3.13 - Rational Equations and Inequalities

Rational equations can be solve using the same technique as when solving polynomial equations (i.e. graphically or algebraically) with the added caveat of having to watch for restrictions.

Rational inequalities, like polyinomial inequalities, are best solved graphically.

3.13 - Rational Equations and Inequatities Practice Questions

1. Solve for unknown

a)
$$\frac{x}{2} + \frac{x}{3} = 5$$

b) $-\frac{2}{3}x - 4 = -\frac{4}{5}$
c) $\frac{x+1}{2} = 3$
d) $\frac{2x+1}{3} = -5$
e) $\frac{3}{2} = \frac{7}{x}$
f) $0 = \frac{2}{x-1} - 1$
g) $\frac{x-5}{x+2} = 2$
h) $\frac{x+1}{(x+1)(x-2)} = -1$
i) $\frac{2}{x-1} = \frac{3}{x+2}$
j) $\frac{x-1}{x^2+2x-3} - 2 = 0$
k) $\frac{3}{4x^2} = \frac{5}{3x^3}$
l) $\frac{x}{x^2-6} = 1$
m) $\frac{1}{x-1} - \frac{2}{x+3} = 2$

2. Solve the following inequalities.

a)
$$\frac{1}{x+2} > 1$$

b) $\frac{1}{x^2-4} \le 0$
c) $\frac{x}{x^2-6} \ge 1$
d) $\frac{2}{x-1} + 3 \ge 3$
e) $\frac{2}{x-1} + 3 < 0$
f) $\frac{1}{(x+2)(x-3)^2} > 0$
g) $\frac{2}{(x-1)^2} + 1 < 0$
h) $\frac{5}{x-2} + \frac{3}{2-x} \ge 1$
i) $\frac{x}{2x-4} - \frac{3}{x-6} + 1 \le \frac{3}{2}$

Answers 1. a) 6 b) -4.8 c) 5 d) -8 e) 14/3 f) 3 g) -9 h) 1 i) 7 j) -5/2 (x=1 is inadmissible) k) 20/9 (x=0 is inadmissible) l) x=-2,3 m) x=-3.9, 1.4 (use quadratic formula) 2. a) -2 < x < 1 b) -2 < x < 2 c) $-\sqrt{6} < x \le -2$ or $+\sqrt{6} < x \le 3$ d) x>1 e) 1/3 < x < 1 f) -2 < x < 3 or x>3 g) no real solution (graph is above x-axis so is never less than zero) h) $2 < x \le 4$ i) $0 \le x < 2$ or x > 6