3.13 - Rational Equations and Inequalities

Rational equations can be solve using the same technique as when solving polynomial equations (i.e. graphically or algebraically) with the added caveat of having to watch for restrictions.

Rational inequalities, like polyinomial inequalities, are best solved graphically.
Example 1: Solve the following rational equations

Example 2: \quad Solve the following rational inequalities
a) $\frac{1}{x-1} \geq 0$
b) $\frac{1}{x^{2}-1} \leq 0$
c) $\frac{1}{x+1} \leq 5$
graph linear reciprocal and highligh areas ≥ 0
graph using reciprocal technique on $y=x^{2}-1$
graph linear reciprocal and highlight areas ≤ 5

3.13 - rational equations and inequalities

Need to be carefull with signs for these

3.13 - Rational Equations and Inequatities Practice Questions

1. Solve for unknown
a) $\frac{x}{2}+\frac{x}{3}=5$
b) $-\frac{2}{3} x-4=-\frac{4}{5}$
c) $\frac{x+1}{2}=3$
d) $\frac{2 x+1}{3}=-5$
e) $\frac{3}{2}=\frac{7}{x}$
f) $0=\frac{2}{x-1}-1$
g) $\frac{x-5}{x+2}=2$
h) $\frac{x+1}{(x+1)(x-2)}=-1$
i) $\frac{2}{x-1}=\frac{3}{x+2}$
j) $\frac{x-1}{x^{2}+2 x-3}-2=0$
k) $\frac{3}{4 x^{2}}=\frac{5}{3 x^{3}}$
1) $\frac{x}{x^{2}-6}=1$
m) $\frac{1}{x-1}-\frac{2}{x+3}=2$
2. Solve the following inequalities.
a) $\frac{1}{x+2}>1$
b) $\frac{1}{x^{2}-4} \leq 0$
c) $\frac{x}{x^{2}-6} \geq 1$
d) $\frac{2}{x-1}+3 \geq 3$
e) $\frac{2}{x-1}+3<0$
f) $\frac{1}{(x+2)(x-3)^{2}}>0$
g) $\frac{2}{(x-1)^{2}}+1<0$
h) $\frac{5}{x-2}+\frac{3}{2-x} \geq 1$
i) $\frac{x}{2 x-4}-\frac{3}{x-6}+1 \leq \frac{3}{2}$

Answers 1 . a) 6 b) -4.8 c) 5 d) -8 e) $14 / 3$ f) $3 \mathbf{g}$) -9 h) 1 i) 7 j) $-5 / 2(x=1$ is inadmissible) k) $20 / 9$ ($x=0$ is inadmissible) 1) $x=-2,3 \mathbf{m}$) $x=-3.9,1.4$ (use quadratic formula) 2. a) $-2<x<-1$ b) $-2<x<2$ c) $-\sqrt{ } 6<x \leq-2$ or $+\sqrt{ } 6<x \leq 3$
d) $\mathrm{x}>1$ e) $1 / 3<\mathrm{x}<1 \mathbf{f}$) $-2<\mathrm{x}<3$ or $\mathrm{x}>3 \mathbf{g}$) no real solution (graph is above x -axis so is never less than zero) h) $2<x \leq 4$ i) $0 \leq x<2$ or $x>6$

