The Equation of a Line in the form Ax + By + C = 0

The equation Ax + By + C = 0 is the equation in **Standard Form**.

$$Ax + By + C = 0$$

In Standard Form, the coefficient in front of x is always positive, and there are no fractions.

Express each of the equations in the form y = mx + b. Then, determine the slope and the y-intercept of each of the lines.

a)
$$4x + 2y - 6 = 0$$

b)
$$x - 3y - 9 = 0$$

c)
$$3x + y + 7 = 0$$

$$d) 2x - y = 0$$

2 Express each of the equations in the form Ax + By + C = 0.

a)
$$y = 5x + 3$$

b)
$$y = -3x + 2$$

$$y = \frac{4}{5}x - 2$$

The Equation of a Line in the form
$$y - y_1 = m(x - x_1)$$

The equation $y - y_1 = m(x - x_1)$ is the equation in **Point-Slope Form**.

$$y - y_1 = m (x - x_1)$$

Express each of the equations in the form y = mx + b. Then, determine the slope and the y-intercept of each of the lines.

a)
$$y-9=-2(x-4)$$

b)
$$y+1=\frac{1}{2}(x-5)$$

a)
$$y-9=-2(x-4)$$
 b) $y+1=\frac{1}{2}(x-5)$ c) $y-8=-\frac{3}{4}(x+12)$

Then convert the above equations to Standard form Ax + By + C = 0

The equation of a line in the form Ax + By + C = 0

The equation Ax + By + C = 0 is a line in Standard Form.

$$\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} + \mathbf{C} = \mathbf{0}$$

Rules:

- the coefficient of x must be positive
- No fractions or decimals allowed!
- Everything on one side equal to zero

Rewrite each equation below in the form y = mx + b. Then, determine the slope and y-intercept of each line.

a)
$$4x + 2y - 6 = 0$$

 $2y - 6 = -4x$
 $2y = -4x + 6$
 $y = -4x + \frac{2}{5}$
 $y = -2x + 3$

c)
$$3x + y + 7 = 0$$

$$y = -3x - 7$$

b)
$$x = 3y - 9 = 0$$

$$\frac{1}{3}x - 9 = 3y$$

$$\frac{1}{3}x - 3 = 4$$

$$d) 2x - y = 0$$

$$2x = y$$
 $y = 2x$

a)
$$y = 5x + 3$$

$$y = -3x + 2$$

c)
$$y = \frac{4}{5}x - 2$$

Change each equation into standard form
$$(Ax + By + C = 0)$$
.

a) $y = 5x + 3$ b) $y = -3x + 2$ c) $y = \frac{4}{5}x - 2$

$$0 = 5x - 4 + 3$$

$$3x + 4y - 2 = 0$$

$$5(0) = (4x)^{-5}(4)^{-5}(4)$$

$$0 = 4x - 5y - 10$$

$$0 = 4x - 5y - 10$$

The Equation of a Line in the form $y - y_1 = m(x - x_1)$

The equation $y - y_1 = m(x - x_1)$ is the equation in **Point-Slope Form**.

$$y - y_1 = m (x - x_1)$$

Express each of the equations in the form y = mx + b. Then, determine the slope and the y-intercept of each of the lines.

a)
$$y-9 = -2(x-4)$$

 $y-9 = -2x + 8$
 $y=-2x+17$

b)
$$y+1=\frac{1}{2}(x-5)$$

$$y+1=\frac{1}{2}x-\frac{5}{2}$$

$$y_{1}=\frac{1}{2}$$
 $b=-\frac{1}{2}$

b)
$$y+1=\frac{1}{2}(x-5)$$
 c) $y-8=-\frac{3}{4}(x+12)$

$$y-8=-\frac{3}{4}x-9$$

 $y=-\frac{3}{4}x-1$

Then convert the above equations to Standard form Ax + By + C = 0

a)
$$2x + y - 17 = 0$$

b)
$$2y = |x - 7|$$

 $0 = |x - 2y - 7|$

c)
$$4y = -3x - 4$$

-7 $3x + 4y + 4 = 0$