\qquad
\qquad

Parallel and Perpendicular Lines

If the lines have the same slope, they are parallel.

If the lines are perpendicular, the product of their slopes is -1 . Their slopes are negative reciprocals.

Given the two slopes, determine if the lines are parallel, perpendicular or neither.
a) $\quad m_{1}=\frac{2}{3} \quad m_{2}=\frac{3}{2}$
d) $\quad m_{1}=\frac{4}{3}$
$m_{2}=-\frac{3}{4}$
b) $\quad m_{1}=\frac{1}{2} \quad m_{2}=\frac{3}{6}$
e) $m_{1}=\frac{2}{5} \quad m_{2}=-\frac{2}{5}$
c) $\quad m_{1}=-3 \quad m_{2}=\frac{1}{3}$
f) $\quad m_{1}=0.6 \quad m_{2}=\frac{3}{5}$

2
Determine if the lines are parallel, perpendicular or neither.

$$
A(3,2) \quad B(6,4) \quad \text { and } \quad C(-8,-2) \quad D(-2,2)
$$

\qquad
Date: \qquad
3
Graph the following lines. Find their slopes and determine if the lines are parallel, perpendicular or neither.

$$
y=x+1 \text { and } 4 x+4 y+8=0
$$

4 Indicate if the lines defined by the following equations are parallel, perpendicular or neither.

$$
3 x-2 y+12=0 \quad \text { and } \quad y=-\frac{2}{3} x-4
$$

5 Find the slope of a line that is perpendicular to another line with the given slope.
a) $\quad m_{1}=4$
b) $\quad m_{1}=-\frac{3}{8}$
c) $\quad m_{l}=$ undefined
\qquad
Date: \qquad

6 Write the equation of a line that is parallel and that is perpendicular to the given line.

Equation	Parallel Line	Perpendicular Line
$4 \mathrm{x}-2 \mathrm{y}+12=0$		

A triangle has vertices $\mathrm{A}(-2,3), \mathrm{B}(8,-2)$ and $\mathrm{C}(4,6)$. Determine if the triangle is a right triangle or not.

\qquad

Determine an equation for each of the following lines:
a) line parallel to the line $2 \mathrm{x}-3 \mathrm{y}+1=0$ and passing through the point $(1,2)$.
b) line perpendicular to the line $x-5 y+2=0$ and passing through the point $(-2,5)$.
c) line parallel to the line $x+2 y-5=0$ and has the same x-intercept as the line $3 x-6 y+18=0$.
d) line parallel to the line $\mathrm{x}+3=0$ and passing through the point $(-6,-7)$.
\qquad
\qquad

Parallel and Perpendicular Lines

If the lines have the same slope, they are parallel.

If the lines are perpendicular, the product of their slopes is -1 . Their slopes are negative reciprocals.

Given the two slopes, determine if the lines are parallel, perpendicular or neither.
a) $m_{1}=\frac{2}{3} \quad m_{2}=\frac{3}{2}$ neither
d) $m_{1}=\frac{4}{3}$
$m_{2}=-\frac{3}{4}$ perpend.
b) $\quad m_{1}=\frac{1}{2} \quad m_{2}=\frac{3}{6} \quad$ parallel
e) $m_{1}=\frac{2}{5} \quad m_{2}=-\frac{2}{5}$ neither
c) $\quad m_{1}=-3$
$m_{2}=\frac{1}{3}$ perpend.
f) $\quad m_{1}=0.6 \quad m_{2}=\frac{3}{5}$

2
Determine if the lines are parallel, perpendicular or neither.

$$
A(3,2) \quad B(6,4) \quad \text { and } \quad C(-8,-2) \quad D(-2,2)
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
+6\left(\begin{array}{c|c}
x & y \\
\hline-8 & -2 \\
-2 & 2
\end{array}\right)+4
$$

$$
m=\frac{4-2}{6-3}
$$

$$
m=\frac{\Delta y}{\Delta x}=\frac{4}{6}=\frac{2}{3}
$$

$$
m=\frac{2}{3}
$$

\qquad
Date: \qquad

3 Graph the following lines. Find their slopes and determine if the lines are parallel, perpendicular

$$
\begin{aligned}
& \begin{array}{l}
y=x+1 \text { and } 4 x+4 y+8=0 \\
m=\frac{1}{1} \quad \frac{x-i n t}{4(0)}+4 y+8=0 \\
b=1
\end{array} \quad 4 y=-8 \\
& y=-2 \quad(0,-2)
\end{aligned}
$$

$$
\frac{y-i n t}{4 x+4(0)+8}=0
$$

$$
4 x=-8
$$

Y Indicate if the lines defined by the following equation $\begin{array}{r}0 \\ 3 x-2 y+12=0 \quad \text { and } y=-\frac{2}{3} x-4\end{array}$

$$
x=-2 \quad(-2,0)
$$ isolate y

$$
\begin{array}{ll}
3 x+12=2 y & m=-\frac{2}{3} \\
\frac{3}{2} x+6=y
\end{array}
$$

$$
m=\frac{3}{2}
$$

5 Find the slope of a line that is perpendicular to another line with the given slope.
a) $m_{1}=4$
b) $\quad m_{1}=-\frac{3}{8}$
c) $\quad m_{l}=$ undefined
$m_{2}=\frac{-1}{4}$

$$
m_{2}=\frac{8}{3}
$$

$$
m_{2}=\varnothing
$$

Name: \qquad
Date: \qquad
€ Write the equation of a line that is parallel and that is perpendicular to the given line.

Equation	Parallel Line	Perpendicular Line
$4 x-2 y+12=0$		
$4 x+12=2 y$	$y=2 x+$ any $\#$	$y=-\frac{1}{2} x+a_{n} y \#$
$2 x+6=y$		

A triangle has vertices $\mathrm{A}(-2,3), \mathrm{B}(8,-2)$ and $\mathrm{C}(4,6)$. Determine if the triangle is a right triangle or not. Look at a drawing is not a proof?

$$
m_{A C}=\frac{\text { rise }}{\text { run }} \simeq \frac{3}{6}=\frac{1}{2}
$$

$$
m_{B C}=\frac{\text { rise }}{r u_{n}}=\frac{-8}{4}=-2
$$

$\therefore \Delta$ is a right Δ since slopes are perpendicular
\qquad
Date: \qquad
Determine an equation for each of the following lines:
a) line parallel to the line $2 x-3 y+1=0$ and passing through the point $(1,2)$.

$$
\text { for h use } m_{2}=-\frac{5}{1}
$$

$$
0_{0}^{0} y-5=-5(x+2) \text { or } y=-5 x-5
$$

c) line parallel to the line $x+2 y-5=0$ and has the same x-intercept as the line

$$
\begin{aligned}
& \begin{array}{l}
3 x-6 y+18=0 \\
2 y=-x+5 \\
y=-\frac{1}{2} x+\frac{5}{2} \\
\therefore m_{1}=-\frac{1}{2}
\end{array} \quad \text { for } \| \text { use } m_{2}=-\frac{1}{2}
\end{aligned}\left\{\begin{array} { c }
{ x - \operatorname { i n t } } \\
{ 3 x - 6 (0) + 1 8 = 0 } \\
{ 3 x = - 1 8 } \\
{ x = - 6 }
\end{array} \left\{\begin{array}{c}
\therefore x-\text { int }(-6,0)) \left\lvert\, \begin{array}{c}
\therefore \text { eph } \\
y-0=-\frac{1}{2}(x+6) \\
\text { or } \\
y=-\frac{1}{2} x-3
\end{array}\right. \\
\text { d) line parallel to the line } x+3=0 \text { and passing through the point }(-6)-7) .
\end{array}\right.\right.
$$

for 11 line use another
is a vertical line
with $m=$ undefined

$$
\therefore x=-6 \text { or } x+6=0
$$

$$
\begin{aligned}
& 2 x+1=3 y \\
& \text { for parallel use } m_{2}=\frac{2}{3} x y \\
& \frac{2}{3} x+\frac{1}{3}=y \\
& \therefore m_{1}=2 / 3 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& \begin{array}{cc}
0 & y-2=2 \\
0 \circ(x-1)
\end{array} \text { or } y=\frac{2}{3} x+\frac{4}{3} \\
& \text { b) line perpendicular to the line } x-5 y+2=0 \text { and passing through the point }(-2,5) \text {. }
\end{aligned}
$$

