MHF4U_2011: Advanced Functions, Grade 12, University Preparation
Unit 3: Exponential and Logarithmic Functions

Activity 5: Solving Logarithmic Equations

Homework/Formative Assessment

1. Put the following sequence of steps in the correct order:

$$
\begin{aligned}
& 4 x+50=100 \\
& 4 x+50=10^{2} \\
& \log _{10}(4 x+50)=2 \\
& x=25 / 2 \\
& 4 x=50
\end{aligned}
$$

2. Solve the following logarithmic equations and check your answers.

a) $\log _{2}(x-4)=4$	b) $\log _{(2}(2 x-3)=1$
c) $\log _{5}(3 x+8)=2$	d) $\log _{x}(9)=2$
e) $\log _{2}(x+2)=-2$	f) $\log _{3}(4 x-7)=3$

3. Explain why no solutions exist for the following equation: $\log _{-3} 27=x$.
4. Solve for x in the following equation:
$\log _{3} x-\log _{3} 6=\log _{3} 18-\log _{3} 2$
5. Solve $\log _{2}(x-5)+\log _{2}(x-2)=2$
6. Estimate the value of the following:

a) $\log _{2} 200$	b) $\log _{3} 19$	c) $\log _{4} 150$

Homework/Formative Assessment - SOLUTIONS

1. Put the following sequence of steps in the correct order:
$4 x+50=100$
$\log _{10}(4 x+50)=2$
$4 x+50=10^{2}$
$4 x+50=10^{2}$
$\log _{10}(4 x+50)=2$
$4 x+50=100$
$x=25 / 2$
$4 x=50$
$4 \mathrm{x}=50$
$x=25 / 2$
2. Solve the following logarithmic equations and check your answers.

a) $\log _{2}(\mathrm{x}-4)=4$	b) $\log (2 \mathrm{x}-3)=1$
$x-4=2^{4}$	$2 x-3=10^{1}$
$x=16+4$	$2 x=10+3$
$x=20$	$x=\frac{13}{2}$
c) $\log _{5}(3 \mathrm{x}+8)=2$	d) $\log _{\mathrm{x}}(9)=2$
$3 x+8=5^{2}$	$9=x^{2}$
$3 x=25-8$	$\pm \sqrt{9}=3$
$x=\frac{17}{3}$	$\pm 3=x$
e) $\log _{2}(\mathrm{X}+2)=-2$	$3=x(-3$ is not in domain $)$
$x+2=2^{-2}$	f) $\log _{3}(4 \mathrm{x}-7)=3$
$x=\frac{1}{4}-2$	$4 x-7=3^{3}$
$x=-\frac{7}{4}$	$4 x=27+7$
	$x=\frac{34}{4}$

3. Explain why no solutions exist for the following equation: $\log _{-3} 27=x$.

Written in exponential form, you have $(-3)^{x}=27$. There is no exponent that you can raise -3 (a negative) to that will give a result of 27 (a positive).
4. Solve for x in the following equation:

$$
\begin{aligned}
& \log _{3} x-\log _{3} 6=\log _{3} 18-\log _{3} 2 \\
& \log _{3} x-\log _{3} 6=\log _{3} 18-\log _{3} 2 \\
& \log _{3} x=\log _{3} 18-\log _{3} 2+\log _{3} 6 \\
& \log _{3} x=\log _{3}\left(\frac{18}{2} \times 6\right) \\
& \log _{3} x=\log _{3}(54) \\
& x=54
\end{aligned}
$$

5. Solve $\log _{2}(x-5)+\log _{2}(x-2)=2$
$\log _{2}(\mathrm{x}-5)+\log _{2}(\mathrm{x}-2)=2$
$\log _{2}(x-5)(x-2)=2$
$\log _{2}\left(x^{2}-7 x+10\right)=2$
$\mathrm{x}^{2}-7 x+10=2^{2}$
$\mathrm{x}^{2}-7 x+10=4$
$\mathrm{x}^{2}-7 x+10-4=0$
$\mathrm{x}^{2}-7 x+6=0$
$(x-6)(x-1)=0$
$x=6$ or $x=1$
$x=6(x=1$ is not in the domain of
this function, since if you put it back into the input
$(x-5)$ or $(x-2)$ you will get a negative)
6. Estimate the value of the following:

a) $\log _{2} 200$	b) $\log _{3} 19$	c) $\log _{4} 150$
$2^{x}=200$	$3^{x}=19$	$4^{x}=150$
$x \approx 7.64$	$x \approx 2.68$	$x \approx 3.61$

