Activity 6: Applications of Polynomial Functions

Homework: Applications of polynomial functions
Provide complete solutions to the following problems:

Homework/Formative Assignment: Where Do We Use It?

Note to Students: This is a formative assignment. It is not to be submitted. Mark it yourself, using the answers provided, and contact your instructor for assistance if needed.

1. For which values of k does the function $f(x)=x^{3}+6 x^{2}+k x-4$ give the same remainder when divided by $(x-1)$ and $(x+2)$?
2. A rectangular shipping container that the Food Bank uses to store tinned food has a volume of $2500 \mathrm{~cm}^{3}$. The container is 4 times as wide as it is deep, and 5 cm taller than it is wide. What are the dimensions of the container?
3. An open-top rectangular shipping container has a volume of 1008 cm . If the piece of rectangular cardboard that the container is made from has dimensions 30 cm by 20 cm , what are the dimensions of the container? Remember, you will be cutting squares out of the corners of the cardboard material to create the container.
4. A school is hosting a charity dance to raise funds for a community centre. School dances are usually attended by 600 students and the regular price is $\$ 10$ per student. Student council knows that for every $\$ 1$ increase in price, the number of guests attending will be reduced by 30. Determine the price the student council should charge for the dance if they want to raise $\$ 6480$ for the community centre.

Assignment: Where Do We Use It? - SOLUTIONS

Note to Students: This is a formative assignment. It is not to be submitted. Mark it yourself, using the answers provided, and contact your instructor for assistance if needed.

1. For which values of k does the function $f(x)=x^{3}+6 x^{2}+k x-4$ give the same remainder when divided by $(x-1)$ and $(x+2)$?
By remainder theorem the remainders are given by $f(1)$ and $f(-2)$, set them to be equal and solve for k.
$f(1)=f(-2)$
$(1)^{3}+6(1)^{2}+k(1)-4=(-2)^{3}+6(-2)^{2}+k(-2)-4$
$1+6+k-4=-8+24-2 k-4$
$k+2 k=-8+24-4-1-6+4$
$3 k=9$
$k=3$
2. A rectangular shipping container that the Food Bank uses to store tinned food has a volume of $2500 \mathrm{~cm}^{3}$. The container is 4 times as wide as it is deep, and 5 cm taller than it is wide. What are the dimensions of the container?

Let $x=$ length (depth)
So, $w=4 x$
And, $h=w+5=4 x+5$
In $V=l w h$, you have
$2500=(x)(4 x)(4 x+5)$
$0=16 x^{3}+20 x^{2}-2500$
$0=4(x-5)\left(4 x^{2}+25 x+125\right)$
$x=5$ (no real roots for $4 x^{2}+25 x+125$ since the discriminant is negative)
Which gives you length $=5 \mathrm{~cm}$, width $=20 \mathrm{~cm}$ and height $=25 \mathrm{~cm}$.
3. An open-top rectangular shipping container has a volume of 1008 cm . If the piece of rectangular cardboard that the container is made from has dimensions 30 cm by 20 cm , what are the dimensions of the container? Remember, you will be cutting squares out of the corners of the cardboard material to create the container.

Let $x=$ height (piece cut out from each corner)
$v=l w h$
$v=(30-2 x)(20-2 x)(x)$
$v=4 x^{3}-100 x^{2}+600 x$
Substituting 1008 in for the volume you have:
$1008=4 x^{3}-100 x^{2}+600 x$
$0=4 x^{3}-100 x^{2}+600 x-1008$
$0=4(x-3)\left(x^{2}-22 x+84\right)$
$x=3$ or using the quadratic formula, $\begin{aligned} & x^{2}-22 x+84=0 \\ & x=17.1 \text { or } x=4.9\end{aligned}$

The feasible answers here are values of x between zero and ten so the dimensions could be:
$x=3$

$$
x=4.9
$$

$l=30-2(3)=24$
or $l=30-2(4.9)=20.2$
$w=20-2(3)=14 \quad w=20-2(4.9)=10.2$
$h=3 \quad h=4.9$
4. A school is hosting a charity dance to raise funds for a community centre. School dances are usually attended by 600 students and the regular price is $\$ 10$ per student. Student council knows that for every $\$ 1$ increase in price, the number of guests attending will be reduced by 30. Determine the price the student council should charge for the dance if they want to raise $\$ 6480$ for the community centre.

Currently, the school has 600 students attending at $\$ 10$ each.
If you let x be the number of price increases, you have,
Revenue $=($ price $)($ quantity $)$
$R(x)=(10+x)(600-30 x)$
$R(x)=-30 x^{2}+300 x+6000$
Substituting a revenue of $\$ 6480$ in for revenue you can solve for x :
$6480=-30 x^{2}+300 x+6000$
$0=-30 x^{2}+300 x-480$
$0=-30\left(x^{2}-10 x+16\right)$
$0=-30(x-2)(x-8)$
$x=2$ or $x=8$
So your solutions are, Raise the price twice to $\$ 12$, which will draw 540 guests (revenue $=\$ 6480$) or, raise the price to $\$ 18$, which will draw 360 guests (again, revenue $=\$ 6480$).

