Regression Using an Excel Spreadsheet

Using Technology to Determine Regression

- Enter your data in columns A and B for the x and y variable respectively

BB		
	A	B
1	Time	Distance
2		0
3		1
4		20
5		3
6		4
7		5
8		92

- Highlight the entire data series by selecting it with the mouse

B7			\checkmark -
	A		B
1	Time		Distance
2		0	0
3		1	20
4		2	46
5		3	92
6		4	130
7		5	270

- From the Insert menu select Chart
- Select the XY (Scatter) for the plot type then click on Next \rightarrow Next $\boldsymbol{\rightarrow}$ Next \rightarrow Finish (During this time you can change the axis name, colour and scale)
- To find the regression for the graph select the graph and click on the Chart menu then select Add Treadline...
- Select the regression you want to test

- Note: The polynomial regression tool allows you to choose the degree of the polynomial:
- Order $2 \rightarrow$ Quadratic
- Order $3 \rightarrow$ Cubic
- Order $4 \rightarrow$ Quartic
- ...etc
- Click on the Options tab
- Then check off Display equations on chart and Display R-Squared value on chart then click OK

Forecast
Eorward:
Backward: $0 \div$ Units
\square set intercept =
\checkmark Display equation on chart
Display R-squared value on chart

- The regression model will display on the graph

Regression with DESMOS.COM

Using Technology to Determine Regression
If you'd like to learn more about regressions, check out the Regressions page at Learn Desmos:
To get started with regressions, you'll need some data. You can copy data from a spreadsheet and paste it into a blank expression in the calculator.

x_{1}	y_{1}
1.7	10.4
3	12.1
4.7	13.7
6	15
7.5	16.3
9	17.3
10.5	18
11.9	18.6
12 2	10

Next, enter your regression model, like $y_{1} \sim \mathrm{mx}_{1}+\mathrm{b}$ or $\mathrm{y}_{1} \sim \mathrm{ax}_{1}{ }^{2}+\mathrm{bx} x_{1}+c$ or $\mathrm{y}_{1} \sim \mathrm{ax}_{1}{ }^{3}+\mathrm{bx}_{1}{ }^{2}+\mathrm{cx}_{1}+\mathrm{d}$ or other degree polynomial or exponential like $y_{1} \sim a(b){ }^{x_{1}+c}$ or other model... (use subscripts on variables x and y).
To decide which model is best - look at R^{2} value (needs to be as close to 1 as possible.)

You can also long-hold the colored icon and make the points draggable to see how their values change the equation.

Watch the video to learn more: https://www.youtube.com/watch?v=E9B0hQYfziw

Regression with the Graphing Calculator TI-89

Using Technology to Determine Regression

- Enter the Data

Press the APPS key and choose 6:Data/Matrix Editor and then 3:New... (Fig. 1). This brings up the NEW window (Fig. 2). Type should be set to Data. The default folder Main is fine, or you can create your own folder. (See the manual for how to do this if you are interested.) For Variable choose a name that reflects the contents of the data

Fig. 1 Applications Menu for Data Entry

Fig. 2 The New Data Window

set, e.g., Project1. The name you choose is the one you will use to recall the data set. Press ENTER twice to bring up the Data/Matrix Editor window (Fig. 3).

Labels for the columns can be entered in the row above the column headings. These labels are for your reference only; the actual names for the variables are c1, c2, etc. and it is these names that are used in calculations. Enter the data values as columns each column corresponding to a variable. For our data I place the t-values in C 1 and N values in c2.

Fig. 3 The Data/Matrix Editor

$\overline{\mathrm{Fiv}}$	F2	$11 / \begin{gathered}\text { F4 } \\ \text { cider }\end{gathered}$	
Dista	t.	$\begin{array}{\|l\|l} \hline n _ & \text {Add ditles for } \\ \text { columns (optional) } \end{array}$	
	C. 1		
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	5	119.94	
	10	166.65	\checkmark Enter data
	15	213.32	\longleftarrow in columns
	20	256.01	
r1c3=			

Fig. 4 The Plot Setup Window

- Plot the Data

To decide which empirical model to fit, create a scatter plot of the data. Begin by setting up the plot. From the Data/Matrix Editor window press $\mathbf{F 2}$ to select Plot Setup. This brings up the display shown in Fig. 4. With the first plot selected, press F1 to Define the settings for this plot (Fig. 5). The Plot Type should be Scatter. I choose the Box for Mark since this symbol is large and easy to see. Enter c 1 for x and c 2 for y. Press ENTER twice to save the settings.

Fig. 5 Plot Definition Settings

Fig. 6 Plot Window Settings

Define the data range for the plot. Press WINDOW (green key of F2) and enter the settings shown in Fig. 6. Next press $\mathrm{Y}=$ (green key of F 1). If there are any functions displayed be sure they are deselected. A function is selected if it is preceded by a check mark, \checkmark (Fig. 7). To deselect a function, use the arrow keys to highlight that function and press $\mathbf{F 4}, \mathbf{F 4}$ is used to toggle function selection. Finally, press GRAPH (green key of F3) to produce the scatter plot (Fig. 8).

Fig. 7 Deselecting Functions

Fig. 8 Scatter Plot of Data

- Fitting a Linear Function

The scatter plot in Fig. 8 suggests that a straight line relationship is reasonable. Return to the Data Editor window by pressing the APPS key and choosing 6:Data/Matrix Editor and then 1:Current... (Fig. 9). To fit a regression, press the F5 key to select the Calc menu option and bring up the Calculate window (Fig. 10).

Fig. 9 Reopening a Data Set

Fig. 10 Fitting and Storing a Linear Regression

From the menu selection, set Calculation Type to $5: \operatorname{LinReg}$. The x-variable is c 1 and the y-variable is c 2 . In order to plot the results, I choose $\mathrm{y} 1(\mathrm{x})$ as the function in which to Store RegEQ. This will overwrite the current contents of $y 1(x)$ with the regression function and automatically select $\mathrm{y} 1(\mathrm{x})$ for plotting. Press ENTER to produce the regression results shown in Fig. 11. Finally, press GRAPH (green key of F3) to produce the scatter plot with the regression line superimposed (Fig. 12).

Fig. 11 Linear Regression Results

The values of a and b are displayed on the screen along with model that was fit. Based on the output the fitted model is $N(t)=-130.17+23.374 t$. Qualitatively it would appear from the graph in Fig. 12 that a linear function is a reasonable model. The standard quantitative measure of the usefulness of the regression model is R^{2}, the coefficient of determination. R^{2} measures the fraction of the variability in y that is explained by its linear relationship to x and can take values between 0 and 1. The TI-89 prints R^{2} as part of the standard regression output. Since $R^{2}=0.917934$ we conclude that approximately 91.8% of the variability in N is explained by its linear relationship to t. (If the fit were perfect R^{2} would equal 1.)

- Fitting a Quadratic Function

The scatter plot in Fig. 8 reveals a slight curvilinear trend to the data suggesting a polynomial model might be appropriate. Return to the Data Editor window as explained in the "Fitting a Linear Function" section. Press F5 to select the Calc menu option and bring up the Calculate window. Use the drop down men to set Calculation Type to 9:QuadReg. (Third and fourth degree polynomials can be fit by choosing 3:CubicReg and A:QuartReg respectively.) The x-variable is c 1 and the y-variable is c2. In order to plot the results, choose $\mathrm{y} 2(\mathrm{x})$ as the function in which to Store RegEQ (Fig. 13). Doing this will overwrite the current contents of $\mathrm{y} 2(\mathrm{x})$ and automatically select $\mathrm{y} 2(\mathrm{x})$ for plotting. Press ENTER to produce the regression results shown in Fig. 14.
Fig. 13 Fitting and Storing a Quadratic

Regression

Fig. 14 Quadratic Regression Results

The values of a, b, and c are displayed on the screen along with model that was fit. Based on the output the fitted model is $N(t)=0.531 t^{2}-5.807 t+161.637$. Fr o m R^{2} we conclude that approximately 99.4% of the variability in N is explained by its quadratic relationship to t. Finally, press GRAPH (green key of F3) to produce a plot with the quadratic regression function and linear regression function superimposed on a scatter plot of the data (Fig. 15).

Fig. 15 Quadratic and Linear Regression Plots
(FiT

You can also do , cubic Regression

$$
\begin{aligned}
& \text { - expuratial / log Regression } \\
& \text { - otters ... }
\end{aligned}
$$

Regression with Curve Expert

Using Technology to Determine Regression
Free download from http://www.curveexpert.net/download/

1. Enter the data set in the x and y columns.

Graphs and Data					
Data	Notes	Data Plot	Top Results	+	
	X1		Y		
1	1.000000	3.000	0000		
2	2.000000	7.00	0000		
3	3.000000	4.000	0000		
4	4.000000	8.00	0000		
5	5.000000	9.000	0000		
6	6.000000	5.000	0000		
7					
8					
9					
10					

2. Click APPLY FIT from the menu, and choose nth order Polynomial, or from Calculate menu select nth order polynomial fit.
3. Type in the degree you want to use as regression.

Note: The polynomial regression tool allows you to choose the degree of the polynomial:

- Order $2 \rightarrow$ Quadratic
- Order $3 \rightarrow$ Cubic
- Order $4 \rightarrow$ Quartic
- ...etc

4. Click INFO on the graph to see the coefficients. or from Window select to view Messages
```
Final Result [Linear Regressions/Polynomial Regression (degree=4)]:
    Equation : a + b^x + c c^ x^2 + . .
    a = -1.933333333332247E+01
    b}=3.903439153437718\textrm{E}+0
    c = -2.072222222221731E+01
    d = 4.481481481480880E+00
    e = -3.333333333333216E-01
    Standard Error : 2.015810522715879E+00
    Correlation Coefficient : 9.245946589975047E-01
    Run time : 0.0010 seconds
```


Regression with the Graphing Calculator TI-83

Entering data into Lists

- Press STAT and select option 1
- Clear lists by moving the cursor to the very top of each column in turn and pressing CLEAR then ENTER.
- Enter the independent variable in L_{1}
- Enter dependent variable in \mathbf{L}_{2}.

Graphing Your Data

- Draw a scatter plot to show the relationship as follows:
- Use STATPLOT ($\mathbf{2}^{\text {nd }} \mathbf{Y}=$), select 1 (Plot 1) and press ENTER.
- Turn on the plot, choose a scatter plot and enter the correct lists for your Xlist is usually L1 ($\mathbf{2}^{\text {nd }}$ $\rightarrow \mathbf{1})$ and Ylist is usually L2 $\left(\mathbf{2}^{\text {nd }} \rightarrow \mathbf{2}\right)$.
- Press GRAPH to look at the scatter plot. (You may need to use ZOOM \rightarrow 9:ZoomStat in order to see the graph.)

Finding the Equation of the Line of Best Fit (Regression)

- In order to determine the goodness of fit we need the coefficient of determination r^{2}.
- Press $2^{\text {nd }} \mathbf{0}$ (CATALOG), cursor down to DIAGNOSTICON. Then press ENTER-ENTERENTER. (This only needs to be done one per use)
- Press STAT and cursor across to CALC.
- Choose the appropriate regression type:
- 4:LinReg $(\mathrm{ax}+\mathrm{b}) \rightarrow$ LINEAR REGRESSION
- 5:QuadReg \rightarrow QUADRATIC REGRESSION
- 6:CubicReg \rightarrow CUBIC REGRESSION
- 7:QuartReg \rightarrow QUARTIC REGRESSION
- 9:LnReg \rightarrow LOGARITHMIC REGRESSION
- 0:ExpReg \rightarrow EXPONENTIAL REGRESSION

- For example using linear regression choose 5: QuadReg. Next, enter the appropriate list names (L_{1} first then L_{2}) separated by commas. The press ENTER

- The r^{2} value makes the quadratic model not the best fit for the data (moderate fit). The equation of this model is:

$$
Y=-0.0348 x^{2}+12.876 x-1104.23
$$

