The Equation of a Line Given the Slope and a Point

Write the equation of the line that passes through the given point with the given slope.
a) $\quad \mathrm{m}=4 \quad \mathrm{P}(-6,-2)$
b) $\quad \mathrm{m}=\frac{1}{4} \quad \mathrm{P}(5,2)$
c) $\quad \mathrm{m}=\frac{-3}{2} \quad \mathrm{P}(-4,5)$
d) $\quad \mathrm{m}=3 \quad \mathrm{P}(3,-1)$

$$
\begin{aligned}
& \text { Standard Form } A x+B y+c=0 \\
& y=m x+b \quad \text { slope } y \text {-int form } \\
& y-y_{1}=m\left(x-x_{1}\right) \text { is the equation in point-slope form }
\end{aligned}
$$

a) with a slope of -4 , and that passes through the point $(-3,5)$
b) with a slope of $\frac{2}{3}$, and that passes through the point $(4,-2)$

3 Determine the equation of the line with the same slope as $y=6 x-5$ and that has the same x-intercept as the line defined by the equation $2 x-4 y+8=0$.
a) $\quad \mathrm{m}=4 \quad \begin{array}{r}x \\ P(-6,-2)\end{array}$
(1) $y=4 x+b$
(2) $(-2)=4(-6)+b$
(3) $-2=-24+b$

$$
\begin{aligned}
& -2+24=b
\end{aligned}
$$

(4) $\therefore y=4 x+22$
(1) $y=\frac{1}{4} x+b$
(2) $(2)=\frac{1}{4}\left(\frac{5}{1}\right)+b$
(3) $2=\frac{5}{4}+b$
$\frac{2}{1}-\frac{5}{4}=b$
$\frac{8}{4}-\frac{5}{4}=b$
$\frac{3}{4}=b$
(4) $\therefore y=\frac{1}{4} x+\frac{3}{4}$
c) $\quad \mathrm{m}=\frac{-3}{2} \quad \begin{array}{ll}x & x \\ P(-4,5)\end{array}$
(1) $y=-\frac{3}{2} x+b$
(2) $(5)=\frac{-3}{2}\left(\frac{-4}{1}\right)+b$
(3) $5=\frac{12}{2}+b$
d) $\quad \mathrm{m}=3 \quad \mathrm{P}(3,-1)$

(1) $y=3 x+b$
(2) $(-1)=3(3)+b$
(3) $-1=a+b$
$-10=b$
$5=6+b$
$5-6=b$

$$
\begin{aligned}
& -6=b \\
& y=-\frac{3}{2} x-1
\end{aligned}
$$

(4)

Standard Form Ax $+\mathrm{By}+\mathrm{C}=0$
$y=m x+b$ slope y-int form $y-y_{1}=m\left(x-x_{1}\right)$ is the equation in point-slope form

2 Determine the equation of the line: All 3 forms
a) with a slope of -4 , and that passes through the point $(-3,5)$
b) with a slope of $\frac{2}{3}$, and that passes through the point $(4,-2)$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=-4(x--3) \\
& y-5=-4(x+3) \text { pt-slope form } \\
& y-5=-4 x-12 \\
& y=-4 x-7 \\
& 4 x+y+7=0 \text { stope-yint form } \\
& y \text { standard form }
\end{aligned}
$$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y--2 & =\frac{2}{3}(x-4) \\
y+2 & =\frac{2}{3}(x-4) \text { pt-slope form } \\
y+2 & =\frac{2}{3} x-\frac{8}{3} \\
y & =\frac{2}{3} x-\frac{14}{3} \text { slope- yint form } \\
3 y & =2 x-14 \\
0 & =2 x-3 y-14
\end{aligned}
$$

Determine the equation of a line whose slope is the same as the line y $y=(6)-5$
(point)

$$
m=6
$$

$$
\begin{aligned}
& 2 x-4 y+8=0 \\
& \text { let } y=0 \text { : } \\
& 2 x-y(0)+8=0 \\
& 2 x+8=0 \\
& 2 x=-8 \\
& x=-4 \\
& (-4,0) \\
& \text { Eq'^ of line with } \\
& m=6 \text { thru }(-4,0) \\
& \text { (1) } y=6 x+b \\
& \text { (2) }(0)=6(-4)+b \\
& \text { (3) } \\
& \begin{array}{l}
0=-24+b \\
24
\end{array} \\
& \begin{aligned}
& 24=b \\
& \therefore y=6 x+24
\end{aligned}
\end{aligned}
$$

