Quadratics

1. Write each of the following in standard form.
a. $y=(x+3)(x-4)$
b. $y=3(x-2)(x-5)$
c. $y=-(x+1)(x-3)$
d. $y=-(x-5)(x+5)$
e. $y=(3 x-5)^{2}$
f. $f(x)=2(x-5)^{2}-4$
2. Write each of the following in factored (intercept) form.
a. $y=2 x^{2}+4 x$
b. $y=x^{2}+4 x-32$
c. $y=x^{2}-64$
d. $y=3 x^{2}+2 x-5$
e. $y=2 x^{2}+2 x-40$
f. $f(x)=3 x^{2}+13 x-10$
3. Write each of the following vertex form.
a. $y=x^{2}+10 x-10$
b. $y=4 x^{2}-32 x+17$
c. $y=-5 x^{2}-10 x-30$
d. $y=\frac{2}{3} x^{2}-12 x-20$
e. $y=2 x^{2}-6 x+12$
f. $f(x)=-3 x^{2}+8 x-15$
4. Determine the roots, axis of symmetry, optimum value (max/min value), y-intercept, direction of opening and the vertex for each of the following.
a. $y=(x-3)(x+5)$
c. $y=-3(x-2)(x+1)$
e. $y=2 x^{2}-4 x-48$
b. $y=-(x-2)^{2}$
d. $y=x^{2}-9$
f.

$$
f(x)=-2 x^{2}-7 x-40
$$

5. Graph the parabolas in question 4.
6. State the transformations for each of the parabolas below and graph each of the following using transformations.
a. $y=3(x-4)+5$
b. $y=-(x+4)-2$
c. $f(x)=x^{2}-25$
7. Find the value of the discriminant. What does it tell you about the graph?
a. $y=2 x^{2}+4 x-5$
b. $y=-3 x^{2}-4 x-10$
c. $f(x)=-x^{2}-9 x+8$
8. Find the equation of each of the parabolas.
a.

b.

c.

d.

9. Find the point of intersection of the line and the quadratic.
a. $y=2 x+2$ and $y=x^{2}+x$
b. $y=x$ and $y=-x^{2}+3 x$
c. $y=x+7$ and $y=-x^{2}-5 x+2$
d. $y=2 x-2$ and $y=2 x^{2}+8 x+2$
10. A cannonball is shot out of a cannon buried 2 m in the ground. The height of the cannonball can be approximated by the equation $h=-5 t^{2}+35 t-2$, where h is the height of the ball, in metres, and t is the time, in seconds.
a. How long will it take the cannonball to reach ground level, to the nearest tenth of a second?
b. Find the maximum height of the cannonball and the time it takes to reach this height.
c. What is the height of the cannonball 2 seconds after it was fired.
d. When will the cannonball reach a height of 4.5 m ?
11. Ivanka is a professional jeweler. She designs and handcrafts one-of-a-kind god bracelets. A typical bracelet sells for $\$ 200$. At that price she usually sells 80 bracelets per craft show. She figures that for every $\$ 10$ decrease in price she can sell 5 more bracelets.
a. Write an equation that represents the revenue of the bracelets.
b. What price will generate the maximum revenue? What is the maximum revenue?
c. What is the break even point?
12. The Northern Resources Department want to mark off an area as a conservation park. One side of the rectangular-shaped area will be a large lake. Not including this side, the lengths of the remaining 3 sides must not total more than 36 km . What must be the dimensions of the conservation park in order to obtain a maximum size?
