Rearranging Formulas

1. The formula for finding the perimeter of a rectangle can be found using the following formula, where P is the perimeter, L is the length, and w is the

$$
\mathrm{P}=2(\mathrm{~L}+\mathrm{W})
$$ width. If a rectangle has a perimeter of 46 m and a length of 15 m , what is the width?

Method \#1: Substitute \& Rearrange
Method \#2: Rearrange \& Substitute
2. Rearrange each of the following equations to isolate for \mathbf{x}.
a) $M=4(x+y)$
b) $\frac{(\mathrm{x}+\mathrm{b}) \mathrm{h}}{2}=\mathrm{A}$
c) $\mathrm{A}=\mathrm{P}(1+\mathrm{rx})$
d) $a=3(b-x)$

Practice

Rearrange each formula to isolate the indicated variable.
a) $\quad \mathrm{P}=2(\mathrm{~L}+\mathrm{E})$: for L
b) $\quad \mathrm{V}=\mathrm{P}(1+\mathrm{rt})$; for r
c) $\quad \frac{(a+b) h}{2}=A$: for b
d) $\quad S=180(n-2)$; for n
e) $\quad \mathrm{SA}=2(\mathrm{bh}+\mathrm{lw}+\mathrm{lh})$; for w
f) $t=a+(n-1) d$; for n
g) $\quad \mathrm{SA}=\mathrm{w}^{2}(\mathrm{~b}+\mathrm{ht})$; for t
h) $\quad A=2\left(w^{2}+h w\right)$ for h

ansRearrangeFormulas2

Rearranging Formulas

1. The formula for finding the perimeter of a rectangle can be found using the following formula, where P is the perimeter, L is the length, and w is the

$$
\mathrm{P}=2(\mathrm{~L}+\mathrm{W})
$$ width. If a rectangle has a perimeter of 46 m and a length of 15 m , what is the width?

Method \#1: Substitute \& Rearrange

$$
\begin{aligned}
& * \text { sub } P=46, L=15 \\
& \frac{46}{2}=\frac{2}{2}(15+w) \\
& 23=15+w \\
&-15=w \\
& 8=w \\
& \therefore \text { width is } 8 \mathrm{~m}
\end{aligned}
$$

Method \#2: Rearrange \& Substitute

$$
\begin{gathered}
P=2(L+\omega) \\
\frac{P}{2}=L+\omega \\
\frac{P}{2}-L=w \\
\text { * now sub } P=46, L=15 \\
W=\frac{46}{2}-15=8
\end{gathered}
$$

2. Rearrange each of the following equations to isolate for \mathbf{x}.
a) $M=4(x+y)$
b) $\frac{(x+b) h^{2}}{2}=\mathrm{A} \cdot 2$
$\frac{M}{4}=x+y$

$$
(x+b) h=2 A
$$

$$
\frac{M}{4}-y=x
$$

$$
x+b=\frac{2 A}{h}
$$

$$
x=\frac{2 A}{h}-b
$$

c) $\quad \mathrm{A}=\mathrm{P}(1+\mathrm{rx})$
d) $a=3(b-x)$

$$
\frac{A}{p}=1+r x
$$

$$
\frac{a}{3}=b-x
$$

$$
\frac{A}{p}-1=r x
$$

$$
\frac{a}{3}-b=-1 x
$$

$$
-\frac{a}{3}+b=x
$$

$*\left(\frac{A}{P_{r}}-\frac{1}{r}=x\right.$

Practice

3 Rearrange each formula to isolate the indicated variable.
a) $\quad P=2(L+E)$: for L

$$
\frac{p}{2}=L+E
$$

$$
\frac{p}{2}-E=L
$$

b) $\quad \mathrm{V}=\mathrm{P}(1+\mathrm{rt})$; for r $\frac{V}{p}=1+r t$

$$
\frac{v}{p}-1=r t
$$

$$
\frac{v}{p_{t}}-\frac{1}{t}=r
$$

c) $\quad \frac{(a+b) h^{2}}{2}=A:$ for b
$(a+b) h=2 A$
$a+b=\frac{2 A}{h}$

$$
b=\frac{2 A}{h}-a
$$

d)

$$
\begin{aligned}
& S=180(n-2) ; \text { for } n \\
& \frac{s}{180}=n-2 \\
& \frac{s}{180}+2=n
\end{aligned}
$$

e) $\quad \mathrm{SA}=2(\mathrm{bh}+\mathrm{lw}+1 \mathrm{~h})$; for w

$$
\frac{S A}{2}=b h+L W+L h
$$

$$
\frac{S A}{2}-b h-L h=L w
$$

$$
\frac{S A}{2 L}-\frac{b h}{L}-h=w
$$

$$
\frac{S A}{w^{2}}=b+h t
$$

$$
\frac{\delta A}{w^{2}}-b=h t
$$

$$
\frac{S A}{w^{2} h}-\frac{b}{h}=t
$$

f) $\quad \mathrm{t}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$; for n $t-a=(n-1) d$

$$
\frac{t}{d}-\frac{a}{d}=n-1
$$

$$
\frac{t}{d}-\frac{a}{d}+1=n
$$

h) $\quad \mathrm{A}=2\left(\mathrm{w}^{2}+\mathrm{hw}\right)$; for h

$$
\begin{aligned}
& \frac{A}{2}=w^{2}+h w \\
& \frac{A}{2}-w^{2}=h w \\
& \frac{A}{2 w}-w=h
\end{aligned}
$$

