PRACTICE Radian Problems

1. If the radius of the circle is 4.5 m , determine the measure of the angle if the arc length is $8 \pi \mathrm{~m}$.
2. Determine the angular velocity in radians/second of a spot on the blade of a windmill if the windmill makes 70 revolutions in 1 minute.
3. Determine the number of revolutions that a car makes around a circular track in an hour if the angular velocity of the car is 11 radians/second.
4. Determine the arc length, if the radius of the circle is 21 cm and the angle is 0.75 m .
5. Determine the velocity in cm / s of a point on the circumference of a wheel with a radius of 33 cm if the wheel makes 66 revolutions in 1 minute.
6. Suppose a 10 -inch diameter wheel is rotating at 25 rotations per minute along a road. At what rate is the wheel moving along the road? (in mph units)
$\frac{12 \text { inches }}{1 \text { foot }}, \frac{5280 \text { feet }}{1 \mathrm{mile}}, \frac{2 \pi \text { radians }}{1 \mathrm{rev}}, \frac{1 \text { minute }}{60 \mathrm{sec}}, \frac{1000 \text { meters }}{1 \mathrm{~km}}$
7. The rim of a bicycle has a diameter of 26 inches. How many pedals (rotations) per second does the cyclist have to achieve to push the bicycle along a flat surface at 16 miles/hour?
8. A flight simulator has pilots traveling in a circular path very quickly in order to experience g -forces. If the pilots are traveling at 400 mph and the circular room has a radius of 25 feet, find the number of rotations that simulator makes per second.
9. Two gears are connected by a belt. The large gear has a radius of 6 inches while the small gear has a radius of 3 inches. If a point on the small gear travels at 16 rpm , find the angular velocity of the large gear.
10. A bicycle's wheel has a 30 inch diameter. If the wheel makes 1.5 revolutions per second, find the speed of the bike in mph.
11. A large clock has its seconds hand traveling at 2.5 inches per second. Find the length of the second hand.
12. A clock has a second hand of length 8 inches. How far in inches does the tip travel from when it is on the 12 to when it is on the 4 .
\qquad
\qquad ANSWERS
13. If the radius of the circle is 4.5 m , determine the measure of the angle if the arc length is $8 \pi \mathrm{~m}$.
given : $r=4.5 \mathrm{~m}, a=8 \pi \mathrm{~m}$
find: $\theta=$? not told what units, do all!

$$
\begin{aligned}
& \theta=\frac{a}{r} \\
& \theta=\frac{8 \pi}{4,5 m} \not m 5.585 \text { (radians) unit! } \\
& \text { or } \theta=\frac{8 \pi}{4,5} \times \frac{360^{\circ}}{2 \pi}=320^{\circ} \\
& \text { or } \theta=\frac{8 \pi}{4.5} \times \frac{1 r e v}{2 \pi} \div \frac{8}{9} \mathrm{rev}
\end{aligned}
$$

3. Determine the angular velocity in radians/second of a spot on the blade of a windmill if the windmill makes 70 revolutions in 1 minute.
given: $\omega=\frac{70 r e v}{m i n}$
find: $\omega=$? radians $\frac{\text { sec }}{}$

$$
\begin{aligned}
& \frac{70 \mathrm{pev}}{\mathrm{~min}} \times \frac{2 \pi}{1 \mathrm{rex}} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}} \\
& =7.33 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

5. Determine the number of revolutions that a car makes around a circular track in an hour if the angular velocity of the car is 11 radians/second.
given: $\omega=11 \frac{\mathrm{rad}}{\mathrm{sec}}$
find: $\omega=$? $\frac{\mathrm{rev}}{\mathrm{hr}}$

$$
\begin{aligned}
& \frac{11 \frac{\mathrm{rget}}{\sec } \times \frac{\text { rev }}{2 \pi \mathrm{rad}} \times \frac{3600 \mathrm{sec}}{1 \mathrm{hr}}}{\div 6302.5 \mathrm{rev} / \mathrm{hr}}
\end{aligned}
$$

2. Determine the arc length, if the radius of the circle is 21 cm and the angle is 0.75π.
given: $r=21 \mathrm{~cm} \quad \dot{\theta}=0.75 \pi$ (radians)
find: $a=$? cm \leftarrow same unit as radius if not

$$
\begin{aligned}
\theta & =\frac{a}{r} \\
\therefore a & =\theta r \\
& =(0.75 \pi)(21 \mathrm{~cm}) \doteq 49.5 \mathrm{~cm}
\end{aligned}
$$

4. Determine the velocity in cm / s of a point on the circumference of a wheel with a radius of 33 cm if the wheel makes 66 revolutions in 1 minute.
given: $r=33 \mathrm{~cm}, w=6 \frac{6 \mathrm{rev}}{\mathrm{min}}$
find: $v=? \mathrm{~cm} / \mathrm{sec}$

$$
\begin{aligned}
\omega & =\frac{V}{r} \\
\therefore V & =w r \\
& =\left(\frac{66 \mathrm{res}}{\text { mix }}\right)(33 \mathrm{~cm}) \times \frac{\text { mph }}{60 \sec } \times \frac{2 \pi}{1 \mathrm{res}} \\
& \doteq 228 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

6. Suppose a 10 -inch diameter wheel is rotating at 25 rotations per minute along a road. At what rate is the wheel moving along the road? (mph)

$$
\frac{12 \text { inches }}{1 \text { foot }}, \frac{5280 \text { feet }}{1 \mathrm{mile}}, \frac{2 \pi \text { radians }}{1 \mathrm{rev}}, \frac{1 \text { minute }}{60 \mathrm{sec}}, \frac{1000 \text { meters }}{1 \mathrm{~km}}
$$

given: $r=5$ inches, $w=25 \frac{\mathrm{rev}}{\mathrm{min}}$ find: $v=$? $\frac{\text { miles }}{h r}$

$$
w=\frac{v}{r}
$$

$$
\begin{aligned}
\therefore v & =w r \\
& =\frac{25 \text { rex }}{\text { mix }}(5 \text { inches }) \times \frac{2 \pi}{\text { logs }} \times \frac{60 \mathrm{~min}}{\mathrm{hr}_{r}} \times \frac{1 \mathrm{fK}}{12 \text { inches }} \times \frac{1 \text { mile }}{5280 \text { ff t }} \\
& =0.74 \mathrm{mph}
\end{aligned}
$$

7. The rim of a bicycle has a diameter of 26 inches. How many pedals (rotations) per second does the cyclist have to achieve to push the bicycle along a flat surface at 16 miles/hour?
8. A bicycle's wheel has a 30 inch diameter. If the wheel makes 1.5 revolutions per second, find the speed of the bike in mph .
given: $r=15$ inches, $\omega=1.5 \frac{\mathrm{rev}}{\mathrm{sec}}$
find: $V=$? mile $\frac{h_{r}}{h}$

$$
w=\frac{v}{r} \quad \therefore v=w r
$$

$$
\text { find: } \begin{aligned}
\omega & =\frac{\text { rev }}{\text { sec }} \\
\omega=\frac{v}{r} & =\frac{16 \text { mixes }}{h f} \times \frac{1}{13 \text { inches }} \times \frac{1 \text { rev }}{2 \pi} \times \frac{1212 \mathrm{~h}}{1 \mathrm{ft}} \times \frac{5280 \mathrm{ft}}{1 \text { mite }} \times \frac{1 \mathrm{ht}}{3600 \mathrm{sec}} \\
& =3.4 \mathrm{rev} / \mathrm{sec} \quad v=1.5 \mathrm{res}
\end{aligned}
$$

9. A flight simulator has pilots traveling in a circular path very quickly in order to experience g-forces. If the pilots are traveling at 400 mph and the circular room has a radius of 25 feet, find the number of rotations that simulator makes per second.
given: $V=400 \frac{\text { mile }}{\mathrm{hr}} \quad r=25$ feet find: $\omega=$? rev $\frac{\text { sec }}{\text { sec }}$

$$
\begin{aligned}
w=\frac{v}{r} & =\frac{400 \text { mile }}{\text { he c }} \times \frac{1}{25 \mathrm{ft}} \times \frac{1 \mathrm{rev}}{2 \pi} \times \frac{1 \mathrm{hr}}{3600 \mathrm{sec}} \times \frac{5280 \mathrm{ft}}{1 \text { mite }} \\
& =3.73 \mathrm{rev}
\end{aligned}
$$

11. Two gears are connected by a belt. The large gear has a radius of 6 inches while the small gear has a radius of 3 inches. If a point on the small gear travels at $1 6 \longdiv { \mathrm { rpm } }$ find the angular velocity of the large gear. rotations

Both gears have same V small
$r=3$ in
$\omega=16 \frac{\mathrm{rev}}{\mathrm{min}}$$\left\{\begin{array}{l}r=6 \text { in } \\ b=?\end{array}\right.$

$$
V=w r
$$

$2^{\text {use this for }}$
12. A clock has a second hand of length 8 inches. How far in inches does the tip travel from when it is on the 12 to when it is on the 4.
given: $r=8$ in $\theta=\frac{4}{12}$ of $360^{\circ}=120^{\circ}$
find: $a=$?

$$
\theta=\frac{a}{r} \quad \therefore \quad a=\theta r
$$

$$
a=120^{\circ}(8 \mathrm{in}) \times \frac{2 \pi}{360^{\circ}}
$$

$$
\doteqdot 16.8 \text { inches }
$$

