MHF4U_2011: Advanced Functions, Grade 12, University Preparation

Unit 4: Trigonometric Functions

Activity 5: Properties \& Transformations of Sinusoidal Functions

Homework/Formative Assessment

1. State the equation of the sine function with an amplitude of 2 , a period of π, a phase shift of $\frac{\pi}{2}$ left, and a vertical displacement of 3 .
2. State a possible sine equation and a possible cosine equation for each of the functions below: Scale horizontally goes up by 30 units.
a)
b)

3. How are the functions of $y=\sin x$, and $y=\cos x$ alike and how are they different? What transformations can be applied to the graph of $y=\sin x$ to create $y=\cos x$?
4. Sketch the graph of $y=2 \sin \left(\frac{1}{2} x+\frac{\pi}{4}\right)$ on the domain $\{x \in \square \mathrm{I}-2 \pi \leq x \leq 2 \pi\}$.

Homework/Formative Assessment SOLUTIONS

1. State the equation of the sine function with an amplitude of 2 , a period of π, a phase shift of $\frac{\pi}{2}$ left, and a vertical displacement of 3 .
$a=2, b=2, c=-\frac{\pi}{2}, d=3$
$\therefore f(x)=2 \sin \left[2\left(x+\frac{\pi}{2}\right)\right]+3$
2. State a possible sine equation and a possible cosine equation for each of the functions below: Scale horizontally goes up by 30 units.
a)

If $f(x)$ is a sine function, you have:
$a=0.5, b=\frac{2 \pi}{120}=\frac{\pi}{60}, c=0, d=0$
$\therefore f(x)=0.5 \sin \left(\frac{\pi}{60} x\right)$
If $f(x)$ is a cosine function, you have:
$a=0.5, b=\frac{2 \pi}{120}=\frac{\pi}{60}, c=30, d=0$
$\therefore f(x)=0.5 \cos \left[\frac{\pi}{60}(x-30)\right]$
b)

If $f(x)$ is a sine function, you have:
$a=4, b=\frac{2 \pi}{720}=\frac{\pi}{360}, c=0, d=0$
$\therefore f(x)=4 \sin \left(\frac{\pi}{360} x\right)$
If $f(x)$ is a cosine function, you have:
$a=4, b=\frac{2 \pi}{720}=\frac{\pi}{360}, c=180, d=0$
$\therefore f(x)=4 \cos \left[\frac{\pi}{360}(x-180)\right]$
3. How are the functions of $y=\sin x$, and $y=\cos x$ alike and how are they different? What transformations can be applied to the graph of $y=\sin x$ to create $y=\cos x$?

Both the sine function and the cosine function have an amplitude of 1 and a period of 2π. The difference is that the sine function starts at $y=0$ and begins by increasing and the cosine function starts at $y=1$, and begins by decreasing. To create the cosine curve using the sine curve, you would have to move $y=\sin x$ to the left with a horizontal translation of $\frac{\pi}{2}$. Therefore you would have:

$$
y=\cos x=\sin \left(x+\frac{\pi}{2}\right)
$$

4. Sketch the graph of $y=2 \sin \left(\frac{1}{2} x+\frac{\pi}{4}\right)$ on the domain $\{x \in \square \mid-2 \pi \leq x \leq 2 \pi\}$.

First you must factor the internal portion of the function:

$$
y=2 \sin \left[\frac{1}{2}\left(x+\frac{\pi}{2}\right)\right]
$$

This function has an amplitude of 2 , a period of 4π, and a phase shift of $-\frac{\pi}{2}$. Graphing you have:

