\qquad
Review of Grade 9-11 Math

Lines \& Factoring

1. Find an equation for a line
a) with slope 6 passing through $(-1,4)$
b) that passes through $(-5,0)$ and $(5,6)$
2. A line is perpendicular to $5 x+2 y-8=0$ and has the same y-intercept as $x+4 y-12=0$. Find an equation for the line.
3. Factor fully, if possible
b. $\quad-5 t^{2}+15 t-10$
c. $\quad 20 a^{2}-5$
d. $\quad 144 m^{2}-49 n^{2}$
e. $\quad 30 x^{2}-25 x y-30 y^{2}$
f. $\quad 16 x^{3} y-4 x^{2} y^{2}+20 x^{4} y^{3}$
g. $\quad 5 x y-10 x+7 z y-14 z$
h. $\quad x^{2}-10 x+16$
i. $\quad 9 x^{2}-24 x+16$

Rational Expressions

4. Simplify and state the restrictions
a. $\frac{36 x^{2} y}{-16 x y^{2}}$
b. $\frac{9 m^{2}-4}{9 m^{2}-9 m-10}$
d. $\frac{2 x^{2}-x-3}{x^{2}-1} \div \frac{2 x^{2}+x-6}{x^{2}+x-2}$
e. $\frac{1}{y+4}-\frac{y-3}{y^{2}+3 y-4}$
C. $\frac{5 x^{2}+15 x}{x^{2}-2 x-15} \times \frac{x^{2}-7 x+10}{10 x-20}$

Quadratics

5. State the equation for the arc in all three forms (factored/vertex/standard), given that the parabolic arc's legs are at 2 m away and at 6 m away, and the arc's maximum height is 10 m .
6. What is the maximum area that can be enclosed by 200 m of fencing?
7. Determine two numbers whose difference is 12 and whose product is a minimum.
8. A bus company has 4000 passengers daily, each paying a fare of $\$ 2$. For each $\$ 0.15$ increase, the company estimates that it will lose 40 passengers per day. If the company needs to take in $\$ 10450$ per day to stay in business, what fare should be charged?
9. Jackie mows a strip of uniform width around her 25 m by 15 m rectangular lawn and leaves a patch of lawn that is 60% of the original area. What is the width of the strip?
10. A daredevil jumps off the CN Tower and falls freely for several seconds before releasing his parachute. His height, h, in meters, t seconds after jumping is given by
$h=-4.9 t^{2}+t+360$ before he released his parachute; and $h=-4 t+142$ after he released his parachute. How long after jumping did he daredevil release his parachute? How high was the jumper at this time?

Trigonometry

11. Determine the exact value of the expressions
a. $2 \cos 45^{\circ} \times \sin 315^{\circ}$
b. $\tan ^{2} 30^{\circ}-\cos ^{2} 225^{\circ}$
c. $\sin 30^{\circ} \times \tan 60^{\circ}-\cos 210^{\circ}$
12. Solve the equations in degrees on the domain of $0^{\circ} \leq \theta \leq 360^{\circ}$,
a. $\sin \theta-2 \sin ^{2} \theta=0$
b. $2 \sin ^{2} \theta-1=\sin \theta$
c. $2 \cos ^{2} \theta-3 \cos \theta-2=0$
13. Prove the identities
a. $\sec \theta \csc \theta=\tan \theta+\cot \theta$
b. $\frac{\tan x}{\cos x}=\frac{\sin x}{1-\sin ^{2} x}$
\qquad Name: \qquad
14. On a merry-go-round, each horse moves up and down in a periodic motion modelled by the function:
$h=0.5 \cos \frac{180^{\circ}}{15} t+1$, where h is the height in meters from the ground and t is the time in seconds.
a. What is the period of this function and what does it mean in the context of this problem?
b. What are the maximum and minimum heights of the merry-go-round horse?
c. What is height of the horse at 30 seconds?
d. At what two times will the horse be at a height of 1.25 m from the ground?
15. Write the trig equations Sine and Cosine for the function with a period of 5 , a low point of -3 at $x=1$ and an amplitude of 7 .
16. Given $\triangle A B C \sim \triangle D E F$, determine the value of x.

17. Find the value of e
a
18. Teresa is at the top of her apartment building and is looking down at her friend Karin at a 50° angle of depression. The horizontal distance from the base of the building to Karin is 16 m . Determine the vertical height of the building.

Exponentials

19. Simplify

a. $(\sqrt[9]{512})^{5}$
b. $\left(\frac{-32}{243}\right)^{-\frac{2}{5}}$
c. $\left(\sqrt{5} x^{\frac{1}{3}}\right)^{6}$
d. $\left(32 a^{10}\right)^{\frac{2}{5}}$
e. $\left(\sqrt[2]{27^{\frac{2}{9}}}\right)^{3}$
f. $\left[(3 x-1)^{6}\right]^{\frac{1}{3}}$
g. $\frac{48\left(\sqrt[3]{a^{4}}\right) b^{\frac{2}{5}}}{16 a^{-\frac{1}{3}}\left(\sqrt[5]{b^{7}}\right)}$

20. On January 1,1997 the population of a city was 500000 . If the population increases at a rate of 1.5% per year, what will the population be on July 1, 2002
21. A ball fell from a shelf 200 cm above the ground. Its height decreases 60% with each bounce. What is the balls height after 3 bounces?
22. A certain bacteria culture triples every 50 minutes. How long will it take 25 bacteria to reach a count of 1000 ?

Inverses \& Transformations

$f(x)=\frac{1}{x}$

$$
g(x)=x^{3} \quad h(x)=\sqrt{x} \quad i(x)=\sqrt[3]{x}
$$

$j(x)=|x|$
$k(x)=x^{2}$
23. For three of the functions above rewrite the equation to include the following transformations: horizontally stretched by 2 , vertically stretched by 4 , reflected in y-axis, shifted left by 3 , shifted up by 6
26. Find the inverse equation for $f(x)=x^{2}-6 x+4$
27. Find the inverse equation for question 14.
28.
$f(x)=\frac{x}{x^{2}-1}$, what is $f\left(\frac{1}{x}\right) ?$

Other Topics

29. Expand using Binomial Theorem/Pascal's Triangle $(x-2)^{6}$
30. Simplify, rationalize denominators when needed.
a. $\sqrt{100-36}$
b. $\sqrt{45}$
c. $\frac{3 \sqrt{5} \times 8 \sqrt{7}}{16 \sqrt{10}}$
d. $9 \sqrt{8}-5 \sqrt{40}+4 \sqrt{18}-\sqrt{160}$
e. $(\sqrt{6}-3 \sqrt{7})^{2}$
f. $\frac{\sqrt{2}}{\sqrt{8}-\sqrt{2}}$
31. Solve
a. $\frac{x}{2}-\frac{1}{7}(x+1)=\frac{1}{3}(2 x-6)$
d. $\sqrt{2 x-1}+\sqrt{x+11}=7$
b. $\frac{x+3}{x-5}=\frac{x-6}{x-8}$
c. $2 x+\sqrt{3 x-2}=x+4$
e. $6(2-x) \leq-4(x+2)$
(e) $y=m x+b$
(b) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-0}{5-5}=\frac{6}{10}=\frac{3}{5}$

$$
x+4 y-12=0
$$

$4=-6+b$
$10=b$
$\therefore y=6 x+10$

$$
\begin{aligned}
& b=\frac{3}{5}(5)+b \\
& 6=3+b \\
& 3=b \quad \therefore y=\frac{3}{5} x+3
\end{aligned}
$$

(2.)

$$
\begin{aligned}
5 x+2 y-8 & =0 \\
2 y & =-5 x+8 \\
y & =-\frac{5}{2} x+4
\end{aligned}
$$

$$
4 y=-x+12
$$

$$
y=-\frac{1}{4} x+3
$$

$$
\begin{array}{r}
\therefore m=-\frac{5}{2} \quad m_{1}=\frac{2}{5} \quad b=3 \\
\therefore y=\frac{2}{5} x+3
\end{array}
$$


```
    not possible
```

(e) $5\left(6 x^{2}-5 x y-6 y^{2}\right)$

```
(t) \((x-8)(x-2)\)
(b) \(\begin{gathered}-5\left(t^{2}-3 t+2\right) \\ t>0,-2 \operatorname{cosen} t \\ t-3 t\end{gathered}\)
\(-5(t-2)(t-1)\)
```

$$
5(3 x+2 y)(2 x-3 y)
$$

ads

```
\[
\begin{aligned}
& -5(t-2)(t-1) \\
& \text { (c) } 5\left(4 a^{2}-1\right) \\
& 2 a x_{1}^{\prime}-\operatorname{adset}+0 \\
& 5(2 a+1)(2 a-1)
\end{aligned}
\]
```

(f) $4 x^{2} y(\underbrace{4 x-y+5 x^{2} y^{2}})$

(i) | $3 x$ |
| :--- |
| $3 x$ |
| $x^{-4}-4$ |
| adds to |

$(3 x-4)^{-24 x}$

```
\[
5(2 a+1)(2 a-1)
\]
d) \(144 \mathrm{~m}^{2}-49 \mathrm{~m}^{2}\)
```



```
g) \(5 x(y-2)+7 z(y-2)\)
\((y-2)(5 x+7 z)\)
\((12 m+3 n)(12-2 n)\)
a) \(\frac{(4 x(9)(x) y x)(y)}{(-4)(x)(x)(y)(y)}\)
\(x=\frac{9 x}{-4 y} \quad x \neq 0\)
```


13@

$0^{\circ} \div 180^{\circ}=30^{\circ} \div 12^{\circ}=30$
miN $=w-|a|=1-0.5=0.5$
1.5
(c) $h=0.5 \cos \left[12^{\circ}(30)\right]+1=1.5$

(d) $1.25=0.5 \cos \left[11^{\circ} t\right]+1$

(15.)

$$
\tan 50^{\circ}=\frac{x}{16}
$$

(19.) @ $2^{5}=32$
(b) $\left(\frac{243}{-32}\right)^{1 / 5}=\left(\sqrt[5]{\frac{243}{-32}}\right)^{2}=\left(\frac{3}{-2}\right)^{2}=\frac{9}{4}$
(c) $\left(5^{1 / 2} x^{1 / 3}\right)^{6}=5^{3} x^{2}=125 x^{2}$
(d) $(\sqrt[5]{32})^{2} a^{4}=2^{2} a^{4}=4 a^{4}$
(e) $\left(27^{2 / 9}\right)^{3 / 2}=27^{1 / 3}=\sqrt[3]{27}=3$
19.1 m 's the height
of the buibloing.

$$
\text { (c) } \tan C=\frac{27}{16}
$$

$$
\Leftrightarrow(3 x-1)^{2}=9 x^{2}-6 x+1
$$

$$
\text { (g) } \begin{aligned}
\frac{48 a^{4 / 3} b^{2 / 5}}{16 a^{-1 / 3} b^{7 / 5}} & =3 a^{4 / 3--1 / 3} b^{2 / 5-7 / 5} \\
& =3 a^{5 / 3} b^{-1}=\frac{3 a^{5 / 3}}{6}
\end{aligned}
$$

(20)

$$
\left.\begin{array}{llll}
y=A(B)^{x / C} & y=50000(1.015)^{x / 1} & \text { (21) } & A=200
\end{array} \quad y=200(0.4)^{3 / 1}\right)
$$

(16.) $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

$$
\frac{x}{4}=\frac{6}{9} \quad \therefore x=\frac{8}{3}
$$

(17)

$$
\begin{aligned}
& \text { (e. } \angle A=180^{-}-50^{-34}=96 \\
& \frac{\sin 96}{a}=\frac{\sin 50}{17.1} \\
& a=22.2 \\
& \text { b) } b^{2}=31.8^{2}+3.99^{2}-2(31.8)(39.9) \cos 58 \\
& b=35.5
\end{aligned}
$$

$$
c=59.3^{\circ}
$$

$$
\text { (22) } \begin{aligned}
A & =25 \\
B & =3 \text { tmples } \\
C & =50 \text { minutes }
\end{aligned}
$$

$$
y=1000 \text { burterin }
$$

$$
1000=25(3)^{x / 50}
$$

$$
\begin{aligned}
& \text { (II) }
\end{aligned}
$$

> (b) $\begin{aligned} & \left(\frac{1}{\sqrt{1}}\right)^{2}-\left(-\frac{1}{\sqrt{2}}\right)^{2} \\ = & \frac{1}{9}-\left(\frac{1}{\sqrt{46}}\right)\end{aligned}$
> (c) $\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{1}\right)-\left(-\frac{\sqrt{3}}{2}\right)$

$$
\begin{aligned}
& \text { (23). } f \rightarrow \frac{4}{-0.5(x+3)}+6 \\
& g(\text { ar } x) \rightarrow 4(-0.5(x+3))^{3}+6 \\
& \text { (24) } f \rightarrow \frac{-2}{x}+5 \text { ? } \\
& h(w i) \rightarrow 4 \sqrt{-0.5(x+3)}+6 \\
& j \rightarrow 4|-0.5(x+3)|+6 \\
& g(\text { wow }) \rightarrow-2 x^{3}+5 \\
& h(\text { andi) } \rightarrow-2 \sqrt{x}+5 \\
& j \rightarrow-2|x|+5 \\
& \text { (25.) } f=\frac{1}{2} \quad f^{-1}=\frac{1}{x} \quad \xrightarrow{\sim} \\
& \begin{array}{ll}
g=x^{3} \quad & g^{-1}=\sqrt[3]{x} \quad \underset{~+~}{4} \\
h=\sqrt{x} & h^{-1}=x^{2} \\
i=\sqrt[3]{x} \quad i^{-1}=x^{3} \quad \frac{1}{\sqrt{4}}
\end{array} \\
& \text { (26) } y=x^{2}-6 x+4 \\
& \begin{array}{l}
y=x^{2}-6 x+9-9+4 \\
y=(x-3)^{2}-5
\end{array} \\
& \text { (27) } h=0.5 \cos \frac{180^{\circ}}{15} t+1
\end{aligned}
$$

$$
\begin{aligned}
& j=|x| \quad j^{-1}=\left\{\begin{array}{l}
x \text { if } y \geq 0, ~ K \quad y+5=(x-3)^{2} \\
-x<0
\end{array} \quad \pm \sqrt{y+5}=x-3\right. \\
& h-1=0.5 \cos 12 t \\
& \frac{h-1}{0.5}=\cos 12^{\circ} t \\
& k=x^{2} k^{-1}=\left\{\begin{array}{l}
\sqrt{x} \\
-\sqrt{x}
\end{array} \quad \neq\right. \\
& \pm \sqrt{y+5}+3=x \\
& \pm \sqrt{x+5}+3=f^{\prime \prime}(x) \\
& \cos ^{-1}\left(\frac{h-1}{0.5}\right)=12 t \\
& \frac{\cos ^{-1}\left(\frac{h-1}{0.5}\right)}{12^{\circ}}=t=t(h)=h^{-1}(h) \\
& \text { (28) } f\left(\frac{1}{x}\right)=\frac{\frac{1}{x}}{\left(\frac{1}{x}\right)^{2}-1} \quad \text { (29) }(x-2)^{6}=1(x)^{6}(-2)^{0}+6(x)^{5}(-2)^{1}+15\left(x x^{4}(-2)^{2}+20\left(x x^{3}(-2)^{3}+15(x)^{2}(-2)^{4}+6(x)^{4}(-2)^{5}+1(x)^{0}(-2)^{6}\right.\right. \\
& =\frac{1}{x} \div\left[\frac{1-x^{2}}{x^{2}}\right] \quad 1^{\prime} 1=x^{6}+6(-2) x^{5}+15(4) x^{4}+20(-8) x^{3}+15(16) x^{2}+6(-32) x+64
\end{aligned}
$$

$$
\begin{aligned}
& \text { (30). } @ \sqrt{64}=8 \\
& \text { (b) } \sqrt{9} \sqrt{5}=3 \sqrt{5} \\
& \text { (c) } \frac{24 \sqrt{35}}{16 \sqrt{10}}=\frac{3 \sqrt{7}}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{14}}{4} \\
& \text { (b) } \frac{x+3}{x-5}=\frac{x-6}{x-8}=x \\
& \text { b) } 9 \sqrt{4} \sqrt{2}-5 \sqrt{4} \sqrt{10}+4 \sqrt{9} \sqrt{2}-\sqrt{16} \sqrt{10} \\
& =18 \sqrt{2}-10 \sqrt{10}+12 \sqrt{2}-4 \sqrt{10} \\
& =30 \sqrt{2}-14 \sqrt{10} \\
& \text { (c) }(\sqrt{6}-3 \sqrt{7})(\sqrt{6}-3 \sqrt{x}) \\
& =\sqrt{36}-3 \sqrt{42}-3 \sqrt{42}+9 \sqrt{49} \\
& =6-6 \sqrt{42}+63 \\
& =69-6 \sqrt{42} \\
& \text { (ఉ) } \frac{\sqrt{2}}{\sqrt{8}-\sqrt{2}} \times \frac{\sqrt{8}+\sqrt{2}}{\sqrt{8}+\sqrt{2}} \\
& (x+3)(x-8)=(x-6)(x-5) \\
& 21 x+6(x+1)=14(2 x-6) \quad(\sqrt{2 x-1})^{2}+2 \sqrt{2 x-1} \sqrt{x+11}+(\sqrt{x+11})^{2}=49 \\
& 21 x+6 x+6=28 x-84 \quad 2 x-1+2 \sqrt{2 x^{2}+22 x-x-11}+x+11=49 \\
& \left(2 \sqrt{2 x^{2}+21 x-11}\right)^{2}=(39-3 x)^{2} \\
& 4\left(2 x^{2}+21 x-11\right)=1521-117 x-117 x+9 x^{2} \\
& 0=x^{2}-318 x+1565 \\
& \text { (e) } 12-6 x \leq-4 x-8 \text { \& } 6 m^{2}+3 m^{2}+3>9 m^{2}+6 m+1+2 \\
& \text { (c) }(\sqrt{3 x-2})^{2}=(-x+4)^{2} \\
& 3 x-2=x^{2}-4 x-4 x+16 \\
& 0=\begin{array}{cc}
x^{2}-411 \\
x & +18 \\
x & 189 \\
x & 2 \\
x & 3
\end{array} \\
& -2 x \leq-20 \\
& 9 m^{2}+3>9 m^{2}+6 m+3 \\
& x \geqslant 10 \\
& =\frac{\sqrt{16}+\sqrt{4}}{\sqrt{64}+\sqrt{16}-\sqrt{16}-\sqrt{4}} \\
& 0=(x-9)(x-2) \\
& x=9 \text { or } x=2 \\
& =\frac{4+2}{8-2}=\frac{6}{6}=1
\end{aligned}
$$

