MHF4U_2011: Advanced Functions, Grade 12, University Preparation

Unit 3: Exponential and Logarithmic Functions

Activity 5: Solving Logarithmic Equations

Homework/Formative Assessment

1. Put the following sequence of steps in the correct order: 4x + 50 = 100 $4x + 50 = 10^2$ $log_{10}(4x + 50) = 2$ x = 25/24x = 50

2. Solve the following logarithmic equations and check your answers.

a) $\log_2(x - 4) = 4$	b) $\log(2x - 3) = 1$
c) $\log_5(3x + 8) = 2$	d) $\log_{x}(9) = 2$
e) $\log_2(x+2) = -2$	f) $\log_3(4x - 7) = 3$

- 3. Explain why no solutions exist for the following equation: $log_{-3}27 = x$.
- Solve for x in the following equation: log₃x - log₃6 = log₃18 - log₃2
- 5. Solve $\log_2(x 5) + \log_2(x 2) = 2$
- 6. Estimate the value of the following:

a) log ₂ 200	b) log ₃ 19	c) log₄150

Homework/Formative Assessment - SOLUTIONS

1. Put the following sequence of steps in the correct order:

4x + 50 = 100	$\log_{10}(4x + 50) = 2$
$4x + 50 = 10^2$	$4x + 50 = 10^2$
$\log_{10}(4x + 50) = 2$	4x + 50 = 100
x = 25/2	4x = 50
4x = 50	x = 25/2

2. Solve the following logarithmic equations and check your answers.

a) $\log_2(x - 4) = 4$	b) $\log(2x - 3) = 1$
$x - 4 = 2^4$	$2x - 3 = 10^{1}$
x = 16 + 4	2x = 10 + 3
x = 20	$r = \frac{13}{12}$
	$\frac{x}{2}$
c) $\log_5(3x + 8) = 2$	d) $\log_{x}(9) = 2$
$3x + 8 = 5^2$	$9 = x^2$
3x = 25 - 8	$\pm\sqrt{9} = 3$
$r = \frac{17}{12}$	$\pm 3 = x$
3	3 = x (-3 is not in domain)
e) $\log_2(x+2) = -2$	f) $\log_3(4x - 7) = 3$
$x + 2 = 2^{-2}$	$4x - 7 = 3^3$
$r = \frac{1}{2}$	4x = 27 + 7
$x = \frac{1}{4} - 2$	
$r = -\frac{7}{7}$	$x = \frac{1}{4}$
$\int_{-\infty}^{\infty} 4$	$r = \frac{17}{10}$
	$\int \int \frac{1}{2}$

3. Explain why no solutions exist for the following equation: $log_{-3}27 = x$.

Written in exponential form, you have $(-3)^x = 27$. There is no exponent that you can raise -3 (a negative) to that will give a result of 27 (a positive).

4. Solve for x in the following equation: $log_3x - log_36 = log_318 - log_32$

$$log_{3}x - log_{3}6 = log_{3}18 - log_{3}2$$
$$log_{3}x = log_{3}18 - log_{3}2 + log_{3}6$$
$$log_{3}x = log_{3}\left(\frac{18}{2} \times 6\right)$$
$$log_{3}x = log_{3}(54)$$
$$x = 54$$

5. Solve $\log_2(x - 5) + \log_2(x - 2) = 2$

$$log_{2} (x-5) + log_{2} (x-2) = 2$$

$$log_{2} (x-5) (x-2) = 2$$

$$log_{2} (x^{2}-7x+10) = 2$$

$$x^{2}-7x+10 = 2^{2}$$

$$x^{2}-7x+10 = 4$$

$$x^{2}-7x+10-4 = 0$$

$$x^{2}-7x+6 = 0$$

$$(x-6) (x-1) = 0$$

$$x = 6 \text{ or } x = 1$$

$$x = 6 (x = 1 \text{ is not in the domain of this function, since if you put it back into the input (x-5) or (x-2) you will get a negative)$$

6. Estimate the value of the following:

a) log ₂ 200	b) log ₃ 19	c) log₄150
$2^{x} = 200$	$3^{x} = 19$	$4^{x} = 150$
$x \approx 7.64$	$x \approx 2.68$	$x \approx 3.61$