Unit 5: Characteristics of Functions

Activity 2: Comparing Average and Instantaneous Rates of Change

Homework/Formative Assessment

1. Determine the average rate of change of the function $f(x)=2^{x}$ over the interval $2 \leq x \leq 4$.
2. Determine the average rate of change of the function $f(x)=2^{x}$ over the interval $3 \leq x \leq 4$.
3. Determine the average rate of change of the function $f(x)=2^{x}$ over the interval $3.9 \leq x \leq 4$.
4. Determine the average rate of change of the function $f(x)=2^{x}$ over the interval $3.999 \leq x \leq 4$.
5. Use your answers from questions 1 to 4 to estimate the instantaneous rate of change of the function $f(x)=2^{x}$ at $x=4$ to two decimal places.
6. If the $f(x)=2^{x}$ represents the number of bacteria present at time x in hours. What are the units of the rate of change?
7. Determine the instantaneous rate of change for each function at the indicated point:
a) $f(x)=\frac{1}{x} ; x=5$
b) $g(x)=2 x^{4}-5 x^{3} ; x=1$
c) $p(x)=3 \cos x-2 ; x=3$
8. Use the algebraic method, difference quotient, I.R.O.C. $\square \frac{f(x+h)-f(x)}{h}$, determine the slope of the tangent line to $f(x)=-x^{2}+5 x-3$ at $x=2$.
9. Use your answer from \#8 to determine the equation of the tangent line at $x=2$.

Homework/Formative Assessment SOLUTION

1. Determine the average rate of change of the function $f(x)=2^{x}$ over the interval $2 \leq x \leq 4$.

$$
\begin{aligned}
\text { A.R.O.C. } & =\frac{f(4)-f(2)}{4-2} \\
& =\frac{16-4}{2} \\
& =6
\end{aligned}
$$

2. Determine the average rate of change of the function $f(x)=2^{x}$ over the interval $3 \leq x \leq 4$.

$$
\begin{aligned}
\text { A.R.O.C. } & =\frac{f(4)-f(3)}{4-3} \\
& =\frac{16-8}{1} \\
& =8
\end{aligned}
$$

3. Determine the average rate of change of the function $f(x)=2^{x}$ over the interval $3.9 \leq x \leq 4$.

$$
\begin{aligned}
\text { A.R.O.C. } & =\frac{f(4)-f(3.9)}{4-3.9} \\
& =\frac{16-14.928528}{0.1} \\
& =10.71472
\end{aligned}
$$

4. Determine the average rate of change of the function $f(x)=2^{x}$ over the interval $3.999 \leq x \leq 4$.

$$
\begin{aligned}
\text { A.R.O.C. } & =\frac{f(4)-f(3.999)}{4-3.999} \\
& =\frac{16-15.988913}{0.001} \\
& =11.087
\end{aligned}
$$

5. Use your answers from questions 1 to 4 to estimate the instantaneous rate of change of the function $f(x)=2^{x}$ at $x=4$ to two decimal places.
The instantaneous rate of change is approximately 11.09
6. If the $f(x)=2^{x}$ represents the number of bacteria present at time x in hours. What are the units of the rate of change?

Units are always
$\frac{\text { dependent }}{\text { independent }}$
So here the units are bacteria
7. Determine the instantaneous rate of change for each function at the indicated point:
a) $f(x)=\frac{1}{x} ; x=5$

$$
\begin{aligned}
\text { IROC } & \square \frac{f(5)-f(4.999)}{5-4.999} \\
& =\frac{0.2-0.20004}{0.001} \\
& =-0.04
\end{aligned}
$$

b) $g(x)=2 x^{4}-5 x^{3} ; x=1$

$$
\begin{aligned}
\text { IROC } & \square \frac{g(1)-g(0.999)}{1-0.999} \\
& =\frac{-3-(-2.993003)}{0.001} \\
& =-6.997
\end{aligned}
$$

c) $p(x)=3 \cos x-2 ; x=3$

$$
\begin{aligned}
\text { IROC } & \square \frac{p(3)-p(2.999)}{3-2.999} \\
& =\frac{-4.969977-(-4.969553)}{0.001} \\
& =-0.424
\end{aligned}
$$

8. Use the algebraic method, difference quotient,
I.R.O.C. $\square \frac{f(x+h)-f(x)}{h}$,
determine the slope of the tangent line to $f(x)=-x^{2}+5 x-3$
at $x=2$.

$$
\begin{aligned}
\text { I.R.O.C. } & \frac{f(x+h)-f(x)}{h} \\
= & \frac{\left[-(2+h)^{2}+5(2+h)-3\right]-\left(-(2)^{2}+5(2)-3\right)}{h} \\
= & \frac{\left[-4-4 h-h^{2}+10+5 h-3\right]+4-10+3}{h} \\
= & \frac{h-h^{2}}{h} \\
= & \frac{h(1-h)}{h} \\
= & 1-h
\end{aligned}
$$

And, as $h \rightarrow 0$, the instantaneous rate of change goes to 1
\therefore slope $=1$
9. Use your answer from \#7 to determine the equation of the tangent line at $x=2$. You know that the slope is 1 and the value of $f(2)=3$. You just need to determine the y-intercept. Sub in slope and the point $(2,3)$

$$
\begin{aligned}
y & =m x+b \\
3 & =(1)(2)+b \\
3-2 & =b \\
1 & =b
\end{aligned}
$$

So, the equation of the tangent is $y=x+1$.

