Unit #5 – Geometry Progress Check

MPM1D1

The purpose of the progress check is to diagnose areas that you need more practice with before the test.

- 1. Review your notes before trying the questions in this package.
- 2. Answer the questions on this handout. Treat it like a test. DO NOT look at the answers until you have finished all of the questions.
- 3. Use the answers provided to check and see how you did.
- 4. Go to the course website (http://sites.google.com/a/hdsb.ca/TAB-MPM1D1) if you need to see the full worked out solutions (click on Unit #4).
- 5. Use the additional review questions provided in the textbook (see unit outline) to practice more questions like the ones you had trouble with in this package.
- 6. Although this progress check contains a wide selection of questions from this unit, it does not cover ALL of the possible questions from the unit.
- 1. Calculate the missing values in the following diagrams. Show all work and state the theorem used.

c)

2. What is the **sum of the interior angles** in a shape with 24 sides?

3. How many sides does a polygon have if the sum of the interior angles is 2700°?

4. Explain, **in words**, how you would determine the measure of angle x.

13x - 20

5. Solve for x in each of the following diagrams and then calculate each of the missing angles. Show all of your work and state which theorems you used.

6. Determine the value of X in the following diagram. Show all of your work, including any other angles that you calculated in order to solve.

7. Calculate the value of X in the following diagram. Show all work and state what theorems you used.

8. The angles in a quadrilateral are consecutive odd numbers. Determine the measure of each angle.

9. The first exterior angle of a triangle is ten less than the second. The third is half of the first angle. Determine the measure of each exterior angle.

Answers:

- 1a] $X = 44^{\circ}$ (CAT) 1b] $X = 42^{\circ}$ (SAT), $Y = 51^{\circ}$ (OAT), $Z = 129^{\circ}$ (SAT) 1c] $X = 102^{\circ}$ (C or SAT), $Y = 78^{\circ}$ (Z)
- 1d] $X = 39^{\circ} (SATT)$ 1e] $X = 55^{\circ}$ (SATT), $Y = 55^{\circ}$ (Z), $Z = 57^{\circ}$ (Z) 1f] $X = 98^{\circ}$ (OAT), $Y = 78^{\circ}$ (QUAD)
- 1h] $X = 120^{\circ}$ (SAP), $Y = 60^{\circ}$ (SAT) 2] 3960° (SAP) 3] 17 sides (SAP) 1g] $X = 30^{\circ}$ (ITT, SATT)
- 4] Mark the missing angle as X (ITT). Add the three angles together and set it equal to 180° (SAT). Solve the equation for X by collecting like terms, subtracting 12 from both sides, and dividing by 2. 5b] $X = 12^{\circ}$ (SATT), Angles = 60°, 72°, 48°
- 5a] $X = 13^{\circ}$ (CAT), Angles = 55°, 35°
- 5c] $X = 14^{\circ}$ (QUAD), Angles = 118°, 75°, 46°, 121°
- 5d] $X = 12^{\circ}$ (F), Angles = 136°, 136° 5f] $X = 23^{\circ}$ (EAT), Angles = 84°, 63°, 147°
- 5e] $X = 28^{\circ}$ (SEAT), Angles = 84°, 102°, 132°, 42° 6] $X = 104^{\circ}$ (OAT, ITT, SATT, SAT, CAT)

7] $X = 45^{\circ}$ (SAP & SAT or SEAT)

	Let Statements	Equation	Answer
8]	Let x be the 1 st angle		1 st angle: 87°
	Let $x + 2$ be the 2^{nd} angle	x + x + 2 + x + 4 + x + 6 = 360	2 nd angle: 89°
	Let $x + 4$ be the 3^{rd} angle	(QUAD)	3 rd angle: 91°
	Let $x + 6$ be the 4 th angle		4 th angle: 93°
9]	Let $x - 10$ be the 1 st angle	10	1st 1 1400
	Let x be the 2^{nd} angle	$x - 10 + x + \frac{x - 10}{2} = 360$	1^{st} angle: 140°
	Let $\frac{x-10}{x-10}$ be the 3 rd angle	2 (SFAT)	2^{rd} angle: 150° 3^{rd} angle: 70°
	2		č