Investigation - Geometric Constructions Activity \#1 - Midpoints of a Triangle

1. Using a ruler, draw a large triangle on a sheet of paper and cut it out.
2. Label the vertices (corners) of the triangle A, B and C (as shown).

3. Measure the length of side $\mathbf{A B}$. Determine the midpoint (half way point) of side $\mathbf{A B}$ and mark this as point \mathbf{D}.

Length of $\mathbf{A B}=$

(Measure)
Length of AD = \qquad
(Calculate Half of AB)
4. Measure the length of side AC. Determine the midpoint of side AC and mark this as point \mathbf{E}.
\qquad
Length of AC =
$\underset{\text { (Calculate Half of AC) }}{\text { Length of AE }}$ \qquad
5. Draw a line segment between points \mathbf{D} and \mathbf{E}.
6. Measure the length of $\mathbf{D E}$, and the length of side BC. How do they compare?

Length of DE =

\qquad Length of BC= \qquad

Comparison:

7. If you wanted to determine whether $\mathbf{D E}$ and $\mathbf{B C}$ are parallel, which angles should you measure? What should you notice about those angles if they are parallel?
8. Use your strategy above to determine whether or not DE and BC are parallel.
9. Fold the triangle along the line segment DE.
10. Does vertex \mathbf{A} touch line segment $\mathbf{B C}$?

YES / NO

11. What does this tell you about the height of triangle ADE compared to the height of triangle ABC ?
12. Look at your answer in \# 6 and \#11. What hypothesis can you make about areas of triangle ADE and triangle ABC?
13. Draw all three midsegments on this triangle. Does your hypothesis in \#12 look true?

Conclusion

The line segment drawn between the midpoints of two of the sides in a triangle is
\qquad and \qquad the third side of the triangle.

When a line segment is drawn between the midpoints of two of the sides in a triangle, the new triangle formed \qquad as the original triangle.

Investigation - Geometric Constructions Activity \#2 - Midpoints of a Quadrilateral

1. Draw a large quadrilateral on a sheet of paper (use a ruler).
2. Label the vertices (corners) of the quadrilateral $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}.
3. Measure the length of side AB. Determine the midpoint (half way point) of side $\mathbf{A B}$ and mark this as point \mathbf{E}.

Length of AB = (Measure)

Length of $\mathbf{A E}=$
(Calculate Half of AB)
4. Measure the length of side BC. Determine the midpoint of $\mathbf{B C}$ and mark this as point \mathbf{F}.

Length of BC = \qquad
(Measure)

Length of $\mathbf{B F}=$
(Calculate Half of BC)
5. Measure the length of side $\mathbf{C D}$. Determine the midpoint of $\mathbf{C D}$ and mark this as point \mathbf{G}.
Length of $C D=$
(Measure)
Length of CG = \qquad
6. Measure the length of side AD. Determine the midpoint of AD and mark this as point \mathbf{H}.
\qquad
Length of AD =
Length of $\mathbf{A H}=$ \qquad
(Measur)
(Calculate Half of AD)
7. Draw a line segment between points \mathbf{E} and \mathbf{F}.
8. Draw a line segment between points \mathbf{F} and \mathbf{G}.
9. Draw a line segment between points \mathbf{G} and \mathbf{H}.
10. Draw a line segment between points \mathbf{E} and \mathbf{H}.
11. Measure the lengths of sides $\mathbf{E F}, \mathbf{F G}, \mathbf{G H}$, and $\mathbf{H E}$. What do you notice about the lengths of these line segments?

Length of EF: \qquad FG: \qquad GH: \qquad HE: \qquad

Comparison:

12. Measure $<\mathbf{E F G},<\mathbf{F G H},<\mathbf{G H E}$, and $<\mathbf{H E F}$ with a protractor. What do you notice about these angles?
\qquad
Comparison:
13. Are any of the sides of quadrilateral EFGH parallel? Explain.

YES / NO
Explanation:
14. What kind of shape is quadrilateral EFGH? Explain.
15. Compare your results with the other people at your table. Did they get the same result?

Conclusion

The line segments drawn between the midpoints of the sides in a quadrilateral form a

Investigation - Geometric Constructions
 Activity \#3 - Diagonals of a Quadrilateral

1. Choose one of the parallelograms provided.
2. Label the vertices (corners) of the parallelogram $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}.
3. Draw a line segment from point \mathbf{A} to point \mathbf{C}. This is called a diagonal.

4. Draw another diagonal from point B to point \mathbf{D}.
5. Measure the lengths of $\mathbf{A C}$ and $\mathbf{B D}$. How do their lengths compare?

Length of AC: \qquad Length of BD: \qquad

Comparison:

6. Label the point where AC and BD cross as point \mathbf{E}.
7. Measure the distance from point E to points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D . What do you notice about these lengths?

Length of AE: \qquad BE: \qquad
CE: \qquad
\qquad
Comparison:
8. Measure all four angles around point E. What do you notice? Record this on your response sheet.

Angle <AEB: \qquad <BEC: \qquad <CED: \qquad <DEA: \qquad
Comparison:

Conclusion

When the diagonals of a parallelogram cross, the lengths of the diagonals are
\qquad -.

When the diagonals of a parallelogram cross, the angles on the opposite sides are \qquad .

\square
\qquad

$$
7
$$

\qquad

/

