Unit 3: Exponential and Logarithmic Functions

Activity 3: Investigating Transformations and Sketching Graphs of Logarithmic Functions

Formative Assignment

1. Fill in the key features of the function f(x) defined by the graph below:

Domain	
Range	
x-intercept	
y-intercept	
Intervals of Increase/Decrease	
Vertical/Horizontal Asymptote	
Equation of Asymptote	

2. Fill in the key features of g(x) defined by the function $g(x) = \log[-3(x + 2)]$:

- 3. Describe the following transformations on $y = \log x$
 - a) y = 2log[-2(x 1)]
 - b) y = -3log[(x + 4)] 5
 - c) $y = (1/2)\log[(1/3)(x)]$

4. Find an equation for each graph: (Use $\log_8 x$ as the parent function, and use shifts only for simplicity)

a)

- 5. A graph has the following key features:
 - Increasing for x > 0
 - x-intercept of 1
 - No y-intercept
 - \circ A vertical asymptote of x=0

• Domain:
$${x \mid x > 0, x \in R}$$

• Range:
$$\{y \in R\}$$

 \circ (5, 1) is a point of the graph

A possible function with all these key features is _____.

6. A graph has the following key features:

- Decreasing for x > 0
- o y-intercept of 1
- No x-intercept
- A horizontal asymptote of y=0
- Domain: ${x \mid x \in R}$
- Range: $\{y \mid y > 0, y \in R\}$
- \circ (1, 0.5) is a point of the graph

A possible function with all these key features is ______.

Formative Assignment - SOLUTIONS

1. Fill in the key features of the function f(x) defined by the graph below:

Domain	$\left\{x \in R \mid x > -2\right\}$
Range	$\{y \in R\}$
x-intercept	x = -1.5
y-intercept	y = 2
Intervals of Increase/Decrease	Increasing for $\{x \in R \mid x > -2\}$
Vertical/Horizontal Asymptote	Vertical Asymptote
Equation of Asymptote	x = -2

2. Fill in the key features of g(x) defined by the function $g(x) = \log[-3(x + 2)]$:

Domain	$\left\{x \in R \mid x < -2\right\}$
Range	$\{y \in R\}$
x-intercept	x = -2.33 (for now approximate from a graph using technology)
y-intercept	None
Intervals of Increase/Decrease	Decreasing for $\{x \in R \mid x < -2\}$
Vertical/Horizontal Asymptote	Vertical Asymptote
Equation of Asymptote	x = -2

3. Describe the following transformations on y = logx

y = 2log[-2(x - 1)]

Vertical stretch of 2; horizontal reflection; horizontal compression of ½; horizontal translation of 1 (right).

y = -3log[(x + 4)] - 5

Vertical reflection; vertical stretch of 3; horizontal translation of -4 (left); vertical translation of -5 (down)

y = (1/2)log[(1/3)(x)]

Vertical compression of 1/2; horizontal stretch of 3

4. Find an equation for each graph:

a) $f(x) = \log_8(x-1)+3$ Thought process: Looks like VA is at x=1, so right shift is d=1. Usually log functions cross x axis at 1, because of the shift right by one look at x=2 and look for the point that looks to be exactly on the grid. Point (2, 3) is such a point. So instead of crossing the x-axis the function crosses the y=3 line, therefore there was a shift up 3.

b) $f(x) = \log_2(x+2)-3$ Thought process: Looks like VA is at x=-1, so left shift makes d=-2. Usually log functions cross x axis at 1, because of the shift left by two look at x=-1 and look for the point that looks to be exactly on the grid. Point (-1, -3) is such a point. So instead of crossing the x-axis the function crosses the y=-3 line, therefore there was a shift down 3.

5. $y = \log_5 x$

6. $y = 0.5^x$