Vectors UNIT B **APPLICATION OF VECTORS – journal**

Summarize everything you need to know about these topics. Use examples and concise (not long - but with enough detail) explanations. Include definitions and diagrams if necessary

FORCES 1.

- A. State Newton's 1st & 2nd & 3rd laws of motion. State the gravitational acceleration constant for earth, and discuss units that are valid for acceleration, mass and force.
- Define Applied force, Gravity force, Normal force, Friction force, Tension force, Buoyant force, Air resistance force, Resultant/Net Β. force and Equilibrant force.

VELOCITY 2

A. Find velocity of L with respect to K and	B. Plane and wind type	C. Boat and current type
with respect to M		
	An airplane is flying at an airspeed of 400 km/h on a heading of 220°. A 46-km/h wind is blowing from a bearing of 060°. Determine the ground velocity of the airplane.	A ship's course is set at a heading of 143° at 18 knots. A 10-knot current flows at a bearing of 112°. What is the ground velocity of the ship?

DOT PRODUCT 3.

A. Copy/Paste the following

Dot Product with Geometric Vectors

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$
 angle between
 $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$ angle between
 $\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$ angle between
 $\vec{u} = (a_1, b_1, c_1)$ $\vec{v} = (a_2, b_2, c_2)$
 $\vec{v} \cdot \vec{v} = a_1 a_2 + b_1 b_2 + c_1 c_2$
B Find the angle between the following vectors
 $\vec{u} = (-3, 1, 2)$ and $\vec{v} = (5, -4, -1)$

C. Prove

$$\vec{u} \bullet \vec{v} = \frac{1}{4} \|\vec{u} + \vec{v}\|^2 - \frac{1}{4} \|\vec{u} - \vec{v}\|^2$$

D. Use the dot product to prove that the diagonals of a rectangle are perpendicular if and only if the rectangle is a square

NAME:

<u>г</u> ative 4. PROJECTIONS & CROSS PRODUCT A. Copy/Paste the following

- 5. APPLICATIONS
 - A. Define Work and TorqueB. Copy/Paste the following

C. Work example (Note that displacement must be in correct units)	D. Torque example	 Find volume of parallelepiped given points A(0,1,3), B(1, 0, 2) C(1,2,0) E(4,4,4)
How much work does it take to slide a crate 200cm along a loading dock by pulling on it with a 200 N force at an angle of 30° from horizontal?	A 20 N force is applied at the end of a wrench that is 40 cm in length. The force is applied at an angle of 60° to the wrench. Calculate the magnitude of the torque about the point of rotation M and discuss direction.	H H D D B