The equation of a Line in "slope y-intercept" form is written:

$$
y=m x+b
$$

(For example, explain what each of the different parts in the following cost equation might represent (follow the pattern above!)

$$
C=15 n+100
$$

Lines on a Cartesian Plane

Initial Value: \qquad
\qquad : \qquad
(Initial Value)
Rate of Change: \qquad
\qquad :
(Rate of Change)
Equation: \qquad

Equation of a Line

4
Determine the equation of each of the following lines.
a) \quad Slope $=3$
Y-Intercept $=10$
b) \quad Slope $=\frac{2}{3}$
Y -Intercept $=-4$
c) $\quad \mathrm{m}=-7$
$\mathrm{b}=-11$
d)

e)

5 Write the equation of the line using the given information.

	Slope (m)	Y-intercept (b)	Equation
a)	-3	6	
b)	$\frac{1}{4}$	-1	
c)	9	$(0,-4)$	

6 Identify the slope and y-intercept.

	Slope (m)	Y-intercept (b)	Equation
a)			$y=1 / 2 x-9$
b)			$y=-5 x+3 / 4$

The equation of a Line in "slope y-intercept" form is written:

For example, explain what each of the different parts in the following cost equation might represent (follow the pattern above!)

Lines on a Cartesian Plane

Initial Value: $\frac{3 \mathrm{~mm}}{\text { Rate of Change: }} \frac{\frac{2}{4}=\frac{1}{2}=0.5 \mathrm{~m} / \mathrm{m} \text { dy }}{}$
Equation: $H=3+0.5 d$

$$
y=0.5 x+3
$$

Equation of a Line
4

d)

$b=1 \quad m=\frac{2}{1}$

$$
y=2 x+1
$$

e)

$$
y=-\frac{4}{3} x+5
$$

5 Write the equation of each line given the following information.

	Slope (m)	y-intercept (b)	Equation
a)	-3	6	$y=-3 x+6$
b)	$\frac{1}{4}$	-1	$y=\frac{1}{4} x-1$
c)	9	$(0,-4)$	$y=9 x-4$

Identify the slope and y-intercept for each equation below.

	Slope (m)	y-intercept (b)	Equation
a)	$m=\frac{1}{2}$	$b=-9$	$y=1 / 2 x-9$
b)	$m=-5$	$b=\frac{3}{4}$	$y=-5 x+3 / 4$

