MATCH THE "MOTION" WITH THE GRAPH

For each example in the first column match:
A "distance - time" graph (Column 2) and
A "speed - time" graph (Column 3)
(2) Walking at a constant
speed

Identify if Average, Close to Instant or Instant?

1. Some road tolls in the U.S. give speeding tickets based on the time it takes you to travel between exits.
2. A police officer pulls you over for speeding since her radar gun displays $130 \mathrm{~km} / \mathrm{hr}$.
3. Canada's population grew at a rate of 0.869% from 2006 to 2007.
4. Roy Halliday's fast ball was measured to have a velocity of $152 \mathrm{~km} / \mathrm{h}$.
5. Your parents kept a growth chart from the time you were 1 until you were 5 years old. They have calculated that your growth rate in that period was $9 \mathrm{~cm} / \mathrm{year}$.
6. In 1996, Hurricane Bertha had wind gusts up to $185 \mathrm{~km} / \mathrm{h}$.
7. Water is being poured into a container. The rate in which the water level increases between 0 and 5 seconds of the pour is 7 $\mathrm{mm} / \mathrm{sec}$.
8. $\mathrm{A} \mathrm{CO}_{2}$ probe measures the rate of increase of atmospheric CO_{2}. The probe reads an increase of $1.7 \times 10-8 \mathrm{ppm} / \mathrm{sec}$.

Ch... Ch... Changes

- Circle the rate of change as zero, constant, or changing for each graph.
- Match the graphs with the descriptions given on the right.
- Be prepared to explain your reasoning.

Description

1. A grade 12 student's height over the next 12 months.
2. Money deposited on your 12th birthday grew slowly at first, then more quickly.
3. Andrea walks quickly, slows to a stop, and then speeds up until she is travelling at the same speed as when she started.
4. Over a one-month period the rate of growth for a sunflower is constant.
5. Clara walks quickly and then slows to a stop. She then walks quickly back and slows to a second stop. Clara then walks at a pace that is a little slower than when she started.

Reading and Interpreting Graphs

1.

These graphs show three different journeys. Match the graph with the description.

a a constant speed with a stop along the way and at the shops
b a constant speed to and from the shops with a stop on the way home
c a speed decrease part way through the trip to the shops and a constant speed home
3.

Why are these graphs not possible?

a

c

5.

between 8:00 am and 9:00 am?
e Suppose the next bus arrives at 9:25 am.
Approximately how many people would be waiting at the bus stop, assuming they keep arriving at the same rate?
2.

These two graphs show an object moving in the negative direction, that is, back towards the zero position. Which object starts slowly and then increases in speed?

4.
a What is the speed of car P ?
b When do the two cars meet?
c How far from the zero position do they meet?
d At what time are the instantaneous speeds of both cars the same? How do you know?

6.

Each of these containers is filled with water through an opening at the top Graph the water level in the container as it is filled at a steady rate.
a

b

c

d

For each example in the first column match:
A "distance - time" graph (Column 2) and
A "speed - time" graph (Column 3)
(2) Walking at a constant
speed

Identify if Average, Close to Instant or Instant?

1. Some road tolls in the U.S. give speeding tickets based on the time it takes you to travel between exits. aVe
2. A police officer pulls you over for speeding since her radar gun displays $130 \mathrm{~km} / \mathrm{hr}$. Close inst
3. Canada's population grew at a rate of 0.869% from 2006 to 2007 . ave
4. Roy Halliday's fast ball was measured to have a velocity of $152 \mathrm{~km} / \mathrm{h}$. inst
5. Your parents kept a growth chart from the time you were 1 until you were 5 years old. They have calculated that your growth rate in that period was $9 \mathrm{~cm} /$ year. ave
6. In 1996, Hurricane Bertha had wind gusts up to $185 \mathrm{~km} / \mathrm{h}$. inst
7. Water is being poured into a container. The rate in which the water level increases between 0 and 5 seconds of the pour is 7 $\mathrm{mm} / \mathrm{sec}$. ave
8. ACO_{2} probe measures the rate of increase of atmospheric CO_{2}. The probe reads an increase of $1.7 \times 10-8 \mathrm{ppm} / \mathrm{sec}$. Inst

- Circle the rate of change as zero, constant, or changing for each graph.
- Match the graphs with the descriptions given on the right.
- Be prepared to explain your reasoning.

Description

1. A grade 12 student's height over the next 12 months.

2. Money deposited on your 12th birthday grew slowly at first, then more quickly.

3. Andrea walks quickly, slows to a stop, and then speeds up until she is travelling at the same speed as when she started.

4. Over a one-month period the rate of growth for a sunflower is constant.

5. Clara walks quickly and then slows to a stop. She then walks quickly back and slows to a second stop. Clara then walks at a pace that is a little slower than when she started.

6.

These graphs show three different journeys. Match the graph with the description.

a a constant speed with a stop along the way and at the shops
b a constant speed to and from the shops with a stop on the way home
c a speed decrease part way through the trip to the shops and a constant speed home
3.

Why are these graphs not possible?

5.

The graph shows the number of people at a bus stop in the morning.
a How many people were at the bus stop at 8:00 am?
b \quad When did the first bus arrive? $8: 10$
ii Did all people get on? Explain. S left
c How many people caught the fourth bus?
d How many people caught a bus between 8:00 am and 9:00 am? 65
e Suppose the next bus arrives at 9:25 am.
Approximately how many people would be waiting at the bus stop, assuming they keep arriving at the same rate?
2.

These two graphs show an object moving in the negative direction, that is, back towards the zero position. Which object starts slowly and then increases in speed?
look at slopes of tangent

4.
a What is the speed of car P ?
b When do the two cars meet? $\sim / 4 \mathrm{sec}$
c How far from the zero position do they meet? $\sim 70 \mathrm{~m}$
d At what time are the instantaneous speeds of both cars the same? How do you know?
a) $\frac{\text { rise }}{\text { run }}=\frac{100}{20}=5 \mathrm{~m} / \mathrm{s}$
d) sarre tangent slope at about $t=10$
6.

Each of these containers is filled with water through an opening at the top. Graph the water level in the container as it is filled at a steady rate.

c

b

d

a)

b) ${ }^{L}{ }_{\mathrm{L}}$
c)

