MHF4U_2011: Advanced Functions, Grade 12, University Preparation

Unit 5: Characteristics of Functions

Activity 6: Composition of Functions

Homework/Composite Functions

1. Given $f(x)=x+1$ and $g(x)=3 x$, determine $f(g(x))$ and state the domain of the composite function.
2. Given $f(x)=x^{2}+1$ and $g(x)=\sqrt{2 x}$, determine $f(g(x))$ and state the domain of the composite function.
3. If $f(x)=x^{2}$ and $g(x)=\frac{x-2}{x+2}$, determine $f(g(2))$ and $g(f(2))$.
4. Suppose that $h(x)=(x+1)^{2}-9(x+1)$. Determine $f(x)$ and $g(x)$ if $h(x)=f(g(x))$.
5. Sally is trying to determine how many calories she burns on her Sunday morning jog. She can jog at a constant speed of $6 \mathrm{~km} / \mathrm{h}$ and she has read that she can burn 600 calories per 1800 m .
a) Create a composite function that relates calories burned to time in hours.
b) Use your new function to determine how many calories she burns if she runs for 1.5 hours.

Homework/Composite Functions SOLUTIONS

1. Given $f(x)=x+1$ and $g(x)=3 x$, determine $f(g(x))$ and state the domain of the composite function.

$$
\begin{aligned}
f(g(x)) & =(3 x)+1 \\
& =3 x+1
\end{aligned}
$$

Since the range of $g(x)$ is $y \in \square$, the domain of $f(g(x))$ is $x \in \square$.
2. Given $f(x)=x^{2}+1$ and $g(x)=\sqrt{2 x}$, determine $f(g(x))$ and state the domain of the composite function.

$$
\begin{aligned}
f(g(x)) & =(\sqrt{2 x})^{2}+1 \\
& =2 x+1
\end{aligned}
$$

Since the range of $g(x)$ is $y \in \square$, the domain of $f(g(x))$ is $x \in \square$.
3. If $f(x)=x^{2}$ and $g(x)=\frac{x-2}{x+2}$, determine $f(g(2))$ and $g(f(2))$.

$$
\left.\begin{array}{rlrl}
g(2) & =\frac{2-2}{2+2} & f(2) & =(2)^{2} \\
& =\frac{0}{4} & & =4 \\
& =0 & \text { and } & g(4)
\end{array}\right)=\frac{4-2}{4+2}
$$

4. Suppose that $h(x)=(x+1)^{2}-9(x+1)$. Determine $f(x)$ and $g(x)$ if $h(x)=f(g(x))$.

You can see that $h(x)$ is a combination of $x+1$ substituted into $x^{2}-9$, so:
$g(x)=x+1$ and $f(x)=x^{2}-9 x$
5. Sally is trying to determine how many calories she burns on her Sunday morning jog. She can jog at a constant speed of $6 \mathrm{~km} / \mathrm{h}$ and she has read that she can burn 270 calories per 1800 m
a) Create a composite function that relates calories burned to time in hours.

Relating distance and time, $\begin{aligned} & d(t)=6(t) \\ & d(t)=6 t\end{aligned}$
(Convert 1800 m to 1.8 km so units match.)
Relating calories burned and distance, $c(d)=\frac{270}{1.8}(d)$

$$
c(d)=150 d
$$

Finally, relating calories burned to time you have:

$$
\begin{aligned}
& c(d(t))=150(6 t) \\
& c(d(t))=900 t
\end{aligned}
$$

b) Use your new function to determine how many calories she burns if she runs for 1.5 hours.

For $t=1.5$,
$c(d(1.5))=900(1.5)$

$$
=1350
$$

\therefore Sally would burn 1350 calories on her 1.5 hour run.

