Algebraic Vectors

Geometric Vectors

٠

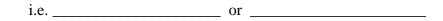
Geometric vectors are vectors with no fixed location Geometric vectors are written as a _____ and a _____ i.e. _____

Algebraic Vectors

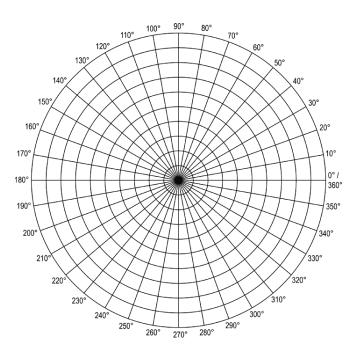
Algebraic vectors are vectors that are drawn on a coordinate plane with the tail at ______. •

Polar Coordinates

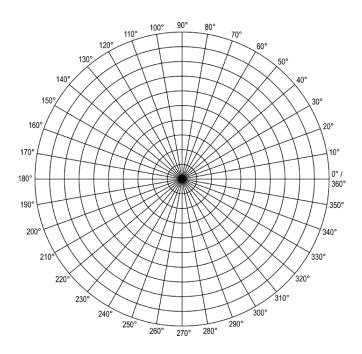
Algebraic vectors can be written using polar coordinates in the form _____, where the angle is measured from the terminal arm (positive x-axis).



Plot the vector $\vec{a} = (4, 120^{\circ})$ 1.



Plot the vector $\vec{a} = 9$ units [S45°W] 2.

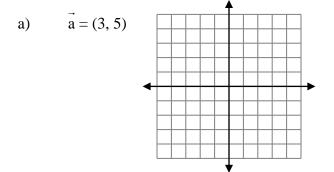


Cartesian Coordinates

- Algebraic vectors can be written using Cartesian coordinates in ______
 - or _____ form.

i.e. ______ or _____

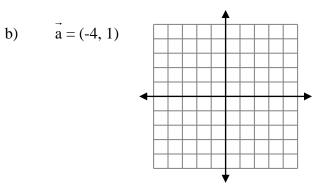
1. Draw the following algebraic vectors:

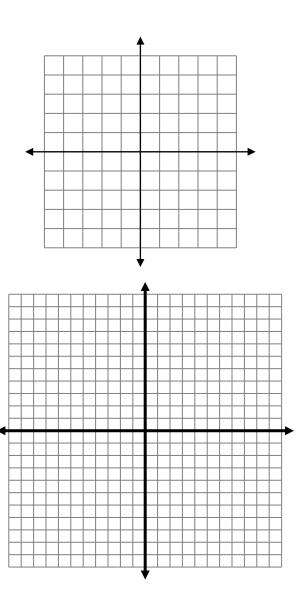


- 2. Write the vector \overrightarrow{AB} in component form if:
- a) A = (4, 3) and B = (-1, 1)
- b) A = (25, 70) and B = (15, 100)

3. Determine $\vec{a} + \vec{b}$ if $\vec{a} = (1, 5)$ and $\vec{b} = (3, -2)$

4. Determine $2\vec{a}$ if $\vec{a} = (-3, -1)$

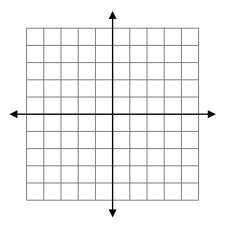




5. Simplify $10\vec{a} - 3\vec{b}$ if $\vec{a} = (-2, 7)$ and $\vec{b} = (3, 1)$

Unit Vector Form

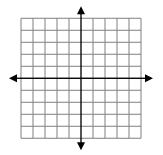
- Algebraic vectors can be written using ______.
 - i =______ j =_____
- 1. Write each of the following vectors in unit vector form:
 - a) $\vec{a} = (2, 5)$
 - b) $\vec{b} = (-3, 10)$



Magnitude of an Algebraic Vector

Calculate the magnitude of the following algebraic vectors:

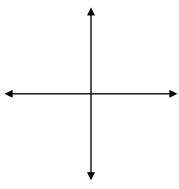
a) $\vec{a} = (5, 2)$ b) $\vec{a} = (-7, 3)$



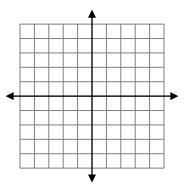
Converting Between Forms

1. Write $\vec{a} = -4\vec{i} + 3\vec{j}$ in component form:

2. Write the vector $\vec{a} = 6$ m [N30°W] as an algebraic vector in component form.



3. Write the vector $\vec{a} = (5, -2)$ as a geometric vector.



Drawing Vectors in Three Dimensions

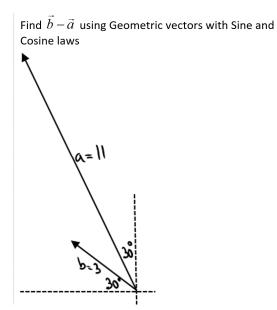
Draw each of the following vectors:

a)
$$\vec{u} = (2, 6, 5)$$
 b) $\vec{u} = (6, 3, 1)$

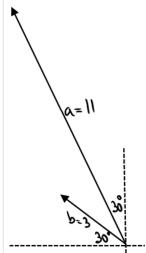
c)
$$\vec{u} = (3,1,-4)$$
 d) $\vec{u} = (-5,4,3)$

e)
$$\vec{u} = (3, -1, 4)$$
 f) $\vec{u} = -5\hat{i} - 2\hat{j} - 7\hat{k}$

Velocity Again



Find $\vec{b} - \vec{a}$ using Algebraic Vectors then check if the answers are the same.



A search and rescue aircraft, travelling at a speed of 240km/h, starts out at a heading of $N20^{o}W$. After

travelling for one hour and fifteen minutes, it turns to a heading of $N80^{\circ}E$ and continues for another 2 hours before returning to base.

- a) Determine the displacement vector for each leg of the trip. use a method of your choice
- b) Find the total distance the aircraft travelled and how long it took.

The **relative velocity** of the object B traveling at \vec{v}_B relative to the object A traveling at \vec{v}_A is given by: $\vec{v}_{BA} = \vec{v}_B - \vec{v}_A$

For **boat in water** (similarly for **plane with wind**) questions: $\vec{v}_{BG} = \vec{v}_{BW} + \vec{v}_{WG}$ where \vec{v}_{BG} is velocity of boat relative to ground, \vec{v}_{BW} is velocity of boat in still water, and \vec{v}_{WG} is velocity of water relative to ground. A car is traveling at $\vec{v}_c = 100 km/\hbar[E]$, a motorcycle is traveling at $\vec{v}_m = 80 km/\hbar[W]$, a truck is traveling at $\vec{v}_t = 120 km/\hbar[N]$ and an SUV is traveling at $\vec{v}_s = 100 km/\hbar[SW]$. Find the relative velocity of the car relative to: a) motorcycle

- b) truck
- c) SUV

Give answers in both algebraic and geometric forms

Vectors in Three Dimensions

Algebraic Form

Component Form
$$\vec{u} = (x, y, z)$$

Unit Vector Form $\vec{u} = x \vec{i} + y \vec{j} + z \vec{k}$

Write $\vec{u} = (2, -3, 1)$ in unit vector form Write $\vec{u} = -7\vec{i} + 5\vec{j} + 9\vec{k}$ in component form

Geometric Form

Magnitude	Direction (Direction Cosines)		
$ \vec{u} = \sqrt{x^2 + y^2 + z^2}$	$\cos\alpha = \frac{x}{ \vec{u} }$ $\cos\beta = \frac{y}{ \vec{u} }$ $\cos\gamma = \frac{z}{ \vec{u} }$		

Write the vector $\vec{u} = (3, 1, -4)$ as a geometric vector.

	$\rightarrow \rightarrow \rightarrow$		
a)	3(4i+2j-k)	b)	10(3,7,1)

Vector Addition

			~	~	~	~	~	~
a)	(5,7,-3)+(6,2,4)	b)	(2i + 1)	15j+	- 3k) -	- (6i –	-4j+	-2k)

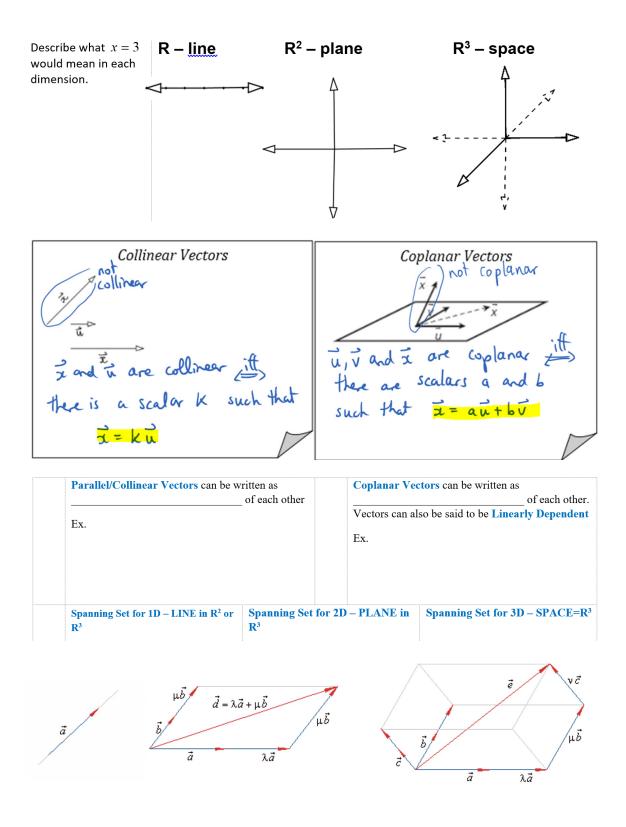
Parallel Vectors

- Parallel vectors have the same or opposite direction.
- a) For the points A(3, 2, 7), B(4, 5, 1), C(-4, 7, 1), D(-6, 1, 13), determine whether \overline{AB} is parallel to \overline{CD} .

Collinear Points

- Three points (A, B, C) are collinear if _____ and _____ are _____.
- a) Determine whether the points A (4, -2, 3), B(3, 2, 7), C(1, 10, 15) are collinear.

Linear Combinations



What is the set of all linear combinations of (1, 0, 0) and (0, 1, 1)?

Prove that the vectors $\vec{a} = (-1,2,-3)$, $\vec{b} = (2,0,-1)$, and $\vec{c} = (-7,6,-7)$ are linear dependant.

Dot Product

Dot product is the	of one vector with the scalar projection of
_	the other vector.

Determine $\vec{a} \bullet \vec{b}$, if $|\vec{a}| = 20$, $|\vec{b}| = 45$ and $\theta = 55^{\circ}$.

Perpendicular Vectors

If two vectors are perpendicular, their dot product _____

Determine $\vec{a} \bullet \vec{b}$, if $|\vec{a}| = 5$, $|\vec{b}| = 10$ and $\theta = 90^{\circ}$.

1. If $\vec{u} = (2, -3, 1)$ and $\vec{v} = (-5, 2, 4)$, calculate $\vec{u} \cdot \vec{v}$.

2. If $\vec{u} = 3\vec{i} + 2\vec{j} + 7\vec{k}$ and $\vec{v} = 5\vec{i} - 9\vec{k}$, find $\vec{u} \cdot \vec{v}$.

3. Find the angle between the vectors $\vec{u} = (-2, 3, 4)$ and $\vec{v} = (1, 5, 2)$.

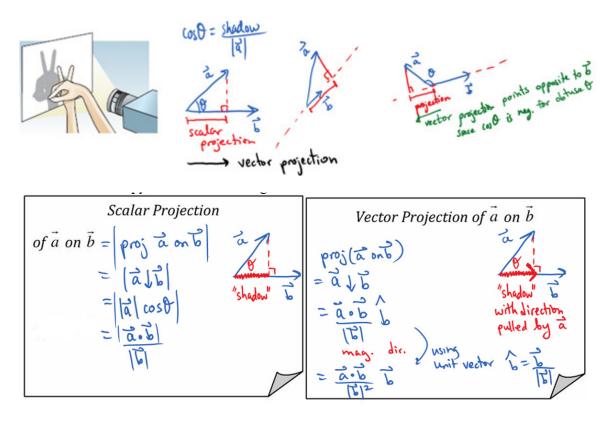
Properties of Dot Product

 $k(\vec{u} \cdot \vec{v}) =$

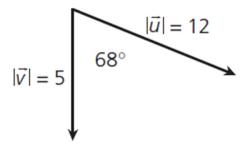
 $\vec{u} \cdot (\vec{v} + \vec{w}) =$

 $\vec{u} \cdot \vec{u} =$

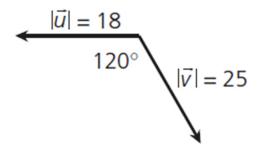
Projections



Explain and show how to draw the scalar projection $|\vec{v} \downarrow \vec{u}|$ on the diagram. Find the magnitude



Explain and show how to draw the vector projection $\overline{v} \downarrow \overline{u}$. Find the vector.



 $\vec{a} = [5, 4, -1] \text{ and } b = [1, -2, 3].$ a) Find $\left| \vec{a} \downarrow \vec{b} \right|$ b) Find $\vec{b} \downarrow \vec{a}$ Under what circumstances is

- a. $\operatorname{Proj}(\vec{u} \text{ onto } \vec{v}) = \operatorname{Proj}(\vec{v} \text{ onto } \vec{u})?$
- b. $|\operatorname{Proj}(\vec{u} \text{ onto } \vec{v})| = |\operatorname{Proj}(\vec{v} \text{ onto } \vec{u})|$?

Applications of Dot Product

Work

- Work occurs when a force is applied on an object, resulting in the displacement of the object.
- Measured in Joules

1. A 30 kg child slides down a 3 m long slide that makes an angle of 35° with the ground. Determine the work done by the force of gravity.

2. A mover pushes a washing machine 7.5 m across a basement floor. Calculate the work done by the mover, if he is pushing against a frictional force of 300 N.

Cross Product

The cross product is the ______ multiplication of two vectors, which results in a vector that is ______ to the original two vectors.

$$|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}| \operatorname{Sin} \theta$$

$$\vec{a} \times \vec{b} = (y_a z_b - z_a y_b, z_a x_b - x_a z_b, x_a y_b - y_a x_b)$$

1. If $|\vec{u}| = 10$, $|\vec{v}| = 13$, and the angle between them is 25°, find $|\vec{u} \times \vec{v}|$.

2. If $\vec{a} = (2, 3, 5)$ and $\vec{b} = (4, 7, 6)$, find $\vec{a} \times \vec{b}$.

3. Find a vector perpendicular to $\vec{u} = 10\vec{i} + 3\vec{j} + 7\vec{k}$ and $\vec{v} = -2\vec{i} - 1\vec{j}$.

4. Calculate the magnitude of $\vec{a} \times \vec{b}$ when $\vec{a} = (3, 2, 1)$ and $\vec{b} = (4, -5, 7)$

Properties of Cross Product

 $\vec{a} \times \vec{a} =$ $\vec{a} \times \vec{b} =$ $\vec{a} \times (\vec{b} + \vec{c}) =$ $k(\vec{a} \times \vec{b}) =$

1. Simplify $(\vec{a} + \vec{b}) \times (\vec{a} + \vec{b})$.

Applications of Cross Product

Area of a Parallelogram

Find the equation for the area of a parallelogram with sides \vec{a} and \vec{b} .

1. Calculate the area of the parallelogram with sides $\vec{u} = (10, 4, -1)$ and $\vec{v} = (-2, 5, 3)$.

Area of a Triangle

Find the equation for the area of a triangle

1. Calculate the area of a triangle with vertices A(1, 5, 0), B(2, 2, 2), and C(5, -1, 3).

- Torque occurs when a force is applied on an object, resulting in rotational motion.
- Measured in N m

1. Find the torque produced by a mechanic exerting a force of 95 N on the end of a 20 cm long wrench at an angle of 30°.