately for , 

we can state that the extended graph in Figure 18 represents accurately for

. M

Our final example is concerned with families of functions. As discussed in Section 1.4,

this means that the functions in the family are related to each other by a formula that con-

tains one or more arbitrary constants. Each value of the constant gives rise to a member of

the family and the idea is to see how the graph of the function changes as the constant

changes.

EXAMPLE 5 How does the graph of vary as varies?

SOLUTION The graphs in Figures 19 and 20 (the special cases and ) show

two very different-looking curves. Before drawing any more graphs, let’s see what mem-

bers of this family have in common. Since

for any value of , they all have the -axis as a horizontal asymptote. A vertical asymp-

tote will occur when . Solving this quadratic equation, we get

. When , there is no vertical asymptote (as in Figure 19). When

, the graph has a single vertical asymptote because

When , there are two vertical asymptotes: (as in Figure 20).

Now we compute the derivative:

This shows that when (if ), when , and x � �1f 		x� � 0c � 1x � �1f 		x� � 0

f 		x� � �
2x � 2

	x 2
� 2x � c�2

x � �1 � s1 � c c � 1

lim
xl�1

 
1

x 2
� 2x � 1

� lim
xl�1

 
1

	x � 1�2
� 


x � �1c � 1

c � 1x � �1 � s1 � c 

x 2
� 2x � c � 0

xc

lim
xl�


 
1

x 2
� 2x � c

� 0

c � �2c � 2

cf 	x� � 1
	x 2
� 2x � c�V

�2�  x  2�

f

0  x  �f

 Inflection points:  	0, 0�, 	0.8, 0.97�, 	1.3, 0.97�, 	1.8, 0.97�, 	2.3, 0.97�

 Concave downward on: 	0, 0.8�, 	1.3, 1.8�, 	2.3, ��

 Concave upward on:  	0.8, 1.3�, 	1.8, 2.3�

f �f

f �	x� � �	1 � 2 cos 2x�2 sin	x � sin 2x� � 4 sin 2x cos	x � sin 2x�

 Local minimum values:  f 	1.0� � 0.94, f 	2.1� � 0.94

 Local maximum values: f 	0.6� � 1, f 	1.6� � 1, f 	2.5� � 1

 Intervals of decrease:  	0.6, 1.0�, 	1.6, 2.1�, 	2.5, ��

 Intervals of increase:  	0, 0.6�, 	1.0, 1.6�, 	2.1, 2.5�
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when . For , this means that increases on 

and decreases on . For , there is an absolute maximum value

. For , is a local maximum value and the

intervals of increase and decrease are interrupted at the vertical asymptotes.

Figure 21 is a “slide show” displaying five members of the family, all graphed in the

viewing rectangle by . As predicted, is the value at which a transi-

tion takes place from two vertical asymptotes to one, and then to none. As increases 

from , we see that the maximum point becomes lower; this is explained by the fact that

as . As decreases from , the vertical asymptotes become more

widely separated because the distance between them is , which becomes large

as . Again, the maximum point approaches the -axis because 

as .

There is clearly no inflection point when . For we calculate that

and deduce that inflection points occur when . So the inflection

points become more spread out as increases and this seems plausible from the last two

parts of Figure 21. M

c

x � �1 � s3�c � 1��3
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�x 2 � 2x � c�3

c � 1c � 1

c=3c=2c=1c=0c=_1

FIGURE 21 The family of functions ƒ=1/(≈+2x+c)
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See an animation of Figure 21 in

Visual 4.6.

TEC

9–10 Produce graphs of that reveal all the important aspects of

the curve. Estimate the intervals of increase and decrease and

intervals of concavity, and use calculus to find these intervals

exactly.

9.

10.

11–12

(a) Graph the function.

(b) Use l’Hospital’s Rule to explain the behavior as .

(c) Estimate the minimum value and intervals of concavity. Then

use calculus to find the exact values.

12. f �x� � xe1�x

f �x� � x 2 ln x11.

x l 0

f �x� �

1

x 8
�

2 � 108

x 4

f �x� � 1 �
1

x
�

8

x 2
�

1

x 3

f1–8 Produce graphs of that reveal all the important aspects of

the curve. In particular, you should use graphs of and to esti-

mate the intervals of increase and decrease, extreme values, inter-

vals of concavity, and inflection points.

1.

2.

3.

4.

5.

6.

7. ,

8. f �x� �

e x

x 2 � 9

�4 � x � 4f �x� � x 2 � 4x � 7 cos x

f �x� � tan x � 5 cos x

f �x� �

x

x 3 � x 2 � 4x � 1

f �x� �

x 2 � 1

40x 3 � x � 1

f �x� � x 6 � 10x 5 � 400x 4 � 2500x 3

f �x� � x6 � 15x 5 � 75x 4 � 125x 3 � x

f �x� � 4x 4 � 32x 3 � 89x 2 � 95x � 29

f �f 	

f
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the same time. Find all the maximum and minimum values

and inflection points. Then graph in the viewing rectangle

by and comment on symmetry.

26–33 Describe how the graph of varies as varies. Graph

several members of the family to illustrate the trends that you dis-

cover. In particular, you should investigate how maximum and

minimum points and inflection points move when changes. You

should also identify any transitional values of at which the basic

shape of the curve changes.

26. 27.

28. 29.

32. 33.

The family of functions , where , ,

and are positive numbers and , has been used to

model the concentration of a drug injected into the blood-

stream at time . Graph several members of this family.

What do they have in common? For fixed values of and ,

discover graphically what happens as increases. Then use

calculus to prove what you have discovered.

35. Investigate the family of curves given by , where

is a real number. Start by computing the limits as .

Identify any transitional values of where the basic shape

changes. What happens to the maximum or minimum points

and inflection points as changes? Illustrate by graphing sev-

eral members of the family.

36. Investigate the family of curves given by the equation

. Start by determining the transitional

value of at which the number of inflection points changes.

Then graph several members of the family to see what shapes

are possible. There is another transitional value of at which

the number of critical numbers changes. Try to discover it

graphically. Then prove what you have discovered.

37. (a) Investigate the family of polynomials given by the equa-

tion . For what values of does

the curve have minimum points?

(b) Show that the minimum and maximum points of every

curve in the family lie on the parabola . Illus-

trate by graphing this parabola and several members of

the family.

38. (a) Investigate the family of polynomials given by the equa-

tion . For what values of does

the curve have maximum and minimum points?

(b) Show that the minimum and maximum points of every

curve in the family lie on the curve . Illustrate

by graphing this curve and several members of the family.

y � x � x 3

cf �x� � 2x 3 � cx 2 � 2x

y � 1 � x 2

cf �x� � cx 4 � 2x 2 � 1

c

c

f �x� � x 4 � cx 2 � x

c

c

x l �
c

f �x� � xe�cx

b

aC

t � 0

b � aC

baf �t� � C�e�at � e�bt �34.

f �x� � cx � sin xf �x� �

1

�1 � x 2 �2 � cx 2

f �x� �

cx

1 � c 2x 2
31.f �x� � ln�x 2 � c�30.

f �x� � e�c�x
2

f �x� � xs c 2 � x 2 

f �x� � x 4 � cx 2f �x� � x 3 � cx

c

c

cf

��1.2, 1.2���2�, 2��
f

13–14 Sketch the graph by hand using asymptotes and intercepts,

but not derivatives. Then use your sketch as a guide to producing

graphs (with a graphing device) that display the major features of 

the curve. Use these graphs to estimate the maximum and mini-

mum values.

14.

15. If is the function considered in Example 3, use a computer

algebra system to calculate and then graph it to confirm

that all the maximum and minimum values are as given in the

example. Calculate and use it to estimate the intervals of

concavity and inflection points.

16. If is the function of Exercise 14, find and and use their

graphs to estimate the intervals of increase and decrease and

concavity of .

17–22 Use a computer algebra system to graph and to find 

and . Use graphs of these derivatives to estimate the intervals

of increase and decrease, extreme values, intervals of concavity,

and inflection points of .

17. 18.

19. ,

20.

21. 22.

23–24

(a) Graph the function.

(b) Explain the shape of the graph by computing the limit as

or as .

(c) Estimate the maximum and minimum values and then use 

calculus to find the exact values.

(d) Use a graph of to estimate the x-coordinates of the inflec-

tion points.

24.

25. In Example 4 we considered a member of the family of func-

tions that occur in FM synthesis. Here

we investigate the function with . Start by graphing in

the viewing rectangle by . How many local

maximum points do you see? The graph has more than are

visible to the naked eye. To discover the hidden maximum

and minimum points you will need to examine the graph of

very carefully. In fact, it helps to look at the graph of at f �f 	

��1.2, 1.2��0, ��
fc � 3

f �x� � sin�x � sin cx�

f �x� � �sin x�sin xf �x� � x 1�x23.
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OPTIMIZATION PROBLEMS

The methods we have learned in this chapter for finding extreme values have practical

applications in many areas of life. A businessperson wants to minimize costs and maxi-

mize profits. A traveler wants to minimize transportation time. Fermat’s Principle in optics

states that light follows the path that takes the least time. In this section and the next we

solve such problems as maximizing areas, volumes, and profits and minimizing distances,

times, and costs.

In solving such practical problems the greatest challenge is often to convert the word

problem into a mathematical optimization problem by setting up the function that is to be

maximized or minimized. Let’s recall the problem-solving principles discussed on page 76

and adapt them to this situation:

STEPS IN SOLVING OPTIMIZATION PROBLEMS

1. Understand the Problem The first step is to read the problem carefully until it is

clearly understood. Ask yourself: What is the unknown? What are the given quanti-

ties? What are the given conditions?

2. Draw a Diagram In most problems it is useful to draw a diagram and identify the

given and required quantities on the diagram.

3. Introduce Notation Assign a symbol to the quantity that is to be maximized or

minimized (let’s call it for now). Also select symbols for other

unknown quantities and label the diagram with these symbols. It may help to use

initials as suggestive symbols—for example, for area, for height, for time.

4. Express in terms of some of the other symbols from Step 3.

5. If has been expressed as a function of more than one variable in Step 4, use the

given information to find relationships (in the form of equations) among these

variables. Then use these equations to eliminate all but one of the variables in the

expression for . Thus will be expressed as a function of one variable , say,

. Write the domain of this function.

6. Use the methods of Sections 4.1 and 4.3 to find the absolute maximum or mini-

mum value of . In particular, if the domain of is a closed interval, then the

Closed Interval Method in Section 4.1 can be used.

EXAMPLE 1 A farmer has 2400 ft of fencing and wants to fence off a rectangular field

that borders a straight river. He needs no fence along the river. What are the dimensions

of the field that has the largest area?

SOLUTION In order to get a feeling for what is happening in this problem, let’s experiment

with some special cases. Figure 1 (not to scale) shows three possible ways of laying out 

the 2400 ft of fencing. 

FIGURE 1
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We see that when we try shallow, wide fields or deep, narrow fields, we get relatively

small areas. It seems plausible that there is some intermediate configuration that pro-

duces the largest area.

Figure 2 illustrates the general case. We wish to maximize the area of the rectangle.

Let and be the depth and width of the rectangle (in feet). Then we express in terms

of and :

We want to express as a function of just one variable, so we eliminate by expressing

it in terms of . To do this we use the given information that the total length of the fenc-

ing is 2400 ft. Thus 

From this equation we have , which gives

Note that 0 and (otherwise ). So the function that we wish to maxi-

mize is

The derivative is , so to find the critical numbers we solve the 

equation

which gives . The maximum value of must occur either at this critical number

or at an endpoint of the interval. Since , and ,

the Closed Interval Method gives the maximum value as .

[Alternatively, we could have observed that for all , so is always

concave downward and the local maximum at must be an absolute maximum.]

Thus the rectangular field should be 600 ft deep and 1200 ft wide. M

EXAMPLE 2 A cylindrical can is to be made to hold 1 L of oil. Find the dimensions

that will minimize the cost of the metal to manufacture the can.

SOLUTION Draw the diagram as in Figure 3, where is the radius and the height (both in

centimeters). In order to minimize the cost of the metal, we minimize the total surface

area of the cylinder (top, bottom, and sides). From Figure 4 we see that the sides are

made from a rectangular sheet with dimensions and h. So the surface area is

To eliminate we use the fact that the volume is given as 1 L, which we take to be

1000 cm . Thus

which gives . Substitution of this into the expression for gives
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Therefore the function that we want to minimize is

To find the critical numbers, we differentiate:

Then when , so the only critical number is .

Since the domain of is , we can’t use the argument of Example 1 concerning

endpoints. But we can observe that for and for

, so is decreasing for all to the left of the critical number and increas-

ing for all to the right. Thus must give rise to an absolute minimum.

[Alternatively, we could argue that as and as , so

there must be a minimum value of , which must occur at the critical number. See

Figure 5.]

The value of corresponding to is

Thus, to minimize the cost of the can, the radius should be cm and the height

should be equal to twice the radius, namely, the diameter. M

The argument used in Example 2 to justify the absolute minimum is a variant

of the First Derivative Test (which applies only to local maximum or minimum values) and

is stated here for future reference.

FIRST DERIVATIVE TEST FOR ABSOLUTE EXTREME VALUES Suppose that is a criti-

cal number of a continuous function defined on an interval.

(a) If for all and for all , then is the absolute

maximum value of .

(b) If for all and for all , then is the absolute

minimum value of .

An alternative method for solving optimization problems is to use implicit dif-

ferentiation. Let’s look at Example 2 again to illustrate the method. We work with the same

equations

but instead of eliminating h, we differentiate both equations implicitly with respect to r :

The minimum occurs at a critical number, so we set , simplify, and arrive at the

equations

and subtraction gives , or .h � 2r2r � h � 0
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EXAMPLE 3 Find the point on the parabola that is closest to the point .

SOLUTION The distance between the point and the point is

(See Figure 6.) But if lies on the parabola, then , so the expression for 

becomes

(Alternatively, we could have substituted to get in terms of alone.) Instead

of minimizing , we minimize its square:

(You should convince yourself that the minimum of occurs at the same point as the

minimum of , but is easier to work with.) Differentiating, we obtain

so when . Observe that when and when

, so by the First Derivative Test for Absolute Extreme Values, the absolute mini-

mum occurs when . (Or we could simply say that because of the geometric nature

of the problem, it’s obvious that there is a closest point but not a farthest point.) The

corresponding value of is . Thus the point on closest to 

is . M

EXAMPLE 4 A man launches his boat from point on a bank of a straight river, 3 km

wide, and wants to reach point , 8 km downstream on the opposite bank, as quickly as

possible (see Figure 7). He could row his boat directly across the river to point and

then run to , or he could row directly to , or he could row to some point between 

and and then run to . If he can row 6 km�h and run 8 km�h, where should he land to

reach as soon as possible? (We assume that the speed of the water is negligible com-

pared with the speed at which the man rows.)

SOLUTION If we let be the distance from to , then the running distance is

and the Pythagorean Theorem gives the rowing distance as

. We use the equation

Then the rowing time is and the running time is , so the total time

as a function of is

The domain of this function is . Notice that if , he rows to and if ,

he rows directly to . The derivative of is
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Thus, using the fact that , we have

The only critical number is . To see whether the minimum occurs at this criti-

cal number or at an endpoint of the domain , we evaluate at all three points:

Since the smallest of these values of occurs when , the absolute minimum

value of must occur there. Figure 8 illustrates this calculation by showing the graph 

of .

Thus the man should land the boat at a point km ( km) downstream from

his starting point. M

EXAMPLE 5 Find the area of the largest rectangle that can be inscribed in a semicircle

of radius .

SOLUTION 1 Let’s take the semicircle to be the upper half of the circle with

center the origin. Then the word inscribed means that the rectangle has two vertices on

the semicircle and two vertices on the -axis as shown in Figure 9.

Let be the vertex that lies in the first quadrant. Then the rectangle has sides of

lengths and , so its area is

To eliminate we use the fact that lies on the circle and so

. Thus

The domain of this function is . Its derivative is

which is 0 when , that is, (since ). This value of gives a 

maximum value of since and . Therefore the area of the largest

inscribed rectangle is

SOLUTION 2 A simpler solution is possible if we think of using an angle as a variable. Let 

be the angle shown in Figure 10. Then the area of the rectangle is
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We know that has a maximum value of 1 and it occurs when . So 

has a maximum value of and it occurs when .

Notice that this trigonometric solution doesn’t involve differentiation. In fact, we 

didn’t need to use calculus at all. M

APPLICATIONS TO BUSINESS AND ECONOMICS

In Section 3.7 we introduced the idea of marginal cost. Recall that if , the cost func-

tion, is the cost of producing units of a certain product, then the marginal cost is the rate

of change of with respect to . In other words, the marginal cost function is the deriva-

tive, , of the cost function.

Now let’s consider marketing. Let be the price per unit that the company can

charge if it sells units. Then is called the demand function (or price function) and we

would expect it to be a decreasing function of . If units are sold and the price per unit

is , then the total revenue is

and is called the revenue function. The derivative of the revenue function is called

the marginal revenue function and is the rate of change of revenue with respect to the

number of units sold.

If units are sold, then the total profit is

and is called the profit function. The marginal profit function is , the derivative of

the profit function. In Exercises 53–58 you are asked to use the marginal cost, revenue,

and profit functions to minimize costs and maximize revenues and profits.

EXAMPLE 6 A store has been selling 200 DVD burners a week at each. A mar-

ket survey indicates that for each rebate offered to buyers, the number of units sold

will increase by 20 a week. Find the demand function and the revenue function. How

large a rebate should the store offer to maximize its revenue?

SOLUTION If is the number of DVD burners sold per week, then the weekly increase in

sales is . For each increase of 20 units sold, the price is decreased by . So for

each additional unit sold, the decrease in price will be and the demand function

is

The revenue function is

Since , we see that when . This value of gives an

absolute maximum by the First Derivative Test (or simply by observing that the graph of

is a parabola that opens downward). The corresponding price is

and the rebate is . Therefore, to maximize revenue, the store should

offer a rebate of . M$125
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(d) Use the given information to write an equation that relates

the variables.

(e) Use part (d) to write the total area as a function of one 

variable.

(f) Finish solving the problem and compare the answer with

your estimate in part (a).

10. Consider the following problem: A box with an open top is to

be constructed from a square piece of cardboard, 3 ft wide, by

cutting out a square from each of the four corners and bending

up the sides. Find the largest volume that such a box can have.

(a) Draw several diagrams to illustrate the situation, some short

boxes with large bases and some tall boxes with small

bases. Find the volumes of several such boxes. Does it

appear that there is a maximum volume? If so, estimate it.

(b) Draw a diagram illustrating the general situation. Introduce

notation and label the diagram with your symbols.

(c) Write an expression for the volume.

(d) Use the given information to write an equation that relates

the variables.

(e) Use part (d) to write the volume as a function of one 

variable.

(f) Finish solving the problem and compare the answer with

your estimate in part (a).

11. A farmer wants to fence an area of 1.5 million square feet in a

rectangular field and then divide it in half with a fence parallel

to one of the sides of the rectangle. How can he do this so as to

minimize the cost of the fence?

12. A box with a square base and open top must have a volume of

32,000 cm . Find the dimensions of the box that minimize the

amount of material used.

If 1200 cm of material is available to make a box with a

square base and an open top, find the largest possible volume

of the box.

14. A rectangular storage container with an open top is to have a

volume of 10 m . The length of its base is twice the width.

Material for the base costs $10 per square meter. Material for

the sides costs $6 per square meter. Find the cost of materials

for the cheapest such container.

15. Do Exercise 14 assuming the container has a lid that is made

from the same material as the sides.

(a) Show that of all the rectangles with a given area, the one

with smallest perimeter is a square.

(b) Show that of all the rectangles with a given perimeter, the

one with greatest area is a square.

Find the point on the line that is closest to the 

origin.

18. Find the point on the line that is closest to the

point .

Find the points on the ellipse that are farthest

away from the point .s1, 0d

4x 2
1 y 2

 419.

s23, 1d

6x 1 y  9

y  4x 1 717.

16.

3

2
13.

3

1. Consider the following problem: Find two numbers whose sum

is 23 and whose product is a maximum.

(a) Make a table of values, like the following one, so that the

sum of the numbers in the first two columns is always 23.

On the basis of the evidence in your table, estimate the

answer to the problem.

(b) Use calculus to solve the problem and compare with your

answer to part (a).

2. Find two numbers whose difference is 100 and whose product

is a minimum.

3. Find two positive numbers whose product is 100 and whose

sum is a minimum.

4. Find a positive number such that the sum of the number and its

reciprocal is as small as possible.

5. Find the dimensions of a rectangle with perimeter 100 m

whose area is as large as possible.

6. Find the dimensions of a rectangle with area whose

perimeter is as small as possible.

7. A model used for the yield of an agricultural crop as a func-

tion of the nitrogen level in the soil (measured in appropriate

units) is

where is a positive constant. What nitrogen level gives the

best yield?

8. The rate at which photosynthesis takes

place for a species of phytoplankton is modeled by the function

where is the light intensity (measured in thousands of foot-

candles). For what light intensity is a maximum?

9. Consider the following problem: A farmer with 750 ft of fenc-

ing wants to enclose a rectangular area and then divide it into

four pens with fencing parallel to one side of the rectangle.

What is the largest possible total area of the four pens?

(a) Draw several diagrams illustrating the situation, some with

shallow, wide pens and some with deep, narrow pens. Find

the total areas of these configurations. Does it appear that

there is a maximum area? If so, estimate it.

(b) Draw a diagram illustrating the general situation. Introduce

notation and label the diagram with your symbols.

(c) Write an expression for the total area.
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der that will reach from the ground over the fence to the wall

of the building?

37. A cone-shaped drinking cup is made from a circular piece 

of paper of radius by cutting out a sector and joining the

edges and . Find the maximum capacity of such a cup.

38. A cone-shaped paper drinking cup is to be made to hold

of water. Find the height and radius of the cup that

will use the smallest amount of paper.

39. A cone with height is inscribed in a larger cone with 

height so that its vertex is at the center of the base of the

larger cone. Show that the inner cone has maximum volume

when .

40. An object with weight is dragged along a horizontal plane

by a force acting along a rope attached to the object. If the

rope makes an angle with a plane, then the magnitude of

the force is

where is a constant called the coefficient of friction. For

what value of is smallest?

41. If a resistor of ohms is connected across a battery of 

volts with internal resistance ohms, then the power 

(in watts) in the external resistor is

If and are fixed but varies, what is the maximum value

of the power?

42. For a fish swimming at a speed relative to the water, the

energy expenditure per unit time is proportional to . It is

believed that migrating fish try to minimize the total energy

required to swim a fixed distance. If the fish are swimming

against a current , then the time required to swim a

distance is and the total energy required to 

swim the distance is given by

where is the proportionality constant.

(a) Determine the value of that minimizes .

(b) Sketch the graph of .

Note: This result has been verified experimentally; 

migrating fish swim against a current at a speed greater

than the current speed.
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; 20. Find, correct to two decimal places, the coordinates of the

point on the curve that is closest to the point .

21. Find the dimensions of the rectangle of largest area that can

be inscribed in a circle of radius .

Find the area of the largest rectangle that can be inscribed in

the ellipse .

23. Find the dimensions of the rectangle of largest area that can

be inscribed in an equilateral triangle of side if one side of

the rectangle lies on the base of the triangle.

24. Find the dimensions of the rectangle of largest area that has

its base on the -axis and its other two vertices above the 

-axis and lying on the parabola .

25. Find the dimensions of the isosceles triangle of largest area

that can be inscribed in a circle of radius .

26. Find the area of the largest rectangle that can be inscribed in

a right triangle with legs of lengths 3 cm and 4 cm if two

sides of the rectangle lie along the legs.

27. A right circular cylinder is inscribed in a sphere of radius .

Find the largest possible volume of such a cylinder.

28. A right circular cylinder is inscribed in a cone with height 

and base radius . Find the largest possible volume of such a

cylinder.

29. A right circular cylinder is inscribed in a sphere of radius .

Find the largest possible surface area of such a cylinder.

A Norman window has the shape of a rectangle surmounted 

by a semicircle. (Thus the diameter of the semicircle is equal

to the width of the rectangle. See Exercise 56 on page 23.) If

the perimeter of the window is 30 ft, find the dimensions of

the window so that the greatest possible amount of light is

admitted.

31. The top and bottom margins of a poster are each 6 cm and the

side margins are each 4 cm. If the area of printed material on

the poster is fixed at 384 cm , find the dimensions of the

poster with the smallest area.

32. A poster is to have an area of 180 in with 1-inch margins at

the bottom and sides and a 2-inch margin at the top. What

dimensions will give the largest printed area?

A piece of wire 10 m long is cut into two pieces. One piece 

is bent into a square and the other is bent into an equilateral 

triangle. How should the wire be cut so that the total area

enclosed is (a) a maximum? (b) A minimum?

34. Answer Exercise 33 if one piece is bent into a square and the

other into a circle.

35. A cylindrical can without a top is made to contain of 

liquid. Find the dimensions that will minimize the cost of the

metal to make the can.

36. A fence 8 ft tall runs parallel to a tall building at a distance of

4 ft from the building. What is the length of the shortest lad-

V cm3

33.

2

2

30.
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r

h

r

r

y � 8 � x 2x

x

L

x 2�a2 � y 2�b 2
� 1

22.

r

�1, 1�y � tan x

SECTION 4.7 OPTIMIZATION PROBLEMS | | | | 329



330 | | | | CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

47. An oil refinery is located on the north bank of a straight river

that is 2 km wide. A pipeline is to be constructed from the

refinery to storage tanks located on the south bank of the 

river 6 km east of the refinery. The cost of laying pipe is

over land to a point on the north bank and

under the river to the tanks. To minimize the cost

of the pipeline, where should be located?

; 48. Suppose the refinery in Exercise 47 is located 1 km north of the

river. Where should be located?

The illumination of an object by a light source is directly propor-

tional to the strength of the source and inversely proportional 

to the square of the distance from the source. If two light

sources, one three times as strong as the other, are placed 10 ft

apart, where should an object be placed on the line between the

sources so as to receive the least illumination?

Find an equation of the line through the point that cuts

off the least area from the first quadrant.

51. Let and be positive numbers. Find the length of the shortest

line segment that is cut off by the first quadrant and passes

through the point .

52. At which points on the curve does the

tangent line have the largest slope?

(a) If is the cost of producing units of a commodity,

then the average cost per unit is . Show that

if the average cost is a minimum, then the marginal cost

equals the average cost.

(b) If , in dollars, find (i) the

cost, average cost, and marginal cost at a production level

of 1000 units; (ii) the production level that will minimize

the average cost; and (iii) the minimum average cost.

54. (a) Show that if the profit is a maximum, then the

marginal revenue equals the marginal cost.

(b) If is the cost

function and is the demand function,

find the production level that will maximize profit.

A baseball team plays in a stadium that holds 55,000 spectators.

With ticket prices at , the average attendance had been

27,000. When ticket prices were lowered to , the average

attendance rose to 33,000.

(a) Find the demand function, assuming that it is linear.

(b) How should ticket prices be set to maximize revenue?

56. During the summer months Terry makes and sells necklaces on

the beach. Last summer he sold the necklaces for each and

his sales averaged 20 per day. When he increased the price by

, he found that the average decreased by two sales per day.

(a) Find the demand function, assuming that it is linear.

(b) If the material for each necklace costs Terry , what

should the selling price be to maximize his profit?

$6

$1

$10

$8

$10

55.

psxd  1700 2 7x

Csxd  16,000 1 500x 2 1.6x 2
1 0.004x 3
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xCsxd53.

y  1 1 40x 3
2 3x 5

sa, bd

ba

s3, 5d50.

49.

P

P

$800,000ykm

P$400,000ykm

43. In a beehive, each cell is a regular hexagonal prism, open 

at one end with a trihedral angle at the other end as in the fig-

ure. It is believed that bees form their cells in such a way as to

minimize the surface area for a given volume, thus using the

least amount of wax in cell construction. Examination of these

cells has shown that the measure of the apex angle is amaz-

ingly consistent. Based on the geometry of the cell, it can be

shown that the surface area is given by

where , the length of the sides of the hexagon, and , the

height, are constants.

(a) Calculate .

(b) What angle should the bees prefer?

(c) Determine the minimum surface area of the cell (in terms

of and ).

Note: Actual measurements of the angle in beehives have

been made, and the measures of these angles seldom differ

from the calculated value by more than .

44. A boat leaves a dock at 2:00 PM and travels due south at a

speed of 20 kmyh. Another boat has been heading due east at

15 kmyh and reaches the same dock at 3:00 PM. At what time

were the two boats closest together?

45. Solve the problem in Example 4 if the river is 5 km wide and

point is only 5 km downstream from .

46. A woman at a point on the shore of a circular lake with

radius 2 mi wants to arrive at the point diametrically

opposite on the other side of the lake in the shortest possible

time. She can walk at the rate of 4 miyh and row a boat at

2 miyh. How should she proceed?
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this consumption . Using the graph, estimate the speed at

which has its minimum value.

Let be the velocity of light in air and the velocity of light

in water. According to Fermat’s Principle, a ray of light will

travel from a point in the air to a point in the water by a

path that minimizes the time taken. Show that

where (the angle of incidence) and (the angle of refrac-

tion) are as shown. This equation is known as Snell’s Law.

64. Two vertical poles and are secured by a rope 

going from the top of the first pole to a point on the ground

between the poles and then to the top of the second pole as in

the figure. Show that the shortest length of such a rope occurs

when .

65. The upper right-hand corner of a piece of paper, 12 in. by

8 in., as in the figure, is folded over to the bottom edge. How

would you fold it so as to minimize the length of the fold? In

other words, how would you choose to minimize ?
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G57. A manufacturer has been selling 1000 television sets a week

at each. A market survey indicates that for each 

rebate offered to the buyer, the number of sets sold will

increase by 100 per week.

(a) Find the demand function.

(b) How large a rebate should the company offer the buyer in

order to maximize its revenue?

(c) If its weekly cost function is , how

should the manufacturer set the size of the rebate in order

to maximize its profit?

58. The manager of a 100-unit apartment complex knows from

experience that all units will be occupied if the rent is 

per month. A market survey suggests that, on average, one

additional unit will remain vacant for each increase in

rent. What rent should the manager charge to maximize 

revenue?

59. Show that of all the isosceles triangles with a given perimeter,

the one with the greatest area is equilateral.

60. The frame for a kite is to be made from six pieces of wood.

The four exterior pieces have been cut with the lengths 

indicated in the figure. To maximize the area of the kite, how

long should the diagonal pieces be?

; 61. A point needs to be located somewhere on the line so

that the total length of cables linking to the points , ,

and is minimized (see the figure). Express as a function

of and use the graphs of and to estimate

the minimum value.

62. The graph shows the fuel consumption of a car (measured

in gallons per hour) as a function of the speed of the car. At

very low speeds the engine runs inefficiently, so initially 

decreases as the speed increases. But at high speeds the fuel

consumption increases. You can see that is minimized for

this car when mi	h. However, for fuel efficiency, what

must be minimized is not the consumption in gallons per hour

but rather the fuel consumption in gallons per mile. Let’s call 
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observer stand so as to maximize the angle subtended at his

eye by the painting?)

71. Find the maximum area of a rectangle that can be circum-

scribed about a given rectangle with length and width .

[Hint: Express the area as a function of an angle .]

72. The blood vascular system consists of blood vessels (arteries,

arterioles, capillaries, and veins) that convey blood from 

the heart to the organs and back to the heart. This system

should work so as to minimize the energy expended by the

heart in pumping the blood. In particular, this energy is

reduced when the resistance of the blood is lowered. One of

Poiseuille’s Laws gives the resistance of the blood as

where is the length of the blood vessel, is the radius, and

is a positive constant determined by the viscosity of the

blood. (Poiseuille established this law experimentally, but it

also follows from Equation 8.4.2.) The figure shows a main

blood vessel with radius branching at an angle into a

smaller vessel with radius 
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	66. A steel pipe is being carried down a hallway 9 ft wide. At the

end of the hall there is a right-angled turn into a narrower

hallway 6 ft wide. What is the length of the longest pipe that

can be carried horizontally around the corner?

67. An observer stands at a point , one unit away from a track.

Two runners start at the point in the figure and run along

the track. One runner runs three times as fast as the other.

Find the maximum value of the observer’s angle of sight 

between the runners. [Hint: Maximize .]

68. A rain gutter is to be constructed from a metal sheet of width

30 cm by bending up one-third of the sheet on each side

through an angle . How should be chosen so that the gut-

ter will carry the maximum amount of water?

Where should the point be chosen on the line segment 

so as to maximize the angle ?

70. A painting in an art gallery has height and is hung so that

its lower edge is a distance above the eye of an observer (as

in the figure). How far from the wall should the observer

stand to get the best view? (In other words, where should the 
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(d) If the ornithologists observe that birds of a certain species

reach the shore at a point 4 km from B, how many times

more energy does it take a bird to fly over water than land?

; 74. Two light sources of identical strength are placed 10 m apart.

An object is to be placed at a point on a line � parallel to

the line joining the light sources and at a distance meters

from it (see the figure). We want to locate on � so that the

intensity of illumination is minimized. We need to use the

fact that the intensity of illumination for a single source is

directly proportional to the strength of the source and

inversely proportional to the square of the distance from the

source.

(a) Find an expression for the intensity at the point .

(b) If m, use graphs of and to show that the

intensity is minimized when m, that is, when is

at the midpoint of �.

(c) If m, show that the intensity (perhaps surpris-

ingly) is not minimized at the midpoint.

(d) Somewhere between m and m there is a

transitional value of at which the point of minimal illu-

mination abruptly changes. Estimate this value of by

graphical methods. Then find the exact value of .

�
P

d

10 m

x
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d

d

d � 10d � 5

d � 10

Px � 5

I��x�I�x�d � 5

PI�x�

P

d

P

13 km
B

C D
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5 km

nest

(a) Use Poiseuille’s Law to show that the total resistance of

the blood along the path is

where and are the distances shown in the figure.

(b) Prove that this resistance is minimized when

(c) Find the optimal branching angle (correct to the nearest

degree) when the radius of the smaller blood vessel is

two-thirds the radius of the larger vessel.

73. Ornithologists have determined that some species of birds

tend to avoid flights over large bodies of water during

daylight hours. It is believed that more energy is required to

fly over water than land because air generally rises over land

and falls over water during the day. A bird with these tenden-

cies is released from an island that is 5 km from the nearest

point on a straight shoreline, flies to a point on the shore-

line, and then flies along the shoreline to its nesting area .

Assume that the bird instinctively chooses a path that will

minimize its energy expenditure. Points and are 13 km

apart.

(a) In general, if it takes 1.4 times as much energy to fly over

water as land, to what point should the bird fly in order

to minimize the total energy expended in returning to its

nesting area?

(b) Let and L denote the energy (in joules) per kilometer

flown over water and land, respectively. What would a

large value of the ratio W	L mean in terms of the bird’s

flight? What would a small value mean? Determine the

ratio corresponding to the minimum expenditure of

energy.

(c) What should the value of be in order for the bird to

fly directly to its nesting area ? What should the value 

of be for the bird to fly to and then along the shore

to ?D
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In this project we investigate the most economical shape for a can. We first interpret this to mean

that the volume of a cylindrical can is given and we need to find the height and radius that

minimize the cost of the metal to make the can (see the figure). If we disregard any waste metal

in the manufacturing process, then the problem is to minimize the surface area of the cylinder.

We solved this problem in Example 2 in Section 4.7 and we found that ; that is, the height

should be the same as the diameter. But if you go to your cupboard or your supermarket with a

ruler, you will discover that the height is usually greater than the diameter and the ratio varies

from 2 up to about 3.8. Let’s see if we can explain this phenomenon.

1. The material for the cans is cut from sheets of metal. The cylindrical sides are formed by

bending rectangles; these rectangles are cut from the sheet with little or no waste. But if the 

h	r

h � 2r

rhV
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top and bottom discs are cut from squares of side (as in the figure), this leaves considerable

waste metal, which may be recycled but has little or no value to the can makers. If this is the

case, show that the amount of metal used is minimized when

2. A more efficient packing of the discs is obtained by dividing the metal sheet into hexagons and

cutting the circular lids and bases from the hexagons (see the figure). Show that if this strategy

is adopted, then

3. The values of that we found in Problems 1 and 2 are a little closer to the ones that 

actually occur on supermarket shelves, but they still don’t account for everything. If we 

look more closely at some real cans, we see that the lid and the base are formed from discs

with radius larger than that are bent over the ends of the can. If we allow for this we would

increase . More significantly, in addition to the cost of the metal we need to incorporate the

manufacturing of the can into the cost. Let’s assume that most of the expense is incurred in

joining the sides to the rims of the cans. If we cut the discs from hexagons as in Problem 2,

then the total cost is proportional to

where is the reciprocal of the length that can be joined for the cost of one unit area of metal.

Show that this expression is minimized when

; 4. Plot as a function of and use your graph to argue that when a can is large or

joining is cheap, we should make approximately 2.21 (as in Problem 2). But when the can

is small or joining is costly, should be substantially larger.

5. Our analysis shows that large cans should be almost square but small cans should be tall and

thin. Take a look at the relative shapes of the cans in a supermarket. Is our conclusion usually

true in practice? Are there exceptions? Can you suggest reasons why small cans are not always

tall and thin?
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Discs cut from hexagons

Discs cut from squares

NEWTON’S METHOD

Suppose that a car dealer offers to sell you a car for $18,000 or for payments of $375 per

month for five years. You would like to know what monthly interest rate the dealer is, in

effect, charging you. To find the answer, you have to solve the equation

(The details are explained in Exercise 41.) How would you solve such an equation?

For a quadratic equation there is a well-known formula for the roots.

For third- and fourth-degree equations there are also formulas for the roots, but they are 

ax 2
� bx � c � 0

48x�1 � x�60
� �1 � x�60

� 1 � 01

4.8

3



extremely complicated. If f is a polynomial of degree 5 or higher, there is no such formula

(see the note on page 210). Likewise, there is no formula that will enable us to find the

exact roots of a transcendental equation such as .

We can find an approximate solution to Equation 1 by plotting the left side of the equa-

tion. Using a graphing device, and after experimenting with viewing rectangles, we pro-

duce the graph in Figure 1.

We see that in addition to the solution x � 0, which doesn’t interest us, there is a solu-

tion between 0.007 and 0.008. Zooming in shows that the root is approximately 0.0076. If

we need more accuracy we could zoom in repeatedly, but that becomes tiresome. A faster

alternative is to use a numerical rootfinder on a calculator or computer algebra system. If

we do so, we find that the root, correct to nine decimal places, is 0.007628603.

How do those numerical rootfinders work? They use a variety of methods, but most of

them make some use of Newton’s method, also called the Newton-Raphson method. We

will explain how this method works, partly to show what happens inside a calculator or

computer, and partly as an application of the idea of linear approximation.

The geometry behind Newton’s method is shown in Figure 2, where the root that we are

trying to find is labeled . We start with a first approximation , which is obtained by

guessing, or from a rough sketch of the graph of , or from a computer-generated graph 

of f. Consider the tangent line to the curve at the point and look 

at the -intercept of , labeled . The idea behind Newton’s method is that the tangent line

is close to the curve and so its x-intercept, , is close to the x-intercept of the curve 

(namely, the root r that we are seeking). Because the tangent is a line, we can easily find

its x-intercept.

To find a formula for in terms of we use the fact that the slope of L is , so its

equation is

Since the -intercept of is , we set and obtain

If , we can solve this equation for :

We use as a second approximation to r.

Next we repeat this procedure with replaced by , using the tangent line at

. This gives a third approximation:

If we keep repeating this process, we obtain a sequence of approximations 

as shown in Figure 3. In general, if the th approximation is and , then the

next approximation is given by

xn�1 � xn �
 f �xn�

f ��xn �
2

f ��xn � � 0xnn
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rootfinder on your calculator or computer. Some

machines are not able to solve it. Others are suc-

cessful but require you to specify a starting point
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If the numbers become closer and closer to as becomes large, then we say that

the sequence converges to and we write

| Although the sequence of successive approximations converges to the desired root for

functions of the type illustrated in Figure 3, in certain circumstances the sequence may not

converge. For example, consider the situation shown in Figure 4. You can see that is a

worse approximation than . This is likely to be the case when is close to 0. It might

even happen that an approximation (such as in Figure 4) falls outside the domain of .

Then Newton’s method fails and a better initial approximation should be chosen. See

Exercises 31–34 for specific examples in which Newton’s method works very slowly or

does not work at all.

EXAMPLE 1 Starting with , find the third approximation to the root of the 

equation .

SOLUTION We apply Newton’s method with

and

Newton himself used this equation to illustrate his method and he chose after

some experimentation because , , and . Equation 2

becomes

With we have

Then with we obtain

It turns out that this third approximation is accurate to four decimal places.

M

Suppose that we want to achieve a given accuracy, say to eight decimal places, using

Newton’s method. How do we know when to stop? The rule of thumb that is generally used

is that we can stop when successive approximations and agree to eight decimal

places. (A precise statement concerning accuracy in Newton’s method will be given in

Exercise 37 in Section 11.11.)

Notice that the procedure in going from to is the same for all values of . (It is

called an iterative process.) This means that Newton’s method is particularly convenient

for use with a programmable calculator or a computer.
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In Module 4.8 you can investigate

how Newton’s Method works for several

functions and what happens when you

change .x1

TEC

N Sequences were briefly introduced in 

A Preview of Calculus on page 6. A more 

thorough discussion starts in Section 11.1.
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EXAMPLE 2 Use Newton’s method to find correct to eight decimal places.

SOLUTION First we observe that finding is equivalent to finding the positive root of the

equation

so we take . Then and Formula 2 (Newton’s method)

becomes

If we choose as the initial approximation, then we obtain

Since and agree to eight decimal places, we conclude that

to eight decimal places. M

EXAMPLE 3 Find, correct to six decimal places, the root of the equation .

SOLUTION We first rewrite the equation in standard form:

Therefore we let . Then , so Formula 2 becomes

In order to guess a suitable value for we sketch the graphs of and in

Figure 6. It appears that they intersect at a point whose -coordinate is somewhat less

than 1, so let’s take as a convenient first approximation. Then, remembering to

put our calculator in radian mode, we get

Since and agree to six decimal places (eight, in fact), we conclude that the root of

the equation, correct to six decimal places, is . M

Instead of using the rough sketch in Figure 6 to get a starting approximation for

Newton’s method in Example 3, we could have used the more accurate graph that a calcu-
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lator or computer provides. Figure 7 suggests that we use as the initial approx-

imation. Then Newton’s method gives

and so we obtain the same answer as before, but with one fewer step.

You might wonder why we bother at all with Newton’s method if a graphing device is

available. Isn’t it easier to zoom in repeatedly and find the roots as we did in Section 1.4?

If only one or two decimal places of accuracy are required, then indeed Newton’s method

is inappropriate and a graphing device suffices. But if six or eight decimal places are

required, then repeated zooming becomes tiresome. It is usually faster and more efficient

to use a computer and Newton’s method in tandem—the graphing device to get started and

Newton’s method to finish.

x4 � 0.73908513x3 � 0.73908513x2 � 0.73911114

x1 � 0.75
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5–8 Use Newton’s method with the specified initial approxima-

tion to find , the third approximation to the root of the given

equation. (Give your answer to four decimal places.)

5. ,

6. ,

7. ,

8. ,

; 9. Use Newton’s method with initial approximation to

find , the second approximation to the root of the equation

. Explain how the method works by first

graphing the function and its tangent line at .

; 10. Use Newton’s method with initial approximation 

to find , the second approximation to the root of the equa-

tion . Explain how the method works by first

graphing the function and its tangent line at .

11–12 Use Newton’s method to approximate the given number

correct to eight decimal places.

11. 12.

13–16 Use Newton’s method to approximate the indicated root of

the equation correct to six decimal places.

13. The root of in the interval 

14. The root of in the

interval 

15. The positive root of 

16. The positive root of 

17–22 Use Newton’s method to find all roots of the equation cor-

rect to six decimal places.

17. 18. e x
� 3 � 2xx4

� 1 � x

2 cos x � x 4

sin x � x 2

��2, �1�
2.2x 5

� 4.4x 3
� 1.3x 2

� 0.9x � 4.0 � 0

�1, 2�x 4
� 2x 3

� 5x 2
� 6 � 0

100s100
   s5 20 

�1, �1�
x4

� x � 1 � 0

x2

x1 � 1

��1, 1�
x 3

� x � 3 � 0

x2

x1 � �1

x1 � �1x 5
� 2 � 0

x1 � 1x 5
� x � 1 � 0

x1 � �3
1
3 x 3

�
1
2 x 2

� 3 � 0

x1 � 1x 3
� 2x � 4 � 0

x3x1

1. The figure shows the graph of a function . Suppose that

Newton’s method is used to approximate the root of the

equation with initial approximation .

(a) Draw the tangent lines that are used to find and , and

estimate the numerical values of and .

(b) Would be a better first approximation? Explain.

2. Follow the instructions for Exercise 1(a) but use as the

starting approximation for finding the root .

3. Suppose the line is tangent to the curve 

when . If Newton’s method is used to locate a root of

the equation and the initial approximation is ,

find the second approximation .

For each initial approximation, determine graphically what

happens if Newton’s method is used for the function whose

graph is shown.

(a) (b) (c)

(d) (e)

3

y

0 51 x

x1 � 5x1 � 4

x1 � 3x1 � 1x1 � 0

4.

x2

x1 � 3f �x� � 0

x � 3

y � f �x�y � 5x � 4

s

x1 � 9

x

y

0 r

1

1 s

x1 � 5

x3x2

x3x2

x1 � 1f �x� � 0

r

f
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approximation is used. Illustrate your explanation

with a sketch.

35. (a) Use Newton’s method to find the critical numbers of the

function correct to six deci-

mal places.

(b) Find the absolute minimum value of correct to four 

decimal places. 

36. Use Newton’s method to find the absolute maximum value 

of the function , correct to six 

decimal places.

Use Newton’s method to find the coordinates of the inflection

point of the curve , , correct to six deci-

mal places.

38. Of the infinitely many lines that are tangent to the curve

and pass through the origin, there is one that has

the largest slope. Use Newton’s method to find the slope of

that line correct to six decimal places.

39. Use Newton’s method to find the coordinates, correct to six

decimal places, of the point on the parabola that

is closest to the origin.

40. In the figure, the length of the chord is 4 cm and the

length of the arc is 5 cm. Find the central angle , in radi-

ans, correct to four decimal places. Then give the answer to

the nearest degree.

A car dealer sells a new car for . He also offers to sell

the same car for payments of per month for five years.

What monthly interest rate is this dealer charging?

To solve this problem you will need to use the formula for

the present value of an annuity consisting of equal pay-

ments of size with interest rate per time period: 

Replacing by , show that

Use Newton’s method to solve this equation.

42. The figure shows the sun located at the origin and the earth at 

the point . (The unit here is the distance between the

centers of the earth and the sun, called an astronomical unit:

1 AU km.) There are five locations , , ,

, and in this plane of rotation of the earth about the sun

where a satellite remains motionless with respect to the earth

because the forces acting on the satellite (including the gravi-

L 5L 4

L 3L 2L1� 1.496 � 108

�1, 0�

48x�1 � x�60
� �1 � x�60

� 1 � 0 

xi

A �
R

i
 �1 � �1 � i ��n �

iR

nA

$375

$18,00041.

5 cm

4 cm

¨

BA

	AB

AB

y � �x � 1�2

y � �sin x

0 
 x 
 �y � ecos x

37.

f �x� � x cos x, 0 
 x 
 �

f

f �x� � x 6
� x 4

� 3x 3
� 2x

x1 � 0
19. 20.

21. 22.

; 23–28 Use Newton’s method to find all the roots of the equation

correct to eight decimal places. Start by drawing a graph to find

initial approximations.

23.

25. 26.

27. 28.

29. (a) Apply Newton’s method to the equation to

derive the following square-root algorithm used by the

ancient Babylonians to compute :

(b) Use part (a) to compute correct to six decimal

places.

30. (a) Apply Newton’s method to the equation to

derive the following reciprocal algorithm:

(This algorithm enables a computer to find reciprocals

without actually dividing.)

(b) Use part (a) to compute correct to six decimal

places.

Explain why Newton’s method doesn’t work for finding the

root of the equation if the initial approxi-

mation is chosen to be .

32. (a) Use Newton’s method with to find the root of the

equation correct to six decimal places.

(b) Solve the equation in part (a) using as the initial

approximation.

(c) Solve the equation in part (a) using . (You defi-

nitely need a programmable calculator for this part.)

; (d) Graph and its tangent lines at ,

0.6, and 0.57 to explain why Newton’s method is so sen-

sitive to the value of the initial approximation.

33. Explain why Newton’s method fails when applied to the

equation with any initial approximation .

Illustrate your explanation with a sketch.

34. If

then the root of the equation is . Explain why

Newton’s method fails to find the root no matter which initial

x � 0f �x� � 0

f �x� � �sx 

�s�x 

if x � 0

if x � 0

x1 � 0s3 x 
� 0

x1 � 1f �x� � x 3
� x � 1

x1 � 0.57

x1 � 0.6

x 3
� x � 1

x1 � 1

x1 � 1

x 3
� 3x � 6 � 0

31.

1	1.6984

xn�1 � 2xn � axn
2

1	x � a � 0

s1000 

xn�1 �
1

2
�xn �

a

xn
�
sa )

(
x 2

� a � 0

e arctan x
� sx 3 � 14e�x 2

 sin x � x 2
� x � 1

3 sin�x 2� � 2xx2s2 � x � x 2 
� 1

x 2�4 � x 2 � �
4

x 2
� 1

24.

x 6
� x 5

� 6x 4
� x 2

� x � 10 � 0

tan x � s1 � x 2 cos x � sx 

1

x
� 1 � x 3�x � 2�2

� ln x
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ANTIDERIVATIVES

A physicist who knows the velocity of a particle might wish to know its position at a given

time. An engineer who can measure the variable rate at which water is leaking from a tank

wants to know the amount leaked over a certain time period. A biologist who knows the

rate at which a bacteria population is increasing might want to deduce what the size of 

the population will be at some future time. In each case, the problem is to find a function

F whose derivative is a known function f. If such a function F exists, it is called an anti-

derivative of f.

DEFINITION A function is called an antiderivative of on an interval if

for all in .

For instance, let . It isn’t difficult to discover an antiderivative of if we keep

the Power Rule in mind. In fact, if , then . But the function

also satisfies . Therefore both and are antiderivatives 

of . Indeed, any function of the form , where is a constant, is an anti-

derivative of . The question arises: Are there any others?

To answer this question, recall that in Section 4.2 we used the Mean Value Theorem to

prove that if two functions have identical derivatives on an interval, then they must differ

by a constant (Corollary 4.2.7). Thus if and are any two antiderivatives of , then

so , where is a constant. We can write this as , so we

have the following result.

THEOREM If is an antiderivative of on an interval , then the most general

antiderivative of on is

where is an arbitrary constant.

Going back to the function , we see that the general antiderivative of is

. By assigning specific values to the constant , we obtain a family of functions

whose graphs are vertical translates of one another (see Figure 1). This makes sense

because each curve must have the same slope at any given value of .x

C
1
3 x 3 � C

ff �x� � x 2

C

F�x� � C

If

IfF1

G�x� � F�x� � CCG�x� � F�x� � C

F	�x� � f �x� � G	�x�

fGF

f

CH�x� �
1
3 x 3 � Cf

GFG	�x� � x 2G�x� �
1
3 x 3 � 100

F	�x� � x 2
� f �x�F�x� �

1
3 x 3

ff �x� � x 2

IxF	�x� � f �x�
IfF

4.9

x

y

0
y= ˛

3

y=    -2
˛
3

y=    -1
˛
3

y=    +1
˛
3

y=    +2
˛
3

y=    +3
˛
3

FIGURE 1
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Using the value , find the locations of the

libration points (a) and (b) .

L¡ L™L ∞

L¢

L£

sun earth

x

y

L 2L 1 

r � 3.04042 � 10�6tational attractions of the earth and the sun) balance each

other. These locations are called libration points. (A solar

research satellite has been placed at one of these libration

points.) If is the mass of the sun, is the mass of the

earth, and , it turns out that the -coordi-

nate of is the unique root of the fifth-degree equation

and the -coordinate of is the root of the equation

p�x� � 2rx 2
� 0

L 2x

 � � 2�1 � r�x � r � 1 � 0 

 p�x� � x 5 � �2 � r�x 4 � �1 � 2r�x 3 � �1 � r�x 2

L 1

xr � m2	�m1 � m2 �
m2m1
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EXAMPLE 1 Find the most general antiderivative of each of the following functions.

(a) (b) (c) ,

SOLUTION

(a) If , then , so an antiderivative of is . By

Theorem 1, the most general antiderivative is .

(b) Recall from Section 3.6 that

So on the interval the general antiderivative of is . We also learned

that

for all . Theorem 1 then tells us that the general antiderivative of is

on any interval that doesn’t contain 0. In particular, this is true on each of the

intervals and . So the general antiderivative of is

(c) We use the Power Rule to discover an antiderivative of . In fact, if , then

Thus the general antiderivative of is

This is valid for since then is defined on an interval. If n is negative

(but ), it is valid on any interval that doesn’t contain 0. M

As in Example 1, every differentiation formula, when read from right to left, gives rise

to an antidifferentiation formula. In Table 2 we list some particular antiderivatives. Each

formula in the table is true because the derivative of the function in the right column

appears in the left column. In particular, the first formula says that the antiderivative of a

constant times a function is the constant times the antiderivative of the function. The sec-

ond formula says that the antiderivative of a sum is the sum of the antiderivatives. (We use

the notation , .)G	 � tF	 � f

n � �1

f �x� � x nn � 0

F�x� �
x n�1

n � 1
� C

f �x� � x n

d

dx
 � x n�1

n � 1
� �

�n � 1�x n

n � 1
� x n

n � �1x n

F�x� � �ln x � C1

ln��x� � C2

if x � 0

if x � 0

f�0, �����, 0�
ln 
 x 
 � C

f �x� � 1	xx � 0

d

dx
 �ln 
 x 
� �

1

x

ln x � C1	x�0, ��

d

dx
 �ln x� �

1

x

G�x� � �cos x � C

�cos xsin xF	�x� � sin xF�x� � �cos x

n � �1f �x� � x nf �x� � 1	xf �x� � sin x

Function Particular antiderivative Function Particular antiderivative

cos x sin x

e xe x

ln 
 x 
1	x

x n�1

n � 1
x n  �n � �1�

F�x� � G�x�f �x� � t�x�

cF�x�c f �x� sin x �cos x

tan x

sec x tan x sec x

tan�1x
1

1 � x 2

sin�1x
1

s1 � x 2 

sec2x

TABLE OF 

ANTIDIFFERENTIATION FORMULAS

2

N To obtain the most general antiderivative from

the particular ones in Table 2, we have to add a

constant (or constants), as in Example 1.



EXAMPLE 2 Find all functions such that

SOLUTION We first rewrite the given function as follows:

Thus we want to find an antiderivative of 

Using the formulas in Table 2 together with Theorem 1, we obtain

M

In applications of calculus it is very common to have a situation as in Example 2, where

it is required to find a function, given knowledge about its derivatives. An equation that

involves the derivatives of a function is called a differential equation. These will be 

studied in some detail in Chapter 9, but for the present we can solve some elementary dif-

ferential equations. The general solution of a differential equation involves an arbitrary

constant (or constants) as in Example 2. However, there may be some extra conditions

given that will determine the constants and therefore uniquely specify the solution.

EXAMPLE 3 Find if .

SOLUTION The general antiderivative of

is

To determine we use the fact that : 

Thus we have , so the particular solution is

M

EXAMPLE 4 Find if , , and .

SOLUTION The general antiderivative of is

Using the antidifferentiation rules once more, we find that

f �x� � 4 
x 4

4
� 3 

x 3

3
� 4 

x 2

2
� Cx � D � x 4 � x 3 � 2x 2 � Cx � D

f 	�x� � 12 
x 3

3
� 6 

x 2

2
� 4x � C � 4x 3 � 3x 2 � 4x � C

f ��x� � 12x 2 � 6x � 4

f �1� � 1f �0� � 4f ��x� � 12x 2 � 6x � 4fV

f �x� � e x � 20 tan�1x � 3

C � �2 � 1 � �3

f �0� � e 0 � 20 tan�1 0 � C � �2

f �0� � �2C

f �x� � e x � 20 tan�1x � C

f 	�x� � e x �
20

1 � x 2

f 	�x� � e x � 20�1 � x 2 ��1 and f �0� � �2f

� �4 cos x �
2
5 x

5 � 2sx � C

 t�x� � 4��cos x� � 2 
x 5

5
�

x1	2

1
2

� C

t	�x� � 4 sin x � 2x 4 � x�1	2

t	�x� � 4 sin x �
2x 5

x
�
sx 

x
� 4 sin x � 2x 4 �

1

sx 

t	�x� � 4 sin x �
2x 5 � sx 

x

t

342 | | | | CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

40

_2 3

f

fª

_25

FIGURE 2

N Figure 2 shows the graphs of the function in

Example 3 and its antiderivative . Notice that

, so is always increasing. Also notice

that when has a maximum or minimum, 

appears to have an inflection point. So the graph

serves as a check on our calculation.

ff 	

ff 	�x� � 0

f

f 	



To determine and we use the given conditions that and . Since

, we have . Since

we have . Therefore the required function is

M

If we are given the graph of a function , it seems reasonable that we should be able to

sketch the graph of an antiderivative . Suppose, for instance, that we are given that

. Then we have a place to start, the point , and the direction in which we

move our pencil is given at each stage by the derivative . In the next example

we use the principles of this chapter to show how to graph even when we don’t have a

formula for . This would be the case, for instance, when is determined by experi-

mental data.

EXAMPLE 5 The graph of a function is given in Figure 3. Make a rough sketch of

an antiderivative , given that .

SOLUTION We are guided by the fact that the slope of is . We start at the

point and draw as an initially decreasing function since is negative when

. Notice that , so has horizontal tangents when and

. For , is positive and so is increasing. We see that has a local

minimum when and a local maximum when . For , is negative

and so is decreasing on . Since as , the graph of becomes flat-

ter as . Also notice that changes from positive to negative at 

and from negative to positive at , so has inflection points when and .

We use this information to sketch the graph of the antiderivative in Figure 4. M

RECTILINEAR MOTION

Antidifferentiation is particularly useful in analyzing the motion of an object moving in a

straight line. Recall that if the object has position function , then the velocity func-

tion is . This means that the position function is an antiderivative of the veloc-

ity function. Likewise, the acceleration function is , so the velocity function is

an antiderivative of the acceleration. If the acceleration and the initial values and 

are known, then the position function can be found by antidifferentiating twice.

EXAMPLE 6 A particle moves in a straight line and has acceleration given by

. Its initial velocity is cm	s and its initial displacement is

cm. Find its position function .

SOLUTION Since , antidifferentiation gives

Note that . But we are given that , so and

v�t� � 3t 2 � 4t � 6

C � �6v�0� � �6v�0� � C

v�t� � 6 
t 2

2
� 4t � C � 3t 2 � 4t � C

v	�t� � a�t� � 6t � 4

s�t�s�0� � 9

v�0� � �6a�t� � 6t � 4

V

v�0�s�0�
a�t� � v	�t�

v�t� � s	�t�
s � f �t�

x � 4x � 2Fx � 4

x � 2F��x� � f 	�x�xl �

Fxl �f �x�l 0�3, ��F

f �x�x � 3x � 3x � 1

FFf �x�1 � x � 3x � 3

x � 1Ff �1� � f �3� � 00 � x � 1

f �x�F�0, 2�
f �x�y � F�x�

F�0� � 2F

fV

f �x�f

F

F	�x� � f �x�
�0, 1�F�0� � 1

F

f

f �x� � x 4 � x 3 � 2x 2 � 3x � 4

C � �3

f �1� � 1 � 1 � 2 � C � 4 � 1

D � 4f �0� � 0 � D � 4

f �1� � 1f �0� � 4DC
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Since , is the antiderivative of :

This gives . We are given that , so and the required position

function is

M

An object near the surface of the earth is subject to a gravitational force that produces

a downward acceleration denoted by . For motion close to the ground we may assume that

is constant, its value being about (or ft	s ).

EXAMPLE 7 A ball is thrown upward with a speed of ft	s from the edge of a cliff 

ft above the ground. Find its height above the ground seconds later. When does it

reach its maximum height? When does it hit the ground?

SOLUTION The motion is vertical and we choose the positive direction to be upward. At

time the distance above the ground is and the velocity is decreasing. Therefore,

the acceleration must be negative and we have

Taking antiderivatives, we have

To determine we use the given information that . This gives , so

The maximum height is reached when , that is, after s. Since , we

antidifferentiate again and obtain

Using the fact that , we have and so

The expression for is valid until the ball hits the ground. This happens when ,

that is, when

or, equivalently,

Using the quadratic formula to solve this equation, we get

We reject the solution with the minus sign since it gives a negative value for . Therefore

the ball hits the ground after s. M3(1 � s13 )	2 � 6.9

t

t �
3 � 3s13 

2

 t 2 � 3t � 27 � 0

 �16t 2 � 48t � 432 � 0

s�t� � 0s�t�

s�t� � �16t 2 � 48t � 432

432 � 0 � Ds�0� � 432

s�t� � �16t 2 � 48t � D

s	�t� � v�t�1.5v�t� � 0

v�t� � �32t � 48

48 � 0 � Cv�0� � 48C

v�t� � �32t � C

a�t� �
dv

dt
� �32

v�t�s�t�t

t432

48

2329.8 m	s2t
t

s�t� � t 3 � 2t 2 � 6t � 9

D � 9s�0� � 9s�0� � D

s�t� � 3 
t 3

3
� 4 

t 2

2
� 6t � D � t 3 � 2t 2 � 6t � D

vsv�t� � s	�t�
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500

0 8

FIGURE 5

N Figure 5 shows the position function of the

ball in Example 7. The graph corroborates the

conclusions we reached: The ball reaches its

maximum height after and hits the ground

after .6.9 s

1.5 s



43. , ,

44. , ,

45. , , ,

46. , , ,

47. Given that the graph of passes through the point 

and that the slope of its tangent line at is ,

find .

48. Find a function such that and the line 

is tangent to the graph of .

49–50 The graph of a function is shown. Which graph is an

antiderivative of and why?

50.

51. The graph of a function is shown in the figure. Make a rough

sketch of an antiderivative , given that .

52. The graph of the velocity function of a particle is shown in

the figure. Sketch the graph of the position function.

The graph of is shown in the figure. Sketch the graph of 

if is continuous and .

_1
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y
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1

2
y=fª(x)
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ff 	53.

√
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F�0� � 1F
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y

f
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c
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x
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a

49.

f

f

f

x � y � 0f 	�x� � x 3f

f �2�
2x � 1�x, f �x��
�1, 6�f

f ��0� � 3f 	�0� � 2f �0� � 1f ��x� � cos x

f �2� � 0f �1� � 0x � 0f ��x� � x �2

f ��� � 0f �0� � 0f ��t� � 2e t � 3 sin t

f ��	2� � 0f �0� � �1f ��x� � 2 � cos x1–20 Find the most general antiderivative of the function. (Check

your answer by differentiation.)

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

14.

15. 16.

17. 18.

19. 20.

; 21–22 Find the antiderivative of that satisfies the given con-

dition. Check your answer by comparing the graphs of and .

22.

23–46 Find .

24.

25. 26.

27. 28.

29.

30.

31. ,

32. , ,

33. , ,

34. , ,

35. , ,

36.

37. , ,

38. , ,

, ,

40. , ,

41. , ,

42. , , f �1� � 5f �0� � 8f ��x� � 20x 3 � 12x 2 � 4

f �2� � 15f �0� � 9f ��x� � 2 � 12x

f 	�4� � 7f �4� � 20f ��t� � 3	st 

f 	�0� � 4f �0� � 3f ���� � sin � � cos �39.

f 	�0� � 1f �0� � 2f ��x� � 4 � 6x � 40x 3

f 	�1� � �3f �1� � 5f ��x� � 24x 2 � 2x � 10

f 	�x� � 4	s1 � x 2 , f ( 1
2 ) � 1

f ��1� � �1f �1� � 1f 	�x� � x�1	3

f ��1� � 0f �1� �
1
2f 	�x� � �x 2 � 1�	x

f ��	3� � 4��	2 � t � �	2f 	�t� � 2 cos t � sec2t

f �1� � 3x � 0f 	�x� � 2x � 3	x 4

f �1� � 10f 	�x� � sx �6 � 5x�

f 	�x� � 8x 3 � 12x � 3, f �1� � 6

f 	�x� � 1 � 6x, f �0� � 8

f ��t� � t � st f ��t� � e t

f ��x� � 6x � sin xf ��x� �
2
3 x 2	3

f ��x� � 2 � x 3 � x 6f ��x� � 6x � 12x 2
23.

f

f �x� � 4 � 3�1 � x 2 ��1, F�1� � 0

f �x� � 5x 4 � 2x 5, F�0� � 421.

Ff

fF

f �x� �
2 � x 2

1 � x 2
f �x� �

x 5 � x 3 � 2x

x 4

f �x� � 2sx � 6 cos xf �x� � 5e x � 3 cosh x

f �t� � sin t � 2 sinh tt��� � cos � � 5 sin �

f �x� � 3e x � 7 sec2xf �u� �
u4 � 3su 

u2
13.

t�x� �
5 � 4x 3 � 2x 6

x 6
f �x� �

10

x 9

f �x� � s4 x3 � s3 x 4 f �x� � 6sx � s6 x 

f �x� � 2x � 3x 1.7f �x� � 5x 1	4 � 7x 3	4

f �x� � x �2 � x�2f �x� � �x � 1��2x � 1�

f �x� � 8x 9 � 3x 6 � 12x 3f �x� �
1
2 �

3
4 x 2 �

4
5 x 3

f �x� �
1
2 x 2 � 2x � 6f �x� � x � 3
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and are positive constants that depend on the material 

of the board and is the acceleration due to gravity.

(a) Find an expression for the shape of the curve.

(b) Use to estimate the distance below the horizontal at

the end of the board.

69. A company estimates that the marginal cost (in dollars per

item) of producing items is . If the cost of

producing one item is , find the cost of producing 

items.

70. The linear density of a rod of length m is given by

, in grams per centimeter, where is measured

in centimeters from one end of the rod. Find the mass of 

the rod.

71. Since raindrops grow as they fall, their surface area increases

and therefore the resistance to their falling increases. A rain-

drop has an initial downward velocity of 10 m	s and its

downward acceleration is

If the raindrop is initially m above the ground, how long

does it take to fall?

72. A car is traveling at 50 mi	h when the brakes are fully

applied, producing a constant deceleration of 22 ft	s . What

is the distance traveled before the car comes to a stop?

What constant acceleration is required to increase the speed

of a car from 30 mi	h to 50 mi	h in 5 s?

74. A car braked with a constant deceleration of 16 ft	s , pro-

ducing skid marks measuring 200 ft before coming to a stop.

How fast was the car traveling when the brakes were first

applied?

75. A car is traveling at when the driver sees an acci-

dent 80 m ahead and slams on the brakes. What constant

deceleration is required to stop the car in time to avoid a

pileup?

76. A model rocket is fired vertically upward from rest. Its accel-

eration for the first three seconds is , at which time

the fuel is exhausted and it becomes a freely “falling” body.

Fourteen seconds later, the rocket’s parachute opens, and the

(downward) velocity slows linearly to ft	s in 5 s. The

rocket then “floats” to the ground at that rate.

(a) Determine the position function and the velocity func-

tion (for all times ). Sketch the graphs of and .vstv

s

�18

a�t� � 60t

100 km	h

2

73.

2

500

a � �9 � 0.9t

0

if 0 � t � 10

if t � 10

x�x� � 1	sx 

1

100$562

1.92 � 0.002xx

y

x0

f �L�

t �� 0�
IE; 54. (a) Use a graphing device to graph .

(b) Starting with the graph in part (a), sketch a rough graph

of the antiderivative that satisfies .

(c) Use the rules of this section to find an expression for .

(d) Graph using the expression in part (c). Compare with

your sketch in part (b).

; 55–56 Draw a graph of and use it to make a rough sketch of

the antiderivative that passes through the origin.

55. ,

56. ,

57–62 A particle is moving with the given data. Find the posi-

tion of the particle.

58.

59.

60. , ,

61. , ,

62. , ,

63. A stone is dropped from the upper observation deck (the

Space Deck) of the CN Tower, m above the ground.

(a) Find the distance of the stone above ground level at time .

(b) How long does it take the stone to reach the ground?

(c) With what velocity does it strike the ground?

(d) If the stone is thrown downward with a speed of 5 m	s,

how long does it take to reach the ground?

64. Show that for motion in a straight line with constant accelera-

tion , initial velocity , and initial displacement , the dis-

placement after time is

An object is projected upward with initial velocity meters

per second from a point meters above the ground. Show

that 

66. Two balls are thrown upward from the edge of the cliff in

Example 7. The first is thrown with a speed of ft	s and the

other is thrown a second later with a speed of ft	s. Do the

balls ever pass each other?

67. A stone was dropped off a cliff and hit the ground with a

speed of 120 ft	s. What is the height of the cliff? 

68. If a diver of mass stands at the end of a diving board with

length and linear density , then the board takes on the

shape of a curve , where

EIy � � mt�L � x� �
1
2 t�L � x�2

y � f �x�
L

m

24

48

�v�t��2
� v0

2 � 19.6�s�t� � s0 �

s0

v065.

s �
1
2 at 2 � v0 t � s0

t

s0v0a

t

450

s�1� � 20s�0� � 0a�t� � t 2 � 4t � 6

s�2�� � 12s�0� � 0a�t� � 10 sin t � 3 cos t

v�0� � 5s�0� � 0a�t� � cos t � sin t

a�t� � t � 2, s�0� � 1, v�0� � 3

v�t� � 1.5st , s�4� � 10

v�t� � sin t � cos t, s�0� � 057.

�1.5 � x � 1.5f �x� � sx 4 � 2x 2 � 2 � 1

�2� � x � 2�f �x� �
sin x

1 � x 2

f

F

F�x�
F�0� � 1F

f �x� � 2x � 3sx 
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(b) Suppose that the train starts from rest and must come to 

a complete stop in 15 minutes. What is the maximum dis-

tance it can travel under these conditions?

(c) Find the minimum time that the train takes to travel

between two consecutive stations that are 45 miles apart.

(d) The trip from one station to the next takes 37.5 minutes.

How far apart are the stations?

(b) At what time does the rocket reach its maximum height,

and what is that height?

(c) At what time does the rocket land?

77. A high-speed bullet train accelerates and decelerates at the

rate of . Its maximum cruising speed is 90 mi	h.

(a) What is the maximum distance the train can travel if it

accelerates from rest until it reaches its cruising speed and

then runs at that speed for 15 minutes?

4 ft	s2
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C O N C E P T  C H E C K

4

where and as ?

(c) How can you use l’Hospital’s Rule if you have a difference

where and as ?

(d) How can you use l’Hospital’s Rule if you have a power

where and as ?

8. If you have a graphing calculator or computer, why do you

need calculus to graph a function?

9. (a) Given an initial approximation to a root of the equation

, explain geometrically, with a diagram, how the

second approximation in Newton’s method is obtained.

(b) Write an expression for in terms of , , 

and .

(c) Write an expression for in terms of , and

.

(d) Under what circumstances is Newton’s method likely to fail

or to work very slowly?

10. (a) What is an antiderivative of a function ?

(b) Suppose and are both antiderivatives of on an inter-

val . How are and related?F2F1I

fF2F1

f

f 	�xn�
xn, f �xn �xn�1

f 	�x1�
f �x1�x1x2

x2

f �x� � 0

x1

x l at�x� l 0f �x� l 0� f �x��t�x�

x l at�x� l �f �x� l �f �x� � t�x�

x l at�x� l �f �x� l 0f �x�t�x�1. Explain the difference between an absolute maximum and a

local maximum. Illustrate with a sketch.

2. (a) What does the Extreme Value Theorem say?

(b) Explain how the Closed Interval Method works.

3. (a) State Fermat’s Theorem.

(b) Define a critical number of .

4. (a) State Rolle’s Theorem.

(b) State the Mean Value Theorem and give a geometric 

interpretation.

5. (a) State the Increasing/Decreasing Test.

(b) What does it mean to say that is concave upward on an

interval ?

(c) State the Concavity Test.

(d) What are inflection points? How do you find them?

6. (a) State the First Derivative Test.

(b) State the Second Derivative Test.

(c) What are the relative advantages and disadvantages of these

tests?

7. (a) What does l’Hospital’s Rule say?

(b) How can you use l’Hospital’s Rule if you have a product

I

f

f

Determine whether the statement is true or false. If it is true, explain why.

If it is false, explain why or give an example that disproves the statement.

1. If , then has a local maximum or minimum at .

2. If has an absolute minimum value at , then .

3. If is continuous on , then attains an absolute maxi-

mum value and an absolute minimum value at some

numbers and in .

4. If is differentiable and , then there is a number

such that and .

5. If for , then is decreasing on (1, 6).

6. If , then is an inflection point of the 

curve .y � f �x�
�2, f �2��f ��2� � 0

f1 � x � 6f 	�x� � 0

f 	�c� � 0
 c 
 � 1c

f ��1� � f �1�f

�a, b�dc

f �d �f �c�
f�a, b�f

f 	�c� � 0cf

cff 	�c� � 0

7. If for , then for

8. There exists a function such that , and

for all .

9. There exists a function such that , , and

for all .

10. There exists a function such that , ,

and for all .

11. If and are increasing on an interval , then is 

increasing on .

12. If and are increasing on an interval , then is 

increasing on .I

f � tItf

I

f � tItf

xf � �x� � 0

f 	�x� � 0f �x� � 0f

xf � �x� � 0

f 	�x� � 0f �x� � 0f

xf 	�x� � 1

f �1� � �2, f �3� � 0f

0 � x � 1.

f �x� � t�x�0 � x � 1f 	�x� � t	�x�

T R U E - F A L S E  Q U I Z



18. The figure shows the graph of the derivative of a function .

(a) On what intervals is increasing or decreasing?

(b) For what values of does have a local maximum or 

minimum?

(c) Sketch the graph of .

(d) Sketch a possible graph of .

19–34 Use the guidelines of Section 4.5 to sketch the curve.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29.

30.

31. 32.

33. 34.

; 35–38 Produce graphs of that reveal all the important aspects of

the curve. Use graphs of and to estimate the intervals of

increase and decrease, extreme values, intervals of concavity, and

inflection points. In Exercise 35 use calculus to find these quantities

exactly.

35. 36.

37. f �x� � 3x 6 � 5x 5 � x 4 � 5x 3 � 2x 2 � 2

f �x� �
x 3 � x

x 2 � x � 3
f �x� �

x 2 � 1

x 3

f �f 	

f

y � x � ln�x 2 � 1�y � xe�2x

y � e2x�x
2

y � sin�1�1	x�

y � 4x � tan x, ��	2 � x � �	2

y � sin2x � 2 cos x

y � s3 x 2 � 1 y � xs2 � x 

y � s1 � x � s1 � x y � x 2	�x � 8�

y �
1

x 2
�

1

�x � 2�2
y �

1

x�x � 3�2

y �
1

1 � x 2
y � x 4 � 3x 3 � 3x 2 � x

y � x 3 � 6x 2 � 15x � 4y � 2 � 2x � x 3

0 x

y

1 2 3 4 5 6 7_1

_2

y=f ª(x)

f

f �

fx

f

ff 	1–6 Find the local and absolute extreme values of the function on

the given interval.

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

7–14 Evaluate the limit.

7. 8.

9. 10.

11. 12.

13. 14.

15–17 Sketch the graph of a function that satisfies the given 

conditions: 

15. ,

on , and 

on and 

on and 

on and 

16. , is continuous and even,

if if ,

if 

17. is odd, for ,

for , for ,

for , lim xl� f �x� � �2x � 3f ��x� � 0

0 � x � 3f ��x� � 0x � 2f 	�x� � 0

0 � x � 2f 	�x� � 0f

x � 3f 	�x� � 1

1 � x � 30 � x � 1, f 	�x� � �1f 	�x� � 2x

ff �0� � 0

�6, 12��0, 6�f ��x� � 0

�12, ��,���, 0�f ��x� � 0

�6, 9�,��2, 1�f 	�x� � 0

�9, ��,���, �2�, �1, 6�f 	�x� � 0

limx 
l

 � f �x� � 0,  limx 
l

 6 f �x� � ��,
f �0� � 0, f 	��2� � f 	�1� � f 	�9� � 0

lim
x 
l

 

��	2� �
�tan x�cos xlim

x 
l

 1�
 � x

x � 1
�

1

ln x
�

lim
x 
l

 0�
 x2 ln xlim

x 
l

 �
 x3e�x

lim
x 
l

 �
 
e4x � 1 � 4x

x2
lim
x 
l

 0
 
e4x � 1 � 4x

x2

lim
x 
l

 0
 
1 � cos x

x 2 � x
lim
x 
l

 0
 

tan �x

ln�1 � x�

�1, 3�f �x� � �ln x�	x 2

�0, ��f �x� � x � sin 2x

��2, 1�f �x� � �x 2 � 2x�3

��2, 2�f �x� �
3x � 4

x 2 � 1

��1, 1�f �x� � xs1 � x 

�2, 4�f �x� � x 3 � 6x 2 � 9x � 1

E X E R C I S E S
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17. If is periodic, then is periodic.

18. The most general antiderivative of is

19. If exists and is nonzero for all , then .

20. lim
x 
l

 0
 

x

e x
� 1

f �1� � f �0�xf 	�x�

F�x� � �
1

x
� C

f �x� � x �2

f 	f13. If and are increasing on an interval , then is increasing

on .

14. If and are positive increasing functions on an interval ,

then is increasing on .

15. If is increasing and on , then is

decreasing on .

16. If is even, then is even.f 	f

I

t�x� � 1	f �x�If �x� � 0f

Ift
Itf

I

ftItf
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51. Show that the shortest distance from the point to the

straight line is

52. Find the point on the hyperbola that is closest to the

point .

53. Find the smallest possible area of an isosceles triangle that is

circumscribed about a circle of radius .

54. Find the volume of the largest circular cone that can be

inscribed in a sphere of radius .

55. In , lies on , , cm,

and cm. Where should a point be chosen on 

so that the sum is a minimum?

56. Solve Exercise 55 when cm.

57. The velocity of a wave of length in deep water is

where and are known positive constants. What is the

length of the wave that gives the minimum velocity?

58. A metal storage tank with volume is to be constructed in

the shape of a right circular cylinder surmounted by a hemi-

sphere. What dimensions will require the least amount of

metal?

59. A hockey team plays in an arena with a seating capacity of

15,000 spectators. With the ticket price set at , average

attendance at a game has been 11,000. A market survey indi-

cates that for each dollar the ticket price is lowered, average

attendance will increase by 1000. How should the owners of

the team set the ticket price to maximize their revenue from

ticket sales?

; 60. A manufacturer determines that the cost of making units of

a commodity is and

the demand function is .

(a) Graph the cost and revenue functions and use the graphs

to estimate the production level for maximum profit.

(b) Use calculus to find the production level for maximum

profit.

(c) Estimate the production level that minimizes the average

cost.

61. Use Newton’s method to find the root of the equation

in the interval correct to

six decimal places.

62. Use Newton’s method to find all roots of the equation

correct to six decimal places.

63. Use Newton’s method to find the absolute maximum value of

the function correct to eight decimal

places.

f �t� � cos t � t � t 2

sin x � x 2 � 3x � 1

�1, 2�x5 � x4 � 3x2 � 3x � 2 � 0

p�x� � 48.2 � 0.03x

C�x� � 1800 � 25x � 0.2x 2 � 0.001x 3

x

$12

V

CK

v � K� L

C
�

C

L
 

L


 CD 
 � 2


 PA 
 � 
 PB 
 � 
 PC 

CDP
 CD 
 � 5


 AD 
 � 
 BD 
 � 4CD � ABABD
ABC

r

r

�3, 0�
xy � 8


 Ax1 � By1 � C 

sA2 � B2 

Ax � By � C � 0

�x1, y1�38.

; 39. Graph in a viewing rectangle that shows all the

main aspects of this function. Estimate the inflection points.

Then use calculus to find them exactly.

40. (a) Graph the function .

(b) Explain the shape of the graph by computing the limits of

as approaches , , , and .

(c) Use the graph of to estimate the coordinates of the

inflection points.

(d) Use your CAS to compute and graph .

(e) Use the graph in part (d) to estimate the inflection points

more accurately.

41–42 Use the graphs of to estimate the 

-coordinates of the maximum and minimum points and

inflection points of .

41. ,

42.

; 43. Investigate the family of functions .

What features do the members of this family have in common?

How do they differ? For which values of is continuous

on ? For which values of does have no graph at

all? What happens as ?

; 44. Investigate the family of functions . What hap-

pens to the maximum and minimum points and the inflection

points as changes? Illustrate your conclusions by graphing

several members of the family.

45. Show that the equation has exactly one

real root.

46. Suppose that is continuous on , and

for all in . Show that .

47. By applying the Mean Value Theorem to the function

on the interval , show that

48. For what values of the constants and is a point of

inflection of the curve ?

49. Let , where is twice differentiable for all ,

for all , and is concave downward on

and concave upward on .

(a) At what numbers does have an extreme value?

(b) Discuss the concavity of .

50. Find two positive integers such that the sum of the first num-

ber and four times the second number is 1000 and the product

of the numbers is as large as possible.

t
t

�0, �����, 0�
fx � 0f 	�x� � 0

xft�x� � f �x 2 �

y � x 3 � ax 2 � bx � 1

�1, 6�ba

2 � s5 33 � 2.0125

�32, 33�f �x� � x 1	5

9 � f �4� � 21�0, 4�x2 � f 	�x� � 5

�0, 4�, f �0� � 1f

3x � 2 cos x � 5 � 0

c

f �x� � cxe �cx
2

C l �

fC���, ��
fC

f �x� � ln�sin x � C �

f �x� � e�0.1x ln�x 2 � 1�

�� � x � �f �x� �
cos2 x

sx 2 � x � 1 

f

x

f, f 	, and f �CAS

f �

f

0�0����xf �x�

f �x� � 1	�1 � e 1	x �CAS

f �x� � e �1	x
2

f �x� � x 2 � 6.5 sin x,  �5 � x � 5
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64. Use the guidelines in Section 4.5 to sketch the curve

, . Use Newton’s method when 

necessary.

65–72 Find .

65.

66.

67.

68. ,

69. ,

70. ,

71. , ,

72. , ,

73–74 A particle is moving with the given data. Find the position

of the particle.

73. ,

74. , ,

; 75. (a) If , use a graph of 

to sketch a rough graph of the antiderivative of that

satisfies .

(b) Find an expression for .

(c) Graph using the expression in part (b). Compare with

your sketch in part (a).

; 76. Investigate the family of curves given by

In particular you should determine the transitional value of 

at which the number of critical numbers changes and the

transitional value at which the number of inflection points

changes. Illustrate the various possible shapes with graphs.

77. A canister is dropped from a helicopter m above the

ground. Its parachute does not open, but the canister has been

designed to withstand an impact velocity of m�s. Will it

burst?

78. In an automobile race along a straight road, car A passed 

car B twice. Prove that at some time during the race their

accelerations were equal. State the assumptions that you

make.

79. A rectangular beam will be cut from a cylindrical log of 

radius 10 inches.

(a) Show that the beam of maximal cross-sectional area is 

a square.
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c

f �x� � x 4
� x 3

� cx 2

F

F�x�
F�0� � 0

fF

ff �x� � 0.1e x
� sin x, �4 � x � 4

v�0� � 2s�0� � 0a�t� � sin t � 3 cos t

s�0� � 1v�t� � 2t � 1��1 � t 2�

f �1� � 0f �0� � 2f ��x� � 2x 3
� 3x 2

� 4x � 5

f ��0� � 2f �0� � 1f ��x� � 1 � 6x � 48x 2

f �1� � 3f ��u� �

u2 
� su 

u

f �0� � 5f ��t� � 2t � 3 sin t

f �0� � 2f ��x� � sinh x � 2 cosh x

f ��x� � sx 3 
� s3 x 2

 

f ��x� � 2e x
� sec x tan x

f ��x� � cos x � �1 � x 2��1�2

f

0 � x � 2�y � x sin x

(b) Four rectangular planks will be cut from the four sections

of the log that remain after cutting the square beam. Deter-

mine the dimensions of the planks that will have maximal

cross-sectional area.

(c) Suppose that the strength of a rectangular beam is propor-

tional to the product of its width and the square of its

depth. Find the dimensions of the strongest beam that can

be cut from the cylindrical log.

80. If a projectile is fired with an initial velocity at an angle of

inclination from the horizontal, then its trajectory, neglect-

ing air resistance, is the parabola

(a) Suppose the projectile is fired from the base of a plane

that is inclined at an angle , , from the horizontal,

as shown in the figure. Show that the range of the projec-

tile, measured up the slope, is given by

(b) Determine so that is a maximum.

(c) Suppose the plane is at an angle below the horizontal.

Determine the range in this case, and determine the

angle at which the projectile should be fired to maximize .

81. Show that, for ,

82. Sketch the graph of a function such that for 

all for for , and

.lim xl�
 � f �x� � x� � 0
� x � � 1f ��x� � 0� x � � 1,x, f ��x� � 0

f ��x� � 0f

x

1 � x 2
� tan�1x � x

x � 0

¨
å

x

y

0

R

R

R

�

R

R�� �

2v
2 cos  sin� � ��

t cos2
�

 

� � 0�

0 �  �
�

2
y � �tan �x �

t
2v

2 cos2


 x 2



v

depth

width
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One of the most important principles of problem solving is analogy (see page 76). If you

are having trouble getting started on a problem, it is sometimes helpful to start by solving

a similar, but simpler, problem. The following example illustrates the principle. Cover up

the solution and try solving it yourself first.

EXAMPLE 1 If x, y, and are positive numbers, prove that

SOLUTION It may be difficult to get started on this problem. (Some students have tackled 

it by multiplying out the numerator, but that just creates a mess.) Let’s try to think of a

similar, simpler problem. When several variables are involved, it’s often helpful to think

of an analogous problem with fewer variables. In the present case we can reduce the

number of variables from three to one and prove the analogous inequality

In fact, if we are able to prove (1), then the desired inequality follows because

The key to proving (1) is to recognize that it is a disguised version of a minimum prob-

lem. If we let

then , so when x � 1. Also, for and

for . Therefore the absolute minimum value of is . This means

that

for all positive values of x

and, as previously mentioned, the given inequality follows by multiplication.

The inequality in (1) could also be proved without calculus. In fact, if , we have

Because the last inequality is obviously true, the first one is true too. M

 &? �x � 1�2
� 0

 
x 2

� 1

x
� 2 &?  x 2

� 1 � 2x &? x 2
� 2x � 1 � 0

x � 0

x 2
� 1

x
� 2

f �1� � 2fx � 1f ��x� � 0

0 � x � 1f ��x� � 0f ��x� � 0f ��x� � 1 � �1�x 2 �

x � 0f �x� �

x 2
� 1

x
� x �

1

x

�x 2
� 1��y 2

� 1��z2
� 1�

xyz

� � x 2
� 1

x
�� y 2

� 1

y
�� z

2
� 1

z
� � 2 � 2 � 2 � 8

x 2
� 1

x
� 2 for x � 01

�x 2
� 1��y 2

� 1��z 2
� 1�

xyz

� 8

z
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Look Back

What have we learned from the solution to this

example?

N To solve a problem involving several variables,

it might help to solve a similar problem with

just one variable.

N When trying to prove an inequality, it might

help to think of it as a maximum or minimum

problem.



1. If a rectangle has its base on the -axis and two vertices on the curve , show that the

rectangle has the largest possible area when the two vertices are at the points of inflection of

the curve.

2. Show that for all .

3. Show that, for all positive values of and ,

4. Show that for all numbers and such that and .

5. If , , , and are constants such that

find the value of the sum .

6. Find the point on the parabola at which the tangent line cuts from the first quad-

rant the triangle with the smallest area.

7. Find the highest and lowest points on the curve .

8. Sketch the set of all points such that .

9. If is any point on the parabola , except for the origin, let be the point where

the normal line intersects the parabola again. Show that the line segment has the shortest

possible length when .

10. For what values of does the curve have inflection points?

11. Determine the values of the number for which the function has no critical number:

12. Sketch the region in the plane consisting of all points such that

13. The line intersects the parabola in points and (see the figure). Find

the point on the arc of the parabola that maximizes the area of the triangle .

14. is a square piece of paper with sides of length 1 m. A quarter-circle is drawn from to

with center . The piece of paper is folded along , with on and on , so that 

falls on the quarter-circle. Determine the maximum and minimum areas that the triangle 

can have.

15. For which positive numbers does the curve intersect the line ?

16. For what value of is the following equation true?

17. Let , where , , . . . , are real numbers and

is a positive integer. If it is given that for all , show that

� a1 � 2a2 � 	 	 	 � nan � � 1

x� f �x� � � � sin x �n

ana2a1f �x� � a1 sin x � a2 sin 2x � 	 	 	 � an sin nx

lim
x 
l
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� y 2
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� a � 6� cos 2x � �a � 2�x � cos 1

fa

y � cx 3
� e xc

a � 1�s2 

PQ

Qy � x 2P�a, a 2�

� x � y � � e x�x, y�

x 2
� xy � y 2

� 12

y � 1 � x 2

a � b � c � d

lim
x 
l

 0
 
ax 2

� sin bx � sin cx � sin dx

3x 2
� 5x 4

� 7x 6
� 8

dcba

� y � � 2� x � � 2yxx 2y 2�4 � x 2 ��4 � y 2 � � 16

e x�y
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� e 2

yx

x� sin x � cos x � � s2 
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18. An arc of a circle subtends a central angle as in the figure. Let be the area between

the chord and the arc . Let be the area between the tangent lines , and the

arc. Find

19. The speeds of sound in an upper layer and in a lower layer of rock and the thickness of

the upper layer can be determined by seismic exploration if the speed of sound in the lower

layer is greater than the speed in the upper layer. A dynamite charge is detonated at a point 

and the transmitted signals are recorded at a point , which is a distance from . The first

signal to arrive at travels along the surface and takes seconds. The next signal travels

from to a point , from to in the lower layer, and then to taking seconds. The third

signal is reflected off the lower layer at the midpoint of and takes seconds to reach .

(a) Express in terms of .

(b) Show that is a minimum when .

(c) Suppose that , , , and . Find .

Note: Geophysicists use this technique when studying the structure of the earth’s crust,

whether searching for oil or examining fault lines.

20. For what values of is there a straight line that intersects the curve

in four distinct points?

21. One of the problems posed by the Marquis de l’Hospital in his calculus textbook Analyse des

Infiniment Petits concerns a pulley that is attached to the ceiling of a room at a point by a

rope of length . At another point on the ceiling, at a distance from (where ), a

rope of length � is attached and passed through the pulley at and connected to a weight .

The weight is released and comes to rest at its equilibrium position . As l’Hospital argued,

this happens when the distance is maximized. Show that when the system reaches equi-

librium, the value of is

Notice that this expression is independent of both and �.

22. Given a sphere with radius , find the height of a pyramid of minimum volume whose base is

a square and whose base and triangular faces are all tangent to the sphere. What if the base of

the pyramid is a regular -gon? (A regular -gon is a polygon with equal sides and angles.)

(Use the fact that the volume of a pyramid is , where is the area of the base.)

23. Assume that a snowball melts so that its volume decreases at a rate proportional to its surface

area. If it takes three hours for the snowball to decrease to half its original volume, how much

longer will it take for the snowball to melt completely?

24. A hemispherical bubble is placed on a spherical bubble of radius 1. A smaller hemispherical

bubble is then placed on the first one. This process is continued until chambers, including

the sphere, are formed. (The figure shows the case .) Use mathematical induction to

prove that the maximum height of any bubble tower with chambers is .1 � sn n

n � 4

n

A
1

3 Ah

nnn

r
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r
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91. 93. (a) (b)

(c) (d)

95. (a) (b) 97.

99. 101.

103. (a) ; 

(b)

105. 107. 109. 111.

PROBLEMS PLUS N PAGE 266

1. 9.

11. (a) (b)

(c)

15.

17. (b) (i) (or ) (ii) (or )

19. R approaches the midpoint of the radius AO.

21. 23. 27.

29. 31.

CHAPTER 4

EXERCISES 4.1 N PAGE 277

Abbreviations: abs., absolute; loc., local; max., maximum; min.,

minimum

1. Absolute minimum: smallest function value on the entire

domain of the function; local minimum at c: smallest function

value when x is near c

3. Abs. max. at , abs. min. at , loc. max. at , loc. min. at and 

5. Abs. max. , loc. max. and , 

loc. min. and 

7. 9.

11. (a) (b) 

(c) y

0 x1
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2
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2

3
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0 x1
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2
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3

y

0 x1

_1
2

1

3

y

x0 54321
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2

1
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x0 51 2 3 4
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2
3

f s5d  3f s2d  2

f s6d  4f s4d  5f s4d  5

rbcrs

2 1
375

128p < 11.204 cm3ymins29y58

s1, 22d, s21, 0d2se2sin a

11786381278538

xT [ s3, `d, yT [ s2, `d, xN [ (0, 
5

3 ), yN [ (25

2 , 0)
2480p sin u (1 1 cos uys8 1 cos2u ) cmys

40(cos u 1 s8 1 cos2u ) cm4ps3ys11 radys

(0, 
5

4 )(61

2s3, 
1

4 )

1

8 x 21

4

1

3212 1
3

2p < 16.7 cm2

20.23 , x , 0.40

s3 1.03 < 1.01Lsxd  1 1 x; s3 1 1 3x < 1 1 x

400 ftyh13 ftys

4

3 cm2ymin<100 hC0 e2kt

sln 50dysln 3.24d < 3.33 h<25,910 bacteriayh

<22,040200s3.24d t4 kgym 13. (a) (b)

15. Abs. max. 17. None

19. Abs. min. 

21. Abs. max. , abs. and loc. min. 

23. Abs. max. 

25. Abs. max. 27. Abs. max. 

29. 31. 33. 35.

37. 39. 41. 43.

45. 47. , 

49. , 

51. , 53. , 

55. , 

57.

59. ,

61.

63.

65. (a) (b) , 

67. (a) 0.32, 0.00 (b) 69.

71. Cheapest, (June 1994); 

most expensive, (March 1998)

73. (a) (b)

(c)

EXERCISES 4.2 N PAGE 285

1. 3. 5. is not differentiable on 

7. 0.8, 3.2, 4.4, 6.1 

9. (a), (b) (c)

11. 0 13. 15. is not continous at 

23. 16 25. No 31. No

3f2
1

2 ln[1

6 (1 2 e26)]
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EXERCISES 4.3 N PAGE 295

Abbreviations: inc., increasing; dec., decreasing; CD, concave

downward; CU, concave upward; HA, horizontal asymptote; 

VA, vertical asymptote; IP, inflection point(s)

1. (a) (b) (c)

(d) (e)

3. (a) I /D Test (b) Concavity Test

(c) Find points at which the concavity changes.

5. (a) Inc. on ; dec. on 

(b) Loc. max. at , loc. min. at 

7.

9. (a) Inc. on ; 

(b) Loc. max. ; loc. min. 

(c) CU on ; CD on ; IP 

11. (a) Inc. on , ; dec. on , 

(b) Loc. max. ; loc. min. 

(c) CU on , ;

CD on ; IP 

13. (a) Inc. on , ; dec. on 

(b) Loc. max. ; loc. min. 

(c) CU on ; CD on , ; 

IP 

15. (a) Inc. on ; dec. on 

(b) Loc. min. (c) CU on 

17. (a) Inc. on ; dec. on 

(b) Loc. max. 

(c) CU on ; CD on ; IP 

19. Loc. max. , loc. min. 

21. Loc. max. 

23. (a) has a local maximum at 2.

(b) has a horizontal tangent at 6.

25.

27.

29. y

0 x

x

y

0_2 x=2
x

y

0_2 2
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y

0 1 2 3 4

f

f

f ( 3
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5
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f s1d  21f s21d  7

(e 8y3, 
8

3 e24y3 )s0, e 8y3 dse 8y3, `d
f se 2 d  2ye

se 2, `ds0, e 2 d
s2`, `df (21

3 ln 2)  222y3 1 21y3

 (2`, 2
1

3 ln 2)(21

3 ln 2, `)
s3py4, 0d, s7py4, 0d

s7py4, 2pds0, 3py4ds3py4, 7py4d
f s5py4d  2s2f spy4d  s2

spy4, 5py4ds5py4, 2pds0, py4d
(6s3y3, 

22

9 )(2s3y3, s3y3)
(s3y3, `)(2`, 2s3y3)

f s61d  2f s0d  3

s0, 1ds2`, 21ds1, `ds21, 0d
(21

2, 
37

2 )(2`, 2
1

2)s21

2, `d
f s2d  244f s23d  81

dec. on s23, 2ds2`, 3d, s2, `d
x  1, 7

x  1x  5

s0, 1d and s5, 6ds1, 5d

s2, 3ds2, 4d, s4, 6d
s0, 2ds0, 1d, s3, 4ds1, 3d, s4, 6d

31. (a) Inc. on (0, 2), (4, 6), ;

dec. on (2, 4), (6, 8)

(b) Loc. max. at ;

loc. min. at 

(c) CU on (3, 6), ; 

CD on (0, 3)

(d) 3 (e) See graph at right.

33. (a) Inc. on ;

dec. on 

(b) Loc. max. ;

loc. min. 

(c) CU on ; CD on ;

IP 

(d) See graph at right.

35. (a) Inc. on ;

dec. on 

(b) Loc. max. ;

loc. min. 

(c) CU on ; 

CD on ; 

IP

(d) See graph at right.

37. (a) Inc. on ; 

dec. on 

(b) Loc. max. ; 

loc. min. 

(c) CU on ;

CD on ; IP 

(d) See graph at right.

39. (a) Inc. on ;

dec. on 

(b) Loc. min. 

(c) CU on 

(d) See graph at right.

41. (a) Inc. on ;

dec. on 

(b) Loc. min. 

(c) CU on , ; 

CD on ;

IPs , 

(d) See graph at right.

43. (a) Inc. on ;

dec. on 

(b) Loc. min. 

(c) CU on ; 

CD on , ;

IP , 

(d) See graph at right.
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45. (a) HA , VA , 

(b) Inc. on , ; 

dec. on 

(c) Loc. max. 

(d) CU on , ; 

CD on 

(e) See graph at right.

47. (a) HA 

(b) Dec. on 

(c) None

(d) CU on 

(e) See graph at right.

49. (a) VA 

(b) Dec. on 

(c) None

(d) CU on (0, 1); CD on ; 

IP (1, 0)

(e) See graph at right.

51. (a) HA , VA 

(b) Inc. on , 

(c) None

(d) CU on , ; 

CD on ; IP 

(e) See graph at right.

53.

55. (a) Loc. and abs. max. , no min.

(b)

57. (b) CU on , ; 

CD on , , ; 

IP , , , 

59. CU on ; CD on 

61. (a) The rate of increase is initially very small, increases to a

maximum at , then decreases toward 0.

(b) When (c) CU on ; CD on (d)

63. ; CD

65. 28.57 min, when the rate of increase of drug level in the blood-

stream is greatest; 85.71 min, when rate of decrease is greatest

67.

EXERCISES 4.4 N PAGE 304

1. (a) Indeterminate (b) 0 (c) 0

(d) , , or does not exist (e) Indeterminate

3. (a) (b) Indeterminate (c)

5. 7. 9. 11. 13.

15. 17. 19. 21. 23. 1

25. 27. 1 29. 31. 0 33.

35. 37. 39. 41. 3 43. 0

45. 47. 49. 51. 53. 1`
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(21, 2

1

2 )s2`, 21d

s21, `ds2`, 21d

x

y

0x=_1

y=1

x  21y  1

s1, ed

s0, ed
y

0 x

(1, 0)1

x=ex=0
x  0, x  e

s2`, `d

s2`, `d

x

y

0

1

y  0

s21, 1d
s1, `ds2`, 21d

f s0d  0

s0, 1d, s1, `d
s21, 0ds2`, 21d

x

y

0

x=1x=_1

y=1

x  1x  21y  1 55. 57. 59. 61.

63. 65. 67. 71. 77. 79.

83. (a)

EXERCISES 4.5 N PAGE 314

1. A. B. y-int. 0; x-int. 0

C. About D. None

E. Inc. on F. None

G. CU on ; CD on ; 

IP (0, 0)

H. See graph at right.

3. A. B. y-int. 2; x-int. 2, 

C. None D. None

E. Inc. on (1, 5); 

dec. on 

F. Loc. min. ; 

loc. max. 

G. CU on ; 

CD on ; IP 

H. See graph at right.

5. A. B. y-int. 0; x-int. 24, 0

C. None D. None

E. Inc. on ; 

dec. on 

F. Loc. min. 

G. CU on , ; 

CD on ; IP (0, 0), 

H. See graph at right.

7. A. B. y-int. 1

C. None D. None

E. Inc. on , ; 

dec. on 

F. Loc. max. ; 

loc. min. 

G. CU on ; 

CD on 

IP

H. See graph at right.

9. A. B. y-int. 0; x-int. 0

C. None D. VA , HA 

E. Dec. on 

F. None

G. CU on ; CD on 

H. See graph at right.

s2`, 1ds1, `d

s2`, 1d, s1, `d
y  1x  1

x

y

0

x 5 1

y 5 1

hx | x ± 1j

(1ys3 4, 1 2 9y(2s3 16 ))
(2`, 1ys3 4 );

(1ys3 4, `)
f s1d  22

f s0d  1

s0, 1d
s1, `ds2`, 0d

y

x0

s1, _2d

s0, 1d

R

s22, 216ds22, 0d
s0, `ds2`, 22d

f s23d  227

s2`, 23d
s23, `d

y

0 x

(_3, _27)

R

s3, 11ds3, `d
s2`, 3d

f s5d  27

f s1d  25

s2`, 1d, s5, `d

y

0 x

(1, _5)

(5, 27)

1

2 (7 6 3s5 )R

s2`, 0ds0, `d
s2`, `d
s0, 0d

y

x1

1

R

0

56
16

9 a1
1

4e21yse

e 41e 3e22



A82 || | | APPENDIX I ANSWERS TO ODD-NUMBERED EXERCISES

11. A. B. y-int. 

C. About y-axis D. VA , HA 

E. Inc. on , ; 

dec. on (0, 3), 

F. Loc. max. 

G. CU on ; 

CD on 

H. See graph at right.

13. A. B. y-int. 0; x-int. 0

C. About (0, 0) D. HA 

E. Inc. on ; 

dec. on 

F. Loc. min. ;

loc. max. ;

G. CU on , ;

CD on , ;

IP (0, 0), 

H. See graph at right.

15. A. B. x-int. 1

C. None D. HA ; VA

E. Inc. on ; 

dec. on 

F. Loc. max. 

G. CU on ; 

CD on , ; IP 

H. See graph at right

17. A. B. y-int. 0, x-int. 0

C. About y-axis D. HA 

E. Inc. on ; dec. on 

F. Loc. min. 

G. CU on ; 

CD on , ; IP 

H. See graph at right

19. A. B. y-int. 0; x-int. 0, 5

C. None D. None

E. Inc. on ; dec. on 

F. Loc. max. 

G. CD on 

H. See graph at right.

21. A.

B. x-int. 

C. None D. None

E. Inc. on ; dec. on 

F. None

G. CD on 

H. See graph at right.

s2`, 22d, s1, `d

(2`, 22)(1, ` )

22, 1

y

0 x1_2

s2`, 22d < s1, `d

s2`, 5d
f (10

3 ) 
10

9 s15

( 10

3 , 5)(2`, 
10

3 )

y

x

”    ,          ’10
3

10œ„„
9

15s2`, 5g

(61, 
1

4)s1, `ds2`, 21d
s21, 1d

f s0d  0

s2`, 0ds0, `d
y  1

x

y

(0, 0)

y=1

1
4 ”1,   ’1

4”_1,   ’

R

(3, 
2

9)s0, 3ds2`, 0d
s3, `d

f s2d 
1

4

s2`, 0d, s2, `d
s0, 2d

x  0y  0 ”3,   ’2
9

x

y

0 1

”2,   ’1
4

s2`, 0d < s0,`d

(63s3, 6s3y12)
(0, 3s3 )(2`, 23s3 )
(3s3, `)(23s3, 0)

f s3d 
1

6

f s23d  2
1

6

s2`, 23d, s3, `d
s23, 3d

y  0

y

x

”3,    ’ 1
6

”_3, _   ’ 1
6

R

s23, 3d
s2`, 23d, s3, `d

f s0d  2
1

9

s3, `d

x

y

x 5 3x 5 23

s23, 0ds2`, 23d
y  0x  63

2
1

9hx | x ± 63j 23. A. B. y-int. 0; x-int. 0

C. About the origin

D. HA 

E. Inc. on F. None

G. CU on ; 

CD on ; IP 

H. See graph at right.

25. A.

B. x-int. C. About (0, 0)

D. VA 

E. Dec. on , 

F. None

G. CU on , ;

CD on , ;

IP 

H. See graph at right.

27. A. B. y-int. 0; x-int. C. About the origin

D. None E. Inc. on , ; dec. on 

F. Loc. max. ; 

loc. min. 

G. CU on ; CD on ; 

IP

H. See graph at right.

29. A. B. y-int. ; x-int. 

C. About -axis D. None

E. Inc. on ; dec. on 

F. Loc. min. 

G. CU on ; 

CD on  ; 

IP 

H. See graph at right.

31. A. B. y-int. 0; x-int. ( an integer)

C. About the origin, period D. None

E. Inc. on ;

dec. on 

F. Loc. max. ; 

loc. min. 

G. CU on ; 

CD on ; IP 

H. See graph at right.

33. A. B. y-int. 0; x-int. 0 C. About y-axis

D. VA 

E. Inc. on ; 

dec. on 

F. Loc. min. 

G. CU on 

H. See graph at right.

s2py2, py2d
f s0d  0

s2py2, 0d
s0, py2d

x

y

0

x 5 2
π
2 x 5

π
2

x  6py2

s2py2, py2d

snp, 0ds2np, s2n 1 1dpd
ss2n 2 1dp, 2npd

f s2np 1 3py2d  22

f s2np 1 py2d  2

s2np 1 py2, 2np 1 3py2d

x

y

0

2π
_2π

1
2

_2
_1

”_   , _2’π
2

”   , 2’π
2s2np 2 py2, 2np 1 py2d

2p

nnpR

s61, 0d
s2`, 21d, s1, `d

s21, 1d
f s0d  21

s2`, 0ds0, `d
y

y

0 x(_1, 0) (1, 0)

(0, _1)

6121R

s0, 0d
s2`, 0ds0, `d

f s1d  22

x

y

0

s_3œ„3, 0d

s3œ„3, 0d

s1, _2d

s_1, 2d

s0, 0d

f s21d  2

s21, 1ds1, `ds2`, 21d
0, 63s3R

(6s2y3, 61ys2 )
(s2y3, 1)(2s2y3, 0)

(0, s2y3 )(21, 2s2y3 )

s0, 1ds21, 0d
x  0

1

21

x

y

0

61

{x | | x | ø 1, x ± 0}  f21, 0d < s0, 1g

s0, 0ds0, `d
s2`, 0d
s2`, `d

y  61

x

y

(0, 0)

y=_1

y=1
R
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35. A. C. None D. None

E. Inc. on , ; 

dec. on , 

F. Loc. min. , ;

loc. max. 

G. CU on , ;

CD on ; 

IP , 

H. See graph at right.

37. A. All reals except ( an integer)

B. y-int. 0; x-int. 

C. About the origin, period 

D. VA 

E. Inc. on F. None

G. CU on ; CD on ; 

IP 

H.

39. A. B. y-int. C. Period D. None

Answers for E–G are for the interval .

E. Inc. on , ; dec. on 

F. Loc. max. ; loc. min. 

G. CU on , where ,

; CD on ; IP when 

H.

41. A. B. y-int. C. None

D. HA 

E. Inc. on F. None

G. CU on ; CD on ;

IP H. See graph at right.

43. A. B. None

C. None D. VA 

E. Inc. on ; dec. on 

F. Loc. min. 

G. CU on 

H. See graph at right.

s0, `d
f s1d  1

s0, 1ds1, `d
x  0

y

0 x

(1, 1)

s0, `d

(0, 
1

2 )
s0, `ds2`, 0d

R

y  0, y  1

x

y

0

y 5 1

1

2R

_2π

1

e

2π 4π

y

x

x  a, bsa, bdb  p 2 a

a  sin21(1

2(21 1 s5 ))sb, 2pds0, ad
f s3py2d  e21f spy2d  e

spy2, 3py2ds3py2, 2pds0, py2d
f0, 2pg
2p1R

x

y

_2π 0 2π

x=_3π x=_π x=π x=3π
s2np, 0d

ss2n 2 1dp, 2npds2np, s2n 1 1dpd
ss2n 2 1dp, s2n 1 1dpd

x  s2n 1 1dp
2p

2np

ns2n 1 1dp

s2p, pdsp, py2d
sp, 2pd

s2p, 3pds0, pd

3π x

y

0 π 2π

7π
3

5π
3

π
3

f s5py3d  s5py6d 1
1

2s3

f s7py3d  s7py6d 2
1

2s3f spy3d  spy6d 2
1

2s3

s5py3, 7py3ds0, py3d
s7py3, 3pdspy3, 5py3d

s0, 3pd 45. A. B. y-int. C. None

D. HA 

E. Dec. on F. None

G. CU on ; CD on ;

IP 

H. See graph at right.

47. A. All in ( an integer)

B. x-int. C. Period D. VA 

E. Inc. on ; dec. on 

F. Loc. max. G. CD on 

H.

49. A. B. y-int. 0; x-int. 0 C. About (0, 0) D. HA 

E. Inc. on ; dec. on , 

F. Loc. min. ; loc. max. 

G. CU on , ; CD on , ;

IP , 

H.

51. A. B. y-int. 2

C. None D. None

E. Inc. on ; dec. on 

F. Loc. min. 

G. CU on

H. See graph at right.

53. 55.

57. 59. y  2x 2 2y  x 2 1

y

xLL/20

m

0 √

(0, m¸) √=c
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5 ln 
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4
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1
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1

2, `)
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y  0, y  1
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61. A.

B. y-int. 1; x-int. 

C. None

D. VA ; SA 

E. Dec. on , 

F. None

G. CU on ; CD on

H. See graph at right

63. A. B. None

C. About (0, 0) D. VA ; SA 

E. Inc. on , ; 

dec. on , 

F. Loc. max. ;

loc. min. 

G. CU on ; CD on 

H. See graph at right.

65. A. B. y-int. 1; x-int. 

C. None D. SA 

E. Inc. on F. None

G. CU on ,

CD on , ;

IP , 

H. See graph at right.

67. 71. VA , asymptotic to 

EXERCISES 4.6 N PAGE 320

1. Inc. on , ; dec. on , ;

loc. max. ; loc. min. , ;

CU on , ; 

CD on ; IP , 

3. Inc. on , ; 

dec. on , ;

loc. max. ; loc. min. ,

; CU on , ,

; CD on , ; s2.92, 15.08ds211.34, 0ds15.08, `d
s0, 2.92ds2`, 211.34df s18.93d < 212,700,000

f s215d < 29,700,000f s4.40d < 53,800

s4.40, 18.93ds2`, 215d
s18.93, `ds215, 4.40d

_6

10

0 4

ƒ

2.7
3.96

4.04

2.4

ƒ

s2.54, 3.999ds1.46, 21.40ds1.46, 2.54d
s2.54, `ds2`, 1.46d

f s2.58d < 3.998f s0.92d < 25.12f s2.5d < 4

s2.5, 2.58ds2`, 0.92ds2.58, `ds0.92, 2.5d

222 x

10

210

y

0

ƒ

y=˛

y  x 3x  0

x

y

0

y 5 x 1
π
 2

y 5 x 2
π
 2

s0, 1d(6s3, 1 6 
3

2s3 )
(s3, `)(2s3, 0)

(0, s3 );
(2`, 2s3 )
s2`, `d

y

x0
_1

(0, 1)

y=2x+1

{œ„3,    œ„3+1}3

2

{_œ„3, _   œ„3+1}3

2

y  2x 1 1

21R

s2`, 0ds0, `d
f s2d  4

f s22d  24

s0, 2ds22, 0d
s2, `ds2`, 22d

y  xx  0

0 x

y (2, 4)

y=x

(_2, _4)

hx | x ± 0j

(2`, 
1

2)(1

2, `)

(1

2, `)(2`, 
1

2)
y  2x 1 2x 

1

2

1

4 (5 6 s17 )

x

y

0

y=_x+2

x=_12

(2`, 
1

2) < (1

2 , `) IP , , ,

5. Inc. on , , ;

dec. on , ; loc. max. ;

CU on , , ;

CD on , ; IP 

7. Inc. on , ; dec. on ,

; loc. max. ; loc. min.

, ; CU on ,

CD on ; IP , 

9. Inc. on ; dec. on ,

, ; CU on ,

CD on , 

11. (a)

(b)

(c) Loc. min. ; 

CD on ; CU on se23y2, `ds0, e23y2d
f (1yse )  21ys2ed

limx 
l

 01 f sxd  0

1

_0.25

_0.25 1.75

1     , 2     21

2e

1
œ„e
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1
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(2`, 28 2 s61 )(28 2 s61, 28 1 s61 )
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_10
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ƒ

_2.5 0

10

6

ƒ

s1.28, 21.48ds21.28, 8.77ds21.28, 1.28ds1.28, 4d;
s24, 21.28df s2.89d < 29.99f s21.49d < 8.75

f s21.07d < 8.79s21.07, 2.89d
s24, 21.49ds2.89, 4ds21.49, 21.07d

3

_3

_5 5

s20.506, 20.192ds0.24, 2.46ds21.7, 20.506d
s2.46, `ds20.506, 0.24ds2`, 21.7d

f s1d  2
1

3s2.46, `ds1, 2.46d
s0.24, 1ds21.7, 0.24ds2`, 21.7d

60,000

f

_30,000

10_10

10,000,000

f

_13,000,000

25_25

s15.08, 28,150,000d
s2.92, 31,800d< s211.34, 26,250,000ds0, 0d
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13. Loc. max. , ,

; loc. min. 

15.

CU on , , , , ;

CD on , , ; 

IP , , , ,

17. Inc. on ; dec. on ; loc. max. ;

CU on ; CD on ; 

IP 

19. Inc. on , , , ,

; 

dec. on , , , ;

loc. max. , , ,

; 

loc. min. , ; CU on ,

; 

CD on , ,

; 

IPs at , 

5

f

0 20_5

s15.81, 3.91d, s18.65, 4.20ds9.60, 2.95d, s12.25, 3.27d
s18.65, 20d

s12.25, 15.81ds24.91, 24.10d, s0, 4.10d, s4.91, 9.60d
s15.81, 18.65d

s9.60, 12.25df s17.08d < 3.49f s10.79d < 2.43

f s14.34d < 4.39

f s8.06d < 3.60f s1.77d < 2.58f s24.51d < 0.62

s14.34, 17.08ds8.06, 10.79ds1.77, 4.10ds24.51, 24.10d
s17.08, 20d

s10.79, 14.34ds4.91, 8.06ds0, 1.77ds24.91, 24.51d

0.5

f

50

s0.94, 0.34d
s0, 0.94ds0.94, `d

f s0.43d < 0.41s0.43, `ds0, 0.43d
s20.1, 0.0000066d

s20.5, 0.00001ds21, 0ds25.0, 20.005ds235.3, 20.015d
s20.5, 20.1ds25.0, 21ds2`, 235.3d

s4, `ds2, 4ds20.1, 2ds21, 20.5ds235.3, 25.0d

f 0sxd  2 
sx 1 1dsx 6 1 36x 5 1 6x 4 2 628x 3 1 684x 2 1 672x 1 64d

sx 2 2d4sx 2 4d6

f 9sxd  2
x sx 1 1d2sx 3 1 18x 2 2 44x 2 16d

sx 2 2d3sx 2 4d5

0.03

82.5
0

500

221

21500

0.02

23.528

20.04

y

x

1

f s3d  0f s5.2d < 0.0145

f s0.82d < 2281.5f s25.6d < 0.018 21. Inc. on , ;

CU on , ; 

CD on , ; 

IP 

23. (a) 

(b) , 

(c) Loc. max. (d) IP at 

25. Max. , , ; 

min. , , ;

IP , , , 

, 

27. For , there is no IP and only one extreme point, the 

origin. For , there is a maximum point at the origin, two 

minimum points, and two IPs, which move downward and away

from the origin as .

4
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_2_114
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0 π

f

s2.28, 0.34ds1.75, 0.77d
s1.17, 0.72ds0.66, 0.99998ds0.61, 0.99998d

f s2.73d < 20.51f s1.46d < 0.49f s0.64d < 0.99996

f s1.96d < 1f s0.68d < 1f s0.59d < 1

x < 0.58, 4.37f sed  e 1ye

lim xl` x 1yx
 1lim xl01 x 1yx

 0

2

_1

0 8

s 70.4, 60.8d
s0.4, `ds20.4, 0d

s0, 0.4ds2`, 20.4d

_3 3

_1

1

ƒ

ƒ
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29. There is no maximum or minimum, regardless of the 

value of c. For , there is a vertical asymptote at ,

, and .

is a transitional value at which for .

For , , , and there are 

two IPs, which move away from the y-axis as .

31. For , the maximum and minimum values are always 

, but the extreme points and IPs move closer to the y-axis as c

increases. is a transitional value: when c is replaced by ,

the curve is reflected in the x-axis.

33. For , the graph has local maximum and minimum 

values; for it does not. The function increases for 

and decreases for . As c changes, the IPs move vertically

but not horizontally.

35.

For , and . 

For , and . 

As increases, the maximum and minimum points and the IPs

get closer to the origin.
| c |

lim xl2` f sxd  0lim xl` f sxd  `c , 0

lim xl2` f sxd  2`lim xl` f sxd  0c . 0

3

3_3

_3

_2
21

0

1
2

10

_10

_15 1 5

c=3 c=1
c=0.5

c=_3 c=_1

c=_0.5

c=0

c ø 21

c ù 1| c | ù 1
| c | , 1

0.6

20.6

25 5

0.2

0.5

1 2

21

4

2cc  0

6
1
2

c . 0

c=_0.5

c=_2
c=_1

4

_1

_4 4

c=0.5

c=2c=1

2

_1

_4 4

c l `

lim xl6` f sxd  1lim xl 0 fsxd  0c . 0

x ± 0f sxd  1c  0

lim xl6` f sxd  1lim xl 0 fsxd  `

x  0c , 0

37. (a) Positive (b)

EXERCISES 4.7 N PAGE 328

1. (a) 11, 12 (b) 11.5, 11.5 3. 10, 10

5. 25 m by 25 m 7.

9. (a)

(b)

(c) (d) (e)

(f)

11. 1000 ft by 1500 ft 13. 15. $191.28

17. 19. 21. Square, side 

23. 25. Base , height 

27. 29. 31. 24 cm, 36 cm

33. (a) Use all of the wire for the square

(b) m for the square

35. 37.

41.

43. (a) (b)

(c)

45. Row directly to B 47. km east of the refinery

49. ft from the stronger source

51.

53. (b) (i) $342,491; $342yunit; $390yunit (ii) 400

(iii) $320yunit

55. (a) (b) $9.50

57. (a) (b) $175 (c) $100

61. 9.35 m 65. 67.

69. At a distance from A 71.

73. (a) About 5.1 km from B (b) C is close to B; C is close to

D; , where (c) ; no such

value (d) s41y4 < 1.6

<1.07x  | BC |WyL  s25 1 x 2yx

1
2 sL 1 W d25 2 2s5

py6x  6 in.

psxd  550 2
1
10 x

psxd  19 2
1

3000 x

sa 2y3
1 b 2y3d3y2

10s3 3y(1 1 s3 3 )
< 4.85

6s[h 1 sy(2s2 )]
cos21(1ys3 ) < 558

3
2 S

2 csc u scsc u 2 s3 cot ud
E 2ys4rd

V  2pR3y(9s3 )Height  radius  s3 Vyp cm

40s3y(9 1 4s3 )

pr 2(1 1 s5 )4pr 3y(3s3 )
3ry2s3rLy2, s3 Ly4

s2r(21
3 , 6

4
3s2 )(2 28

17 , 
7
17 )

4000 cm3

14,062.5 ft 2

Asxd  375x 2
5
2 x 25x 1 2y  750A  xy

y

x

75

120 9000 ft@

250

50 12,500 ft@

125

100 12,500 ft@

N  1

12

_12

_6 6

c=4
c=1

c=0.5

c=_1

c=0.1
c=0.2

c=0

c=_4
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EXERCISES 4.8 N PAGE 338

1. (a) (b) No 3. 5. 1.1797

7. 9. 11. 13. 1.217562

15. 0.876726 17.

19. 21. 0.641714

23. , 

25.

27. 29. (b) 31.622777

35. (a) (b)

37. 39.

41. 0.76286%

EXERCISES 4.9 N PAGE 345

1. 3.

5. 7.

9.

11.

13.

15.

17.

19.

21. 23.

25. 27.

29. 31.

33.

35.

37.

39. 41.

43. 45.

47. 49.

51.

53. 55.

57. 59.

61.

63. (a) (b)

(c) (d) About 9.09 s

67. 225 ft 69. $742.08 71.
130
11 < 11.8 s

29.8s450y4.9 < 293.9 mys

s450y4.9 < 9.58 ssstd  450 2 4.9t 2

sstd  210 sin t 2 3 cos t 1 s6ypdt 1 3

sstd 
1
6 t 3

2 t 2
1 3t 1 1sstd  1 2 cos t 2 sin t

x0

F

2π_2π

yy

0 x1

_1
2

1

2

3

(1, 1)

(2, 2)

(3, 1)

y

0 x

1 F

1

b10

2ln x 1 sln 2dx 2 ln 2x 2
2 cos x 2

1
2 px

x 2
2 2x 3

1 9x 1 92sin u 2 cos u 1 5u 1 4

2x 4
1

1
3 x 3

1 5x 2
2 22x 1

59
3

3
2 x 2y3

2
1
2 if x . 0; 

3
2 x 2y3

2
5
2 if x , 0

2 sin t 1 tan t 1 4 2 2s3

4x 3y2
1 2x 5y2

1 4x 2 3x 2
1 8

e t
1

1
2 Ct 2

1 Dt 1 E
3

20 x 8y3
1 Cx 1 D

x 3
1 x 4

1 Cx 1 DFsxd  x 5
2

1
3 x 6

1 4

F sxd 
1
2 x 2

2 ln | x |2 1yx 2
1 C

F sxd  5e x
2 3 sinh x 1 C

Gsud  sin u 1 5 cos u 1 C

F sud 
1
3 u 3

2 6u21y2
1 C

F sxd  H25ys4x 8d 1 C1  if x , 0

25ys4x 8d 1 C2  if x . 0

F sxd  4x 3y2
2

6
7 x 7y6

1 C

F sxd  4x 5y4
2 4x 7y4

1 CF sxd 
2
3 x 3

1
1
2 x 2

2 x 1 C

F sxd 
1
2 x 1

1
4 x3

2
1
5 x4

1 CF sxd 
1
2 x 2

2 3x 1 C

s0.410245, 0.347810ds0.904557, 1.855277d
22.021221.293227, 20.441731, 0.507854

0.21916368, 1.08422462

21.97806681, 20.82646233

1.13929375, 2.9898410221.93822883, 21.21997997

1.412391, 3.057104

20.724492, 1.220744

1.8205642021.251.1785

4
5x2 < 2.3, x3 < 3

73. 75.

77. (a) 22.9125 mi (b) 21.675 mi (c) 30 min 33 s

(d) 55.425 mi

CHAPTER 4 REVIEW N PAGE 347

True-False Quiz

1. False 3. False 5. True 7. False 9. True

11. True 13. False 15. True 17. True 19. True

Exercises

1. Abs. max. , abs. and loc. min. ; 

loc. min. 

3. Abs. max. , abs. and loc. min. 

5. Abs. max. ; abs. min. ; loc. max.

; loc. min. 

7. 9. 8 11. 0 13.

15.

17.

19. A. B. y-int. 2

C. None D. None

E. Dec. on F. None

G. CU on ; 

CD on ; IP 

H. See graph at right.

21. A. B. y-int. 0; x-int. 0, 1

C. None D. None

E. Inc. on , dec. on 

F. Loc. min. 

G. CU on , ; 

CD on ; IP , 

H. See graph at right.

23. A.

B. None C. None

D. HA ; VA , 

E. Inc. on ; dec. on , 

, 

F. Loc. min. 

G. CU on , ; CD on 

H. See graph at right.

s2`, 0ds3, `ds0, 3d

f s1d 
1
4

s3, `ds0, 1d

s2`, 0ds1, 3d

x  3x  0y  0

y

0 x

x 5 3

hx | x ± 0, 3j

s1, 0d( 1
2 , 2

1
16 )( 1

2 , 1)
s1, `d(2`, 

1
2 )

f ( 1
4 )  2

27
256

(2`, 
1
4 )( 1

4 , `)

y

0 x1

1

2

2

R

s0, 2ds0, `d

s2`, 0d

s2`, `d

y

x

2

R

y

x

y=_2

y=2

y

0

x1

22

9 12

x 5 6

1
2p

f s2py3d  s2py3d 2
1
2s3f spy3d  spy3d 1

1
2s3

f s0d  0f spd  p

f (21
3)  2

9
2f s2d 

2
5

f s3d  1

f s3d  1f s4d  5

62,500 kmyh2 < 4.82 mys288
15 < 5.87 ftys2
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25. A.

B. y-int. 0, x-int. 0 C. None

D. VA ; SA 

E. Inc. on , ;

dec. on , 

F. Loc. max. ;

loc. min. 

G. CU on ; CD on 

H. See graph at right.

27. A.

B. y-int. 0; x-int. 

C. None D. None

E. Inc. on , dec. on 

F. Loc. min. 

G. CU on 

H. See graph at right.

29. A. B. y-int. 

C. About -axis, period D. None

E. Inc. on , n an integer; dec. on 

F. Loc. max. ; loc. min. 

G. CU on ;

CD on ; IP 

H.

31. A.

B. None C. About (0, 0)

D. HA 

E. Dec. on , 

F. None

G. CU on ; CD on 

H. See graph at right.

33. A. B. y-int. , C. None D. HA 

E. Inc. on , dec. on F. Loc. max. 

G. CU on ; CD on ; IP 

H.

35. Inc. on , ;

dec. on , ;

loc. max. ,

loc. min. ;

CU on , ;

CD on , ;

IP , (2s6, 2
5

36 s6 )(s6, 
5
36s6 )

(0, s6 )(2`, 2s6 )
(s6, `)(2s6, 0)

f (2s3 )  2
2
9s3

f (s3 ) 
2
9s3

(s3, `)(2`, 2s3 )
ƒ

1.5

_1.5

_5 5

(0, s3 )(2s3, 0)

0

”   ,     e–!’1
2

1
2 {1, e–@}

y

x1

s1, e22ds2`, 1ds1, `d
f (1

2)  1ys2ed( 1
2, `)(2`, 

1
2)

y  0x-int. 00R

s2`, 21ds1, `d

s1, `ds2`, 21d

y  0
x

y

0 1_1

π
2

π
2_

{x | | x | ù 1}

y

x

2

π
_2

_π
2π_2π

(2np 6 spy3d, 2 1
4 )s2np 1 spy3d, 2np 1 s5py3dd

s2np 2 spy3d, 2np 1 spy3dd
f s2npd  22f ss2n 1 1dpd  2

ss2n 2 1dp, 2npds2np, s2n 1 1dpd
2py

22R

s22, `d

f (2 4
3 )  2

4
9s6

(22, 2
4
3 )(2 4

3 , `)

22, 0

y

x

”_   , _       ’4
3

4œ„6
9

f22, `d

s2`, 28ds28, `d

f s0d  0

f s216d  232

s28, 0ds216, 28d

s0, `ds2`, 216d

y  x 2 8x  28

0 x

y

x 5 28

y 5 x 28s216, 232d

hx | x ± 28j 37. Inc. on , ; dec. on , 

loc. max. ; loc. min. , ;

CU on , ; 

CD on ; IP , 

39. ; 

41.

43. For , f is periodic with period and has local 

maxima at , n an integer. For , f has no graph.

For , f has vertical asymptotes. For , f is con-

tinuous on . As C increases, f moves upward and its oscillations

become less pronounced.

49. (a) 0 (b) 53.

55. cm from D 57. 59. $11.50

61. 1.297383 63. 1.16718557

65.

67.

69.

71.

73.

75. (b) (c)

77. No

79. (b) About 8.5 in. by 2 in. (c) , 

PROBLEMS PLUS N PAGE 352

5. 7. 11.

13. 15.

19. (a) , , 

(c)

23. 3y(s3 2 2 1) < 11
1
2 h

c1 < 3.85 kmys, c2 < 7.66 kmys, h < 0.42 km

T3  s4h2 1 D 2yc1

T2  s2h sec udyc1 1 sD 2 2h tan udyc2T1  Dyc1

a ø e 1yesmy2, m 2y4d
23.5 , a , 22.5s22, 4d, s2, 24d24

20s2y3 in.20ys3 in.

5

4

_1

_4

F

0.1e x
2 cos x 1 0.9

sstd  t 2
2 tan21t 1 1

f (xd 
1
2 x 2

2 x 3
1 4x 4

1 2x 1 1

f std  t 2
1 3 cos t 1 2

f sxd 
2
5 x 5y2

1
3
5 x 5y3

1 C

f sxd  sin x 2 sin21x 1 C

L  C4ys3

3s3r 2CU on R

R

C . 121 , C ø 1

C ø 212np 1 py2

2pC . 21

22.16, 20.75, 0.46, 2.2122.96, 20.18, 3.01; 21.57, 1.57;

(6s2y3, e23y2 )s60.82, 0.22d

5
0

_5

1

2.5

0.4_0.5
1.5

ff

15

2.1_1

_20

s1.24, 212.1ds20.12, 1.98ds20.12, 1.24d

s1.24, `ds2`, 20.12d

f s1.62d < 219.2f s20.23d < 1.96f s0d  2

s0, 1.62d;s2`, 20.23ds1.62, `ds20.23, 0d
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