\qquad

Rational Functions Unit 5

Tentative TEST date \qquad

Big idea/Learning Goals

This unit begins with the study of how to graph rational functions that are reciprocals of linear and quadratic functions. Once you understand the idea of how zeros and vertical asymptotes are related, you will learn how to sketch rational functions with a non-constant numerator - this will involve the study of the main characteristics of the rational function: the y-intercepts, zeros, holes, vertical asymptotes, horizontal asymptotes and oblique asymptotes. You will learn to solve rational equations and inequalities as well as word problems that are modeled by rational functions. At the end you will yet again revisit the rates of change but with rational functions.

Corrections for the textbook answers:
Sec 5.1 \#9c) y-int $=-12$, d) range $<=0.5$
Sec 5.2 \#2i) HA at $\mathrm{y}=2$
Sec 5.3 2e) $x \neq 2 \quad$ \#5c) $y=(x+5) /(4 x-1)$ and y-int $(0,-5) \quad$ \#8 HA not VA at $y=1 / 2$
Sec 5.4 \#13b) 1 min 32 sec or 1.04 min
Sec 5.5 \#4a) $-5<x<-4.5 \quad$ \#4f) $-1<x<7 / 8, x>4$
\#5d) $\mathrm{t}<-2,0<t<3 \quad$ \#5e) $\mathrm{t}<0 \quad$ \#5f) (-inf, -2.$),(0,3)$
\#6a) $(-6,-11 / 6],(4$, inf $) \quad \# 6 \mathrm{~b})(-\mathrm{inf},-3) \quad$ \#6c) $(-4,-2]$ or $(-1,2]$
\#7 $x<-6,-1<x<1 / 2,2<x \quad \# 9$ there is a solution $0<t<0.31$
\#11. $1<x<5$
Sec 5.6 \#6a) -15/49 \#9b)-1.2 \#10a)11.39, b)1.29

Success Criteria

I understand the new topics for this unit if I can do the practice questions in the textbook/handouts

Date	pg	Topics	\# of quest. done? You may be asked to show them	Questions I had difficulty with ask teacher before test!
	2-4	Reciprocal Graphs Section 5.1 \& Handout		
	5-8	INVESTIGATION of Other Rational Graphs Section 5.2 \& Handout		
	9-11	Graphing Rational Functions Section 5.3 \& THREE Handouts		
	12-14	Solve Rational Inequalities Section 5.5 \& TWO Handouts		
	15-16	Solve Rational Equations Section 5.4 \& THREE Handouts		
	17-19	Problem Solve - 2 days TWO Handouts		
	20-21	Rates of Change of Rationals Section 5.6		
		REVIEW		

Reflect - previous TEST mark \qquad , Overall mark now \qquad .
\qquad

Reciprocal Graphs

1. Describe what is the relationship between characteristics of $f(x)$ graph and its reciprocal, $\frac{1}{f(x)}$, graph.
(Include the following characteristics: zeros, y-intercepts, vertical asymptotes, end behavoiur, horizontal asymptotes, increase and decrease intervals, points where the two graphs will meet.)
2. Sketch the reciprocal graphs for the following
a.

b.

3|Unit 5 12AdvF Date:
Name:
身家, c. $y=2 x^{2}+x+1$
d. $y=9 x^{2}+8 x-x^{3}$

f.

g. $y=2 x-5$
h. $y=2 x^{2}-6 x+5$
3. You will learn how to sketch rational functions that have x's in the numerator. You will see that some functions will have an oblique asymptote. See the example graph \rightarrow

\qquad

INVESTIGATION of Other Rational Graphs

1. Fill out the chart by looking at graphs to discover how to find the key characteristics from the equation without the use of graphs. Always try to factor both the numerator and the denominator to see if there are any cancellations. If things don't simplify and the numerator has a higher degree than the denominator do long division.

Graph

a
b

C
d

Factor \& simplify or do long division

$$
f(x)=\frac{x^{2}-1}{x-1}
$$

State all the key characteristics:
y-intercept, zeros, holes, VA, HA, OA
$f(x)=\frac{3}{x+1}$
$f(x)=\frac{x+1}{x^{2}-2 x-3}$
$f(x)=\frac{x+1}{x+2}$
\qquad

Graph

i
j
k

$f(x)=\frac{2 x^{2}-3}{x^{2}+1}$

HA describes END BE SAVIOUR

保
$f(x)=\frac{2-x}{1+x^{2}}$

Factor \& simplify or do long division

$$
f(x)=\frac{9 x}{1+x^{2}}
$$

State all the key characteristics: y-intercept, zeros, holes, VA, HA, OA
\qquad
2. EXTENSION
a

b

3. Determine the hehaviour near zeros and near VAs for the following and then finish off the started sketch.
$f(x)=\frac{-5 x^{3}(x-3)^{2}(x+3)}{(x-1)^{3}(x+1)^{2}(x-4)}$

Note the orders of each factor and how it affects the behaviour near zeros and VAs
$f(x)=\frac{x^{3}(x+4)^{2}}{(x-1)^{2}(x+3)^{2}}$
$f(x)=\frac{(x+1)^{2}(x-3)(x-1)^{3}}{x^{3}(x-2)(x+2)^{2}}$
\qquad

Graphing Rational Functions

1. Summarize the steps of sketching rational functions RECIPROCAL graphs $\frac{1}{f(x)}$ OTHER rationals

TRANSFORMED parent $y=\frac{a}{k(x-d)}+c$
2. Sketch the following
a. $\quad f(x)=\frac{-2}{3 x+6}+4$
b. $f(x)=\frac{2+5 x}{3-4 x}$
$\mathbf{1 0 | U n i t} 5$ 12AdvF Date:
c. $f(x)=\frac{1}{-2 x^{2}+12 x-19}$
e. $f(x)=\frac{4}{1-x}-3$
d. $f(x)=\frac{x^{2}-x+8}{x}$
f. $f(x)=\frac{3 x-1}{6 x-2}$
g. $f(x)=\frac{1}{x^{2}+4 x+8}$
h. $f(x)=\frac{2 x-8}{3 x}$
i. $f(x)=\frac{x^{3}-x^{2}-2 x}{x^{2}+4 x-12}$
j. $\quad f(x)=\frac{3 x^{2}-75}{4-x}$
\qquad Name: \qquad

Solve Rational Inequalities

1. Recall the rules of working with inequalities. Discuss why in addition to those rules you cannot cross multiply questions like the ones below.
2. There are 3 ways to solve inequalities:
A. Graph original 2 equations, and see where one is above/below the other
B. Graph the related equation with ZERO on one side, and see where the graph is above/below x-axis
C. Use +/- table on the equation with ZERO on one side, and pick positive/negative intervals

A: Graphing the original

$x-4 \leq \frac{-5}{x+2}$

a. How do you find the solution to this question?

B: Graphing the related function (can move everything to either side)

 choose to move terms to the left:$x-4+\frac{5}{x+2} \leq 0 \longrightarrow \frac{(x-3)(x+1)}{(x+2)} \leq 0$
OR
choose to move terms to the right:
$0 \leq-x+4-\frac{5}{x+2} \longrightarrow 0 \leq \frac{-(x-3)(x+1)}{(x+2)}$

\qquad

C: Solving the related function with $+/-$ table

choose to move terms to the right:
$0 \leq-x+4-\frac{5}{x+2} \longrightarrow 0 \leq \frac{-(x-3)(x+1)}{(x+2)}$
3. Summarize the steps of Method C: Using the +/- table for solving an inequality
4. Solve
$\frac{2}{x+3} \leq \frac{1}{x^{2}+1}$
$\mathbf{1 4 | U n i t} 5$ 12AdvF Date:
5. Solve the following

事
a. $\frac{2 x+1}{2 x-3} \geq \frac{x+1}{x-5}$
b. $-\frac{2}{x}<x+1$
\qquad

Solve Rational Equations

1. Unlike inequalities, equations can be cross multiplied. The only thing you must watch out for is whether your final solution is part of restriction or not. Solve the following questions and check for extraneous solutions.

90,

8
a. $\frac{2 x}{5}=\frac{x^{2}-5 x}{5 x}$
b. $\frac{2+x}{3 x}=\frac{x+1}{x+2}$
2. Dan and Sue set off at the same time on a 42 km go-cart race. Dan, drives $0.4 \mathrm{~km} / \mathrm{min}$ faster than Sue, but has to stop en route and fix his go-cart for one-half hour. This stop costs Dan to arrive 15 min after Sue. How fast was each person driving?
\qquad
3. Connie can type 600 words in 5 minutes less than it takes Katie to type 600 words. If Connie types at a rate of 20 words per minute faster than Katie types, find the typing rate of each woman.
4. Pure alcohol is being added to 50 gallons of coolant mixture that is 40% alcohol. Find the rule of the concentration function $\mathrm{c}(\mathrm{x})$ that expresses the percentage of alcohol in the resulting mixture as a function of x gallons of pure alcohol that are added. Determine algebraically the exact amount of pure alcohol that must be added to produce a mixture that is 70% alcohol.
\qquad

Problem Solving

1. Rod agreed to mow a vacant lot for $\$ 12$. It took him an hour longer than what he had anticipated, so he earned $\$ 1$ per hour less than he originally calculated. How long had he anticipated that it would take him to mow the lot?
2. Suppose your mark in the math class is 60%. What mark, on average, do you need to get on the remaining 3 tests out of the total 9 tests to get your mark to be 70% ?
\qquad
3. To travel 60 miles, it takes Sue, riding a moped, 2 hours less than it takes Doreen to travel 50 miles on a bicycle. Sue travels 10 miles per hour faster than Doreen. Find the times and rates of speed of both women.
4. A tank has a capacity of 10 gallons. When it is full, it contains 15% alcohol. How many gallons must be replaced by an 80% alcohol solution to give 10 gallons of 70% solution?
\qquad
5. Walt can mow a lawn in 1 hour, while his son, Malik, can mow the same lawn in 50 minutes. One day Malik started mowing the lawn by himself and worked for 30 minutes. Then Walt joined him and they finished the lawn. How long did it take them to finish mowing the lawn after Walt started to help?
6. A rock is dropped into a well, and 3 seconds later the sound of its splash is heard. How deep is the water in the well? Assume the sound travels at 1100 feet per second and that an object falls a distance of $16 t^{2}$ feet in t seconds. (t represents the time for the rock to reach the water)
7. A homemade loaf of bread turns out to be a perfect cube. Five slices of the bread, each 0.6 inch thick, are cut from one end of the loaf. The remainder of the loaf now has a volume of 700 cubic inches. What were the dimensions of the original loaf?
\qquad

Rates of Change of Rationals

1. Recall the formulas of rate of change
2. After you eat something that contains sugar, the pH of acid level in your mouth changes. This can be modeled by the function below where L is the pH level and m is the number of minutes that have elapsed since eating. Find the average rate of change in the first 5 minutes
$L(m)=\frac{-20.4 m}{m^{2}+36}+6.5$

21|Unit 5 12AdvF Date:
3. Find the turning points of $f(x)=\frac{x^{2}+1}{2-x}$

