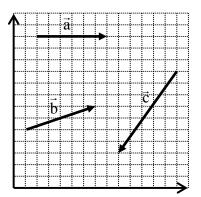
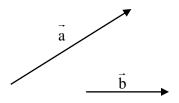

Introduction To Vectors

Term	Definition	Notation	Examples
Magnitude			
Direction			
Scalar			
Vector			
Unit Vector			
Equal Vectors (Equivalent)			
Opposite Vectors			
Parallel Vectors			
Coincident Vectors			



Drawing Vectors

Calculating Vectors


Calculate the magnitude and direction of the following vectors:

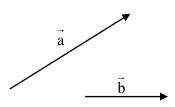
Vector Addition & Subtraction

Vector Addition

- To add vectors, line them up from ______ to _____.
- The sum of the vectors is drawn from ______ to _____.
- The sum of the vectors is also called the ______.

State the resultant vector for each of the following:

a) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$ b) $\overrightarrow{AL} + \overrightarrow{PZ} + \overrightarrow{QA} + \overrightarrow{ZQ}$


Determine $\vec{a} + \vec{b}$ if $|\vec{a}| = 5.2$ cm, $|\vec{b}| = 7.2$ cm, and the angle between the two vectors is 40.00°.

METHOD 1: Drawing

METHOD 2: Cosine Law

METHOD 3: SohCahToa (Components)

• To subtract vectors, add the ______ of the vector being subtracted.

State the resultant vector for each of the following:

a) $\overrightarrow{AB} - \overrightarrow{CB} - \overrightarrow{DC}$ b) $\overrightarrow{PZ} - \overrightarrow{LA} - \overrightarrow{AQ} - \overrightarrow{QZ}$

Determine $\vec{a} - \vec{b}$ if $|\vec{a}| = 5.2$ cm, $|\vec{b}| = 7.2$ cm, and the angle between the two vectors is 40.00°.

Zero Vector

• A vector with a magnitude of ______ and no ______.

i.e. $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC}$

Vector Operations

Properties of Vectors Activity

Property #1	Property #2	Property #3
$\vec{a} + \vec{0} = \vec{a}$	$\vec{a} - \vec{a} = \vec{0}$	$\vec{a} + \vec{b} = \vec{b} + \vec{a}$
True / False	True / False	True / False

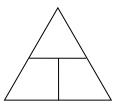
Property #4	Property #5	Property #6
$\vec{a} - \vec{b} = -\vec{b} + \vec{a}$	$\vec{a} - \vec{b} = \vec{b} - \vec{a}$	$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$
True / False	True / False	True / False

Property #7	Property #8	Property #9
$(\vec{a}-\vec{b})+\vec{c}=\vec{a}-(\vec{b}+\vec{c})$	$\vec{a} + \vec{a} = 2\vec{a}$	$\vec{a} + \vec{b} + \vec{a} + \vec{b} + \vec{a} = 3\vec{a} + 2\vec{b}$
True / False	True / False	True / False

Property #10	Property #11	Property #12
$3(\vec{2a}) = 2(\vec{3a})$	$2(\vec{a}+\vec{b}) = 2\vec{a}+2\vec{b}$	$2(\vec{a}-\vec{b}) = 2\vec{a}-2\vec{b}$
True / False	True / False	True / False

Vector Operations

Simplify each of the following:


a)
$$3(5\vec{a}+\vec{b}) - (2\vec{b}-4\vec{a})$$

b)
$$6(\vec{3a} - 2\vec{b} + \vec{5c}) + \frac{1}{2}(\vec{4a} + \vec{4b}) - 10(\vec{3c} - \vec{b} + 2\vec{a})$$

If $\vec{a} = 2\vec{x} + 3\vec{y} - 4\vec{z}$ and $\vec{b} = \vec{x} + 5\vec{z}$, express $10\vec{b} - 2\vec{a}$ in terms of \vec{x} , \vec{y} and \vec{z} .

Determine the value of $|2\vec{a}+30\vec{b}|$ if $|\vec{a}|=10$ cm, \vec{b} is a unit vector, and the angle between the two vectors is 70°.

Applications of Vectors – Velocity

- Velocity measures the rate of change in the position of an object, including direction.
- Velocity is a vector because it has both ______ and _____.
- Air speed (water speed) is the speed of a plane (boat) relative to a person on board.
- Ground speed is the speed of a plane (boat) relative to a person on the ground and includes the effect of wind (current).

Connie the canoeist wants to cross a river that is 250 m wide. The current flows at 5 km/h parallel to the bank and Connie can paddle at 13 km/h in still water. If she directs her boat towards a dock directly across the river:

a) What is her actual velocity as she crosses the river?

b) How far downstream will Connie end up?

c) How long does it takes her to cross the river?

A plane is steering at N30°W at an air speed (speed in still air) of 550 km/h. If the wind is from $S50^{\circ}W$ at 80 km/h, find the ground speed and the course of the plane.

How far will the plane have travelled in 2 hours?

Applications of Vectors - Force

• Force is something that either ______ or _____ an object.

• Force is measured using the unit ______.

• A mass of 1kg exerts a force of ______.

Determine the downward force exerted by a 10 kg box of textbooks.

Components of Force

A force applied to an object can broken down into two components:

Marsha pushes shopping cart up a 15° incline using a force of 60 N. Calculate the horizontal and vertical forces being exerted on the cart.

______ = ______

• When an object is ______, an opposite ______ force is used to counteract the applied forces.

Determine the tension in a cable that is supporting a suspended 0.75 kg pendant light fixture.

A piece of mobile art is suspended from the ceiling using two cables that make angles of 65° and 70° with the ceiling. If the mobile exerts a downward force of 48N, what is the tension in each cable?