PreCalculus UNIT A - part 1

ALGEBRA – journal questions (MPM)

Summarize everything you need to know about these topics. Use examples and concise (not long – but with enough detail) explanations. Include definitions and diagrams if necessary

1. EXPAND & SIMPLIFY POLYNOMIALS Cut/Paste the following chart into your journal and fill it in

-	EINT III (D & DII) III III I I ODIII (OI) III ID Cut i use the following chart into your journar and in it in.							
	Monomial with		TWO binomials		Any polynomial multiplication			
	polynomial mult.		multiplication					
	a. $3x^2(2x-5x^2+4)$	b.	(2x-3)(5x+4)	c.	$(x^2+1)(x^3+2x^2-6)$	d.	$3(4x-1)^2$	
	 i. Show distributive algebrack method ii. Show geometric representation of area distribution 	a i. agram ii.	Show distributive algebra method. Explain FOIL mnemonic. Show geometric representation of area diagram	i. ii.	Show any method to expand and multiply. Discuss why FOIL mnemonic doesn't help anymore	i. ii.	Explain why you cannot do exponent first. Show TWO ways of dealing with coefficient 3	

2. FACTORING

- A. Describe the differences between **expanding** and **factoring**
- B. Cut/Paste the flowchart that helps you determine what type of factoring to do.

Demonstrate how to factor by the following methods. Include examples and step by step explanations for ALL.

GCF: make a notes on: - what GCF stands for - how GCF is found (discuss that you must looi common divisor of coefficients and smallest common base) - if negative is 1 st , you must pull it out - proper way to record rough work (if you show must also multiply or question is changed) $\frac{2}{3}a^3 - \frac{1}{3}ab$ D. $-2x^3y^3 + 10x^2y^5 - 6x^6y^4$	k for highest power on v division, E_{E} E	or tely for each group e same AND still have +/- racket written once as GCF lso multiply is not squared at the end X) 6	 Simple Trinomial (SumProduct): make a notes on: the variable pattern that makes this method doable the steps to follow how do you know if you are to use two positives, two negatives, or one of each (be specific that the Product number is KEY in deciding signs) G. x² - 12x + 27 H. x² - x - 72 		
Complex Trinomials: make a note on: - the steps to follow - talk about reversing order of the list you make - trial steps versus recording steps I. $3x^2 - 10x - 8$ J. $8x^2 - 22xy - 21y^2$	Perfect Square Trinomials: make a note on: - the reason for the name "perfect square" - record the formula one can follow - what combination of factors should one start with to check if it is a perfect square K. $16m^2b^2 - 40mb + 25$ L. discuss how to find <i>b</i> so that the following factors over integers. $9n^2 + bnp + 49p^2$	Difference of make a note on: - the reason for the nar - record the formula or M. $36y^2 - 23$ show how one can apply con trinomial rules if you rewrite question as a trinomial	Squares: me "difference of squares" ne can follow $5x^4$ N. $x^2 - 3$ mplex the mean factoring over integers is impossible but over real numbers it is $0.$ $225 - (x + 5)^2$ explain steps of how to factor this without expanding first		

4. COMPLETING THE SQUARE

Describe the process of completing the square using the following examples				
	No Fractions Example	With Fractions Example		
	a. $2x^2 + 16x - 8$	b. $-3x^2 + 9x - 1$		

c. Copy and paste the following. Read and fill in missing info.

Expression		EQUATION		
•	Has no equals in the original question EX. Simplify $\frac{2}{5} + \frac{1}{3}$	• Has an equals sign • Solve $\frac{2}{5}x + \frac{1}{3} = 10$		
•	Place an equals sign in front only, don't think there's anything on the other side (not even a zero, since it is not an equation that has both sides) To maintain an equivalent expression, apply both the operation and its inverse to the whole expression. • multiply and divide by the same number = multiplying by ONE, • add and subtract the same number = adding ZERO EX. Factor $24x^2 + 4x$	 Place an equals sign just ONCE per line (never in front) To maintain an equivalent equation, apply same operation to EACH side (as a whole, not term by term - since some things can't distribute) Multiplying and dividing distributes over +/- Powers and roots can't be distributed over +/- EX. Solve √x² + 5 = 3 + x 		

d. Discuss how the completing the square process allows you to solve non linear equations like $2x^2 + 5x - 3 = 0$. Show the solution. (Later we will learn quadratic formula to make our lives easier, but for now you need to know what's going on mathematically before short-cuts are introduced)