Remainder Theorem and Factor Theorem

Remainder Theorem:

When a polynomial $f(x)$ is divided by $x-a$, the remainder is $f(a)$

1. Find the remainder when $2 x^{3}+3 x^{2}-17 x-30$ is divided by each of the following:
(a) $x-1$
(b) $x-2$
(c) $x-3$
(d) $x+1$
(e) $x+2$
(f) $x+3$

Factor Theorem:

If $x=a$ is substituted into a polynomial for x, and the remainder is 0 , then $x-a$ is a factor of the polynomial.
2. Using the above Theorem and your results from question 1 which of the given binomials are factors of $2 x^{3}+3 x^{2}-17 x-30 ?$
3. Using the binomials you determined were factors of $2 x^{3}+3 x^{2}-17 x-30$, complete the division (i.e. divide $2 x^{3}+3 x^{2}-17 x-30$ by your chosen $(x-a)$ and remember to fully factor your result in each case.

1.10.1 Remainder Theorem and Factor Theorem (Answers)

1. Find the remainder when $2 x^{3}+3 x^{2}-17 x-30$ is divided by each of the following:
(a) $x-1$
(b) $x-2$
(c) $x-3$
$\therefore a=1$
$f(1)=2(1)^{3}+3(1)^{2}-17(1)-30$
$a=2$
$a=3$
$f(1)=2+3-17-30$
$f(a)=-36$
$f(a)=0$
$f(1)=-42$
(d) $x+1$
(e) $x+2$
(f) $x+3$
$a=-1$
$a=-2$
$a=-3$
$f(a)=-12$
$f(a)=0$
$f(a)=-6$
2. Using the above Theorem and your results from question 1 which of the given binomials are factors of $2 x^{3}+3 x^{2}-17 x-30 ?$

From results \rightarrow (c) $x-3$ and (e) $x+2$ are factors
3. Using the binomials you determined were factors of $2 x^{3}+3 x^{2}-17 x-30$ complete the division (i.e. divide $2 x^{3}+3 x^{2}-17 x-30$ by your chosen $x-a$) and remember to fully factor your result in each case.
(c) $x-3$
$x - 3 \longdiv { 2 x ^ { 3 } + 3 x ^ { 2 } - 1 7 x - 3 0 }$
$\frac{2 x^{3}-6 x^{2}}{9 x^{2}}-17 x \downarrow$
$\frac{9 x^{2}-27 x}{10 x}-30$
$\frac{10 x-30}{0}$
Result: $(x-3)\left(2 x^{2}+9 x+10\right)$
$(x-3)(2 x+5)(x+2)$
(e) $x+2$

$$
\begin{array}{r}
2 x^{2}-x-15 \\
x + 2 \longdiv { 2 x ^ { 3 } + 3 x ^ { 2 } - 1 7 x - 3 0 } \\
\frac{2 x^{3}+4 x^{2} \quad \downarrow \quad \downarrow}{-x^{2}-17 x} \downarrow \\
\frac{-x^{2}-2 x}{-15 x-30} \downarrow \\
\frac{-15 x-30}{0}
\end{array}
$$

Result: $(x+2)\left(2 x^{2}-x-15\right)$
$(x+2)(2 x+5)(x-3)$
(Note: The results are the same just rearranged.)

Dividing Polynomials Practice

Complete the polynomial divisions below:

1. Without using long division, find each remainder:
(a) $\left(2 x^{2}+6 x+8\right) \div(x+1)$
(b) $\left(x^{2}+4 x+12\right) \div(x-4)$
(c) $\left(x^{3}+6 x^{2}-4 x+3\right) \div(x+2)$
(d) $\left(3 x^{3}+7 x^{2}-2 x-11\right) \div(x-2)$
2. Find each remainder:
(a) $\left(2 x^{2}+x-6\right) \div(x+2)$
(b) $\left(x^{3}+6 x^{2}-4 x+2\right) \div(x+1)$
(c) $\left(x^{3}+x^{2}-12 x-13\right) \div(x-2)$
(d) $\left(x^{4}-x^{3}-3 x^{2}+4 x+2\right) \div(x+2)$
3. When $x^{3}+k x^{2}-4 x+2$ is divided by $x+2$ the remainder is 26 , find k.
4. When $2 x^{3}-3 x^{2}+k x-1$ is divided by $x-1$ the remainder is 2 , find k.

ANSWERS:

1. (a) 4 (b) 44 (c) 27 (d) 37
2. (a) 0
(b) 11
(c) -25
(d) 6
3. 6
4. 4
