Remainder Theorem and Factor Theorem

Remainder Theorem: When a polynomial f(x) is divided by x-a, the remainder is f(a)

- 1. Find the remainder when $2x^3+3x^2-17x-30$ is divided by each of the following:

(a) $x - 1$	(b) $x - 2$	(c)	<i>x</i> – 3
(d) $x + 1$	(e) <i>x</i> + 2	(f)	<i>x</i> +3

Factor Theorem: If x = a is substituted into a polynomial for x, and the remainder is 0, then x - a is a factor of the polynomial.

- 2. Using the above Theorem and your results from question 1 which of the given binomials are factors of $2x^3+3x^2-17x-30$?
- 3. Using the binomials you determined were factors of $2x^3+3x^2-17x-30$, complete the division (i.e. divide $2x^3+3x^2-17x-30$ by your chosen (*x*-*a*) and remember to fully factor your result in each case.

1.10.1 Remainder Theorem and Factor Theorem (Answers)

1. Find the remainder when $2x^3+3x^2-17x-30$ is divided by each of the following:

(a) $x-1$: $a = 1$	(b)	x-2	(c)	<i>x</i> – 3
$f(1) = 2(1)^{3} + 3(1)^{2} - 17(1) - 30$ f(1) = 2 + 3 - 17 - 30 f(1) = -42		a = 2 $f(a) = -36$		a = 3 $f(a) = 0$
(d) $x + 1$	(e)	<i>x</i> +2	(f)	<i>x</i> +3
$\begin{array}{l} a = -1 \\ f(a) = -12 \end{array}$		a = -2 $f(a) = 0$		a = -3 $f(a) = -6$

2. Using the above Theorem and your results from question 1 which of the given binomials are factors of $2x^3+3x^2-17x-30$?

From results \rightarrow (c) x-3 and (e) x+2 are factors

3. Using the binomials you determined were factors of $2x^3+3x^2-17x-30$ complete the division (i.e. divide $2x^3+3x^2-17x-30$ by your chosen x-a) and remember to fully factor your result in each case.

(c)
$$x-3$$

 $2x^{2}+9x+10$
 $x-3)2x^{3}+3x^{2}-17x-30$
(e) $x+2$
 $2x^{2}-x-15$
 $x+2)2x^{3}+3x^{2}-17x-30$
 $2x^{3}-6x^{2} \downarrow \downarrow$
 $9x^{2}-17x \downarrow$
 $9x^{2}-27x \downarrow$
 $10x-30$
 $10x-30$
 $(x-3)(2x^{2}+9x+10)$
 $(x-3)(2x+5)(x+2)$
(e) $x+2$
 $2x^{2}-x-15$
 $x+2)2x^{3}+3x^{2}-17x-30$
 $2x^{3}+4x^{2} \downarrow \downarrow$
 $-x^{2}-2x \downarrow$
 $-15x-30$
 $(x+2)(2x^{2}-x-15)$
 $(x+2)(2x+5)(x-3)$

(Note: The results are the same just rearranged.)

Dividing Polynomials Practice

Complete the polynomial divisions below:

1. Without using long division, find each remainder: (a) $(2x^2+6x+8) \div (x+1)$ (b) $(x^2+4x+12) \div (x-4)$

(c)
$$(x^3+6x^2-4x+3) \div (x+2)$$
 (d) $(3x^3+7x^2-2x-11) \div (x-2)$

2. Find each remainder: (a) $(2x^2+x-6) \div (x+2)$ (b) $(x^3+6x^2-4x+2) \div (x+1)$

(c)
$$(x^3+x^2-12x-13) \div (x-2)$$
 (d) $(x^4-x^3-3x^2+4x+2) \div (x+2)$

- 3. When x^3+kx^2-4x+2 is divided by x+2 the remainder is 26, find *k*.
- 4. When $2x^3-3x^2+kx-1$ is divided by x-1 the remainder is 2, find *k*.

ANSWERS:	
1. (a) 4 (b) 44 (c) 27 (d) 37 2. (a) 0 (b) 11 (c) -25 (d) 6 3. 6 4. 4	