\qquad
\qquad

Review for FINALS

FINAL EXAM date \qquad Rm: \qquad

Success Criteria

Ensure your Journals are complete and corrected for studying purposes\square Complete the given Review booklet. Check your answers online.

FORMULAS GIVEn on exam:

Formulas:

Addition and Subtraction Formulas $\sin (x+y)=\sin x \cos y+\cos x \sin y$
$\sin (x-y)=\sin x \cos y-\cos x \sin y$
$\cos (x+y)=\cos x \cos y-\sin x \sin y$
$\cos (x-y)=\cos x \cos y+\sin x \sin y$

$$
\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}
$$

$\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}$
$M_{2}-M_{1}=\log \left(\frac{I_{2}}{I_{1}}\right) \quad L_{2}-L_{1}=10 \log \left(\frac{I_{2}}{I_{1}}\right)$

$$
\begin{array}{ll}
\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x} & \cos 2 x=2 \cos ^{2} x-1 \\
& \cos 2 x=1-2 \sin ^{2} x
\end{array}
$$

$M=\log \left(\frac{I}{I_{0}}\right)$

Key Identities

$$
\begin{array}{ll}
1+\tan ^{2} \theta=\sec ^{2} \theta & 1+\cot ^{2} \theta=\csc ^{2} \theta \\
\sin (-\theta)=-\sin \theta & \cos (-\theta)=\cos \theta \\
\tan (-\theta)=-\tan \theta & \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \\
\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta & \tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta
\end{array}
$$

Double Angle Formulas

$\sin 2 x=2 \sin x \cos x \quad \cos 2 x=\cos ^{2} x-\sin ^{2} x$

$$
p H=-\log \left(H^{+}\right) \quad L=10 \log \left(\frac{I}{I_{0}}\right)
$$

On Exam:

CAN NOT use Journals
But formula page is provided
Total 14 pages \& 19 questions (some with a,b,c...) no multiple choice
\qquad

1. Sketch each of the following
a. $y=0.5^{x}-2$
b. $y=3(1.5)^{-x}$
c. $y=-2(5)^{x}+6$
d.) $y=-2 \sin [\pi x-3 \pi]+4$
(e.) $y=\tan \left(\frac{\pi}{2} x+\pi\right)$
(f.) $y=\csc (2 x)-3$
g. $y=\frac{1}{x^{2}-x-6}$ find the eqtns of all asymptotes
h. $y=\frac{1}{x^{2}+3 x+4}$ find the eqtns of all asymptotes
(i.) $y=\frac{x+2}{x^{2}-4 x+4}$ find the eqtns of all asymptotes
j. $y=\frac{2 x-3}{x+6}$ find the eqtns of all asymptotes
k.) $y=\frac{5-x}{2 x-8}$ find the eqtns of all asymptotes
(1.) $y=\frac{x^{2}-9}{x-2}$ find the eqtns of all asymptotes
(m.) $y=\frac{2 x^{2}-5 x-3}{x+4}$ find the eqtns of all asymptotes
n. $y=(x+2)^{2}(3-2 x)^{3}(x)$

Sketch, state end behaviour, \# of possible zeros, \# of possible turning points
(0.) $y=-2 x^{3}-3 x^{2}+11 x+6$

Sketch, state end behaviour, \# of possible zeros, \# of possible turning points
2. Determine the inverse for $1 a, b, c) j(k)$
3. Sketch the inverses in $2 . \mathrm{a}, \mathrm{b}(\mathrm{c},(\mathrm{k})$
(4.) Prove
a. $(\cos x-\sin x)^{2}=1-\sin 2 x$
b. $2 \cos x \cos y=\cos (x+y)+\cos (x-y)$
c. $(\csc x-\cot x)^{2}=1-\frac{2 \cos x}{1+\cos x}$
6. Find exact values for
a. $\sin \left(\frac{7 \pi}{12}\right)$
b. $\sin \left(\frac{7 \pi}{6}\right) \cos \left(\frac{4 \pi}{3}\right)-\cos \left(\frac{5 \pi}{4}\right) \tan \left(\frac{5 \pi}{6}\right)$
c. $\quad \cos \left(\frac{3 \pi}{8}\right)$
7. Solve
(a) $\frac{500}{x}+x<60$
(b) $x^{3}+5 x^{2}+2 x-8 \geq 16 x-8$
(c.) $\frac{2 x+1}{2 x-3} \geq \frac{x+1}{x-5}$
(d.) $5^{2 x+2}-3126\left(5^{x}\right)=-125$
e. $\log _{5}(x+1)+\log _{5}(x-3)=1$
f. $2 \tan x=\sqrt{3} \tan ^{2} x-\sqrt{3}$
g. $\sqrt{2 x-1}+\sqrt{x+11}=7$ extra NOT on exam!
h. $\log _{9} \frac{9}{5} x=\log _{9} \frac{63}{10}+\log _{9} 2$
i. $\quad \log _{5} x-2 \log _{\frac{1}{2}} 2^{-1}=2$
j. $\left(\frac{1}{3}\right)^{x}=\sqrt[16]{81}$
k. $2^{x-1}=6^{x}$
l. $|2 x+3| \geq 5$
(m) $\frac{600}{x-5}=\frac{600}{x}+20$
8. You board a Ferris wheel of 49 m radius at a height of 1 m off the ground. The wheel rotates at 2 rotations per minute.
a. Write an equation of height in meters versus time in seconds. Do both cosine and sine.
b. At what two times in one cycle are you 90 m off the ground?
c. How high are you after 5 min 20 sec ?
d. What is the average rate of change on the time interval of $[0,10]$ seconds?
5.) Solve
a. $2 \sec ^{2} x+\sec x-1=0$
b. $\quad \tan x \cos ^{2} x-\tan x=0$
c. $2 \cos ^{2} x+\sin x-1=0$

Date:
9. At high tide the water is at 9 feet. At low tide it is at 3 feet. One day the low tide occurred at 3am and high tide at 9 am
a. Find the equation that models this if $t=3$ is 3am. Do both sine and cosine.
b. What is the water level at 2 pm ?
10.) Find a real number that exceeds its cube by $\frac{15}{8}$
11.) A mass of 1200 grams decays at a half life of 4 weeks.
a. Write the equations for the mass in terms of weeks, months and years.
b. At what time is there only 0.5 grams left?
c. After 2 days what is the mass?
d. What is the average rate of change of mass during the $1^{\text {st }}$ two weeks?
12. A certain bacteria triples every 5 seconds. What are the equations that model this in seconds, in minutes and in hours?
13. You kick a ball 2 m away from the net so it lands 7 m away from the net. As it flew through the air it reached a maximum height of 3 m .
a. What is the equation to model this?
b. Find the rate of change of height versus horizontal distance when the ball is 5 m away from the net.
(14.) For $f(x)=3 x-2$ on $[0,6]$
$g(x)=x^{2}-6 x$ on $[-1,4]$
$h(x)=\{(3,2),(5,1),(7,4),(9,3),(11,5)\}$
$i(x)=\{(1,3),(2,5),(3,7),(4,9),(5,11)\}$
Find
a. $(f-g)(x)$
b. $(f \div g)(x)$
c. $(f \circ g)(x)$
d. $(h+i)(x)$
e. $(h \circ i)(x)$
(be able to match graphs for exam too)

Name:
15.) State the equations for
a.

b.

Date: \qquad
16. For 15a.
a. State when $f(x)<0$
b. State when $f(x) \geq-10$
c. State an interval where average rate of change would be negative.
d. State a point where instantaneous rate of change would be zero.
17. A grade school is taking a trip to the zoo. A parent group of 6 people is responsible for putting together 225 box lunches for the trip. The group hopes to recruit extra people for the task.
a. Write an equation that gives the average number " n " of box lunches made per person as a function of the number " p " of parents that can come in and help complete the task.
b. Sketch the equation.
c. State the valid domain for this situation.
d. How many people need to come in so that the average number of box lunches made per person is 15 box lunches?
18. A motorboat travels 30 miles up a river and returned a distance of 27 miles. The entire trip takes 5 hours. If the rate of the motorboat in still water is 12 mph , find the rate of the current of the river.
19. Ero and Jamal set off at the same time on a 30 km walk for charity. Ero, who has trained all year for this event, walks $1.4 \mathrm{~km} / \mathrm{h}$ faster than Jamal, but sees a friend on the route and stops to talk for 20 min. Even with this delay, Ero still waits for Jamal to finish for 2 hrs more. How fast was each person walking?
20. If constructing a box with a square base with a volume of 1000 cubic inches. The material for the top and bottom are $\$ 3$ per 100 square inch and the material for the sides costs $\$ 1.25$ per 100 sq. in.
a. If x is the length of the side of the base, what is the cost in terms of x ?
b. For what dimensions will the cost be $\$ 39.50$?
21. For each of the following find the end behaviour, the possible number of turning points and possible number of zeros.
a. $f(x)=-x^{3}+2 x^{4}-6$
b. $g(x)=-2 x^{5}+2 x^{4}+x-8$

Name:
22. For each of the following tables
a. Determine what type of relationship is given
b. Determine an equation to model the relationship

i) x	y
-6	0.3
-1	0.6
4	1.2
9	2.4
14	4.8
19	9.6
24	19.2

ii) x	y
0.2	2
0.6	5
1.	8
1.4	11
1.8	14
2.2	17
2.6	20

iii) x	y
-2	29
-1	20
0	13
1	8
2	5
3	4
4	5

23) A wheel is rotating at an angular velocity of 80π radians/minute, while a point on the circumference of the wheel travels 10π meters in 15 seconds.
a. Find the radius of the wheel
b. Find the period in seconds.
c. State the equations in both sine and cosine to model the height versus time in seconds if the axle of the wheel is located 3 meters off the ground and the position at time zero is at minimum.
d. Within first 4 seconds find all the different times that a point on the circumference is 2.7 meters off the ground.
24. A ferris wheel has a diameter of 140 meters and completes one revolution in 30 minutes.
a. Find angular velocity in radians/second.
b. Find linear velocity in kilometers/hour
c. Find how far (the curved length) a person has traveled in kilometers over 160 minutes.
d. What is the period in minutes of this situation?
e. Write an equation using cosine that would model this situation if you assume that the bottom of the wheel is 1 meter off the ground and the person gets on at 71 meters off the ground at time 0 minutes and then goes down.
f. Write an equation using sine that would model this situation if you assume that the bottom of the wheel is 3 meters under ground and the person gets on at ground level at time 0 minutes and then goes up.
25. $f(x)=x^{4}+1$
a. Find a.r.o.c on $x \in[-2,4]$
b. Find i.r.o.c at $\mathrm{x}=3$
26. Find domain algebraically, then sketch and find range graphically
a. $\quad a(x)=\sqrt{2 x-5}+3$

$$
\begin{array}{ll}
\text { (b. } & b(x)=3 \log _{5}(14-7 x)-4 \\
\text { c. } & c(x)=\frac{x-11}{2 x^{2}-15 x-8} \\
\text { d. } & d(x)=2 x^{2}-8 x-10 \\
\text { e. } & e(x)=-2(3.5)^{x}-6
\end{array}
$$

f. $f(x)=4-\sqrt{5-10 x}$
g. $g(x)=-2|x+5|$
h. $h(x)=\left\{\begin{array}{l}x+2, x \leq-3 \\ 4^{x}, 0<x \leq 5\end{array}\right\}$
(i.) $i(x)=4 \log _{0.5}(2 x-1)$
(j.) $j(x)=\frac{3 x^{2}}{2 x^{3}+3 x^{2}-18 x+8}$
k. $k(x)=\frac{2}{5} x+6$
I. $l(x)=\sqrt[3]{2 x+6}-8$
$\begin{aligned} & \text { m.) } m(x)=\frac{4}{x^{2}+1} \\ & \text { n.) } n(x)=-2 \sin (\pi(x+4))+9 \\ & \text { (a.) } o(x)=\tan 0.25 \boldsymbol{x}+\mathbf{1} \\ & \text { p.) } p(x)=x^{3}(x-5)^{2}(x+1)\end{aligned}$
27. All customers pay a monthly customer fee of $\$ 8.91$, plus a fee of $10.49 \propto$ per kilowatt hour (kWhr) for the first 400 kWhr supplied in the month, plus a fee of $7.91 \notin$ per kWhr for all usage over 400 kWhr . Write the piecewise equation for this relation.
28. A restaurant patron has decided to leave a 15% tip for meals costing up to $\$ 40$, an 18% tip for meals costing at least $\$ 40$ but less than $\$ 100$, and a 20% tip for meals costing $\$ 100$ or more. Write a piecewise function to describe the total amount, T , the patron will pay in terms of the meal cost c
29. The pH of water in a small lake in northern Quebec has dropped from 5.4 to 4.8 in the last three years. How many times as acidic as it was three years ago, is the lake now?
30. Anna can scream at 56 db and Billy can yell at 48 db . How many more times intense is Anna's scream than Billy's yell?

Review Advanced Functions - answers (hopefully without. careless errors ت

1@ $y=0.5^{x}-2^{1}$

(c) $y=-2(5)^{x}+6$

(d) $y=-2 \sin [\pi(x-3)]+4$

(C) $y=\tan [\pi / 2(x+2)]$
period $=\pi \div \pi / 2=2$
(f) $y=\csc (2 x)-3$

(g) $y=\frac{1}{x^{2}-x-6}$. Factor

$$
y=\frac{1}{(x-3)(x+2)}=\frac{1}{\underbrace{(x-0.5)^{2}-6.25}_{\text {complete }}}
$$

x-int NA complete
y-int $-\frac{1}{6}$
U.A 3 and -2

HA $y=0$
+1 - chart

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $x-3$ | $-\infty$ | $-\infty+$ | |
| $x+2$ | $-\infty$ | + | |
| $f(x)$ | + | - | + |

(i) $y=\frac{1}{x^{2}+3 x+4}$
$y=\frac{1}{\left(x+\frac{3}{2}\right)^{2}+\frac{7}{4}}$ complete square
x-int N/A
y-int $1 / 4$
USA N / A.
H.A $y=0$
$+/$ chat - not needed since always positive.
(i) $y=\frac{x+2}{x^{2}-4 x+4}$
$y=\frac{x+2}{(x-2)(x-2)} \quad$ Factor
x-int -2
y-int $\frac{1}{2}$
VIA 2
HA $y=0$

(i) $y=\frac{2 x-3}{x+6}$

x-int $3 / 2$ y-int $-1 / 2$	+1 -chart:		
VA -6	$2 x-3$	-	-
HA $y=\frac{2}{1}$	$x+6$	-	+
		+	-

(k) $y=\frac{5-x}{2 x-8}$
x-int 5 y-int - 5/8
V.A 4

$$
\text { H.A } y=-\frac{1}{2}
$$

+/-chart:
d)

$$
\begin{aligned}
& y=\frac{x^{2}-9}{x-2} \\
& y=\frac{(x+3)(x-3)}{x-2}
\end{aligned}
$$

x-int -3 and 3
y-int $9 / 2$
V.A 2
O.A $x - 2 \longdiv { x ^ { 2 } + 0 x - 9 }$

$$
\frac{x^{2}-2 x}{2 x}
$$

$$
\therefore O A y=x+2{ }^{\binom{\text {etc }}{(\text { con stop })}}
$$

(m.)

$$
\begin{aligned}
& y=\frac{2 x^{2}-5 x-3}{x+4} \\
& y=\frac{(2 x+1)(x-3)}{(x+4)}
\end{aligned}
$$

x-int $-\frac{1}{2}$ and 3
y-int $-3 / 4$
V.A -4

$$
\begin{aligned}
& \text { O.A } \quad \begin{array}{l}
\quad \begin{array}{l}
\frac{2 x-13}{} \\
\frac{2 x^{2}+5 x-3 x}{-13 x}
\end{array} \\
\therefore \text { etc... } \\
\therefore \text { OA } y=
\end{array}
\end{aligned}
$$

|(n) $y=(x+2)^{2}(3-2 x)^{3}(x)$
zeros at -2 order 2 Degree 6 at $3 / 2$ order 3 end beh::
at 0 order $1 \quad x \rightarrow \pm \infty, y \rightarrow-\infty$
()

$$
\begin{aligned}
f(x) & =-2 x^{3}-3 x^{2}+11 x+6 \\
f(2) & =0 \quad \therefore x-2 \text { is a factor } \\
2 & \begin{array}{llll}
-2 & -3 & 11 & 6 \\
& -4 & -14 & -6 \\
-2 & -7 & -3 & 0
\end{array} \\
\therefore f(x) & =(x-2)\left(-2 x^{2}-7 x-3\right) \\
& =(x-2)(-1)\left(2 x^{2}+7 x+3\right) \\
& =-(x-2)(2 x+1)(x+3)
\end{aligned}
$$

zros at $2,-\frac{1}{2},-3$

2b)
2@

$$
\begin{aligned}
& \text { @ } \quad x=0,5^{y}-2 \\
& x+2=0,5^{y} \\
& \log (x+2)=\log (1,5)^{y} \\
& \log (x+2)=y \log (0.5) \\
& \frac{\log (x+2)}{\log 0.5}=y \text { OR } y=\log _{0.5}(x+2)
\end{aligned}
$$

$$
\text { (b) } \left.\begin{array}{l}
y=3(1.5)^{-x} \\
x=3(1.5)^{-y} \\
\frac{x}{3}=(1.5)^{-y} \\
\log \left(\frac{x}{3}\right)=\log (1.5)^{-y} \\
\log \left(\frac{x}{3}\right)=-y \log (1.5) \\
\frac{\log \left(\frac{x}{3}\right)}{-\log 1.5}=y \\
x=-2(5)^{y}+6 \\
x-6=-2(5)^{y} \\
\frac{x-6}{-2}=5^{y} \\
\log \left(\frac{x-6}{-2}\right)=\log (5)^{y} \\
\log \left(\frac{x-6}{-2}\right)=y \log 5 \\
\frac{\log \left(\frac{x-6}{12}\right)}{}=y \text { OR } y=\log _{5}\left(\frac{x-6}{-2}\right) \\
\log 5
\end{array} \quad y=\log _{5}\left(\frac{-1}{2}(x-6)\right)\right)
$$

$2 Q$

$$
\begin{aligned}
& x=\frac{2 y-3}{y+6} \\
& x(y+6)=2 y-3 \\
& x y+6 x=2 y-3 \\
& x y-2 y=-6 x-3 \\
& y(x-2)=-3(2 x+1) \\
& y=\frac{-3(2 x+1)}{x-2}
\end{aligned}
$$

30
$x-$ int $-\frac{1}{2}$
y-int $3 / 2$
V.A 2
H.A at $y=-6$

$2(4$

$$
\begin{aligned}
& x=\frac{5-y}{2 y-8} \\
& x(2 y-8)=5-y \\
& 2 x y-8 x=5-y \\
& 2 x y+y=8 x+5 \\
& y(2 x+1)=8 x+5 \\
& y=\frac{8 x+5}{2 x+1}
\end{aligned}
$$

34) x-ant $-\frac{5}{8}$
y-int 5
H.A at $y=4$
V.A at $-\frac{1}{2}$

3@ inverse of 1@ $y=0,5^{x}-2$
is $y=\log _{0,5}(x+2)$
Use the sketch of $1 @$

- HA at $y=-2$
becomes V.A at $x=-2$
- y-int at $(0,-1)$
becomes x-nt at $(-1,0)$

3(b) inverse of lb) $y=3(1.5)^{-x}$
is $y=\log _{\frac{2}{3}}\left(\frac{x}{3}\right)$
use the slutch in ib)

- HA at $y=0$
becomes V.A at $x=0$
- your at $(0,3)$
becomes x-int at $(3,0)$

3(C) inverse of IC $y=-2(5)^{x}+6$
is $y=\log _{5}\left(-\frac{1}{2}(x-6)\right)$
use the clutch of (©)

- HA at $y=6$
becomes V.A at $x=6$
- y -int at $(0,4)$
becomes x-int at $(4,0)$

* make sure you check that the original function and your inverse function shape look like they ore reflections in $y=x$ lone.
4.@ Foic

$$
\cos ^{2} x-2 \sin x \cos x+\sin ^{2} x \quad 1-2 \sin x \cos x
$$

Pythag $\cos ^{2} x+\sin ^{2} x-2 \sin x \cos x$
$1-2 \sin x \cos x$

$$
\angle S=R S
$$

b)

$$
\begin{array}{l|l}
2 \cos x \cos y & \left.\begin{array}{l}
\cos (x+y)+\cos (x-y) \\
{[\cos x \cos y-\sin x \sin y]+[\cos x \cos y+\sin x \sin y]}
\end{array}\right] \\
2 \cos x \cos y & \text {) simplify }
\end{array}
$$

$$
\begin{aligned}
& \text { (c) }(\csc x-\cot x)^{2} \\
& \text { Foil }\left(\csc ^{2} x-2 \csc x \cot x+\cot ^{2} x\right. \\
& \text { recipneses } \frac{1}{\sin ^{2} x}-\frac{2 \cos x}{\sin x \sin x}+\frac{\cos ^{2} x}{\sin ^{2} x} \\
& \text { LCD }\left(\frac{1-2 \cos x+\cos ^{2} x}{\sin ^{2} x}\right. \\
& \text { pythy }\left(\frac{1+\cos x-}{1+\cos x}\right. \\
& \text { Fuctor }\left(\frac{(\cos x-1)(\cos x-1)}{1-\cos ^{2} x}\right. \\
& \text { puel }(1-\cos x)(1+\cos x) \\
& \text { out }\left(\frac{(1-\cos x+1}{1+\cos }\right. \\
& -1
\end{aligned} \quad \text { LS=RS }
$$

(@) $2 \sec ^{2} x+\sec x-1=0$
5(C) $2 \cos ^{2} x+\sin x-1=0$
Factor $(2 \sec x-1)(\sec x+1)=0$
pythag.
$2 \sec x-1=0$ or $\sec x+1=0$

$$
\begin{aligned}
\sec x & =\frac{1}{2} \\
\frac{1}{\cos x} & =\frac{1}{2} \\
\therefore \cos x & =2 \\
x & =\cos ^{-1}(2) \\
x & =\text { N/A. }
\end{aligned}\left\{\begin{array}{r}
\sec x=-1 \\
\frac{1}{\cos x}=\frac{-1}{1} \\
\therefore \cos x=-1 \\
\therefore \\
x=\pi
\end{array}\right.
$$

$$
\begin{aligned}
& 2\left(1-\sin ^{2} x\right)+\sin x-1=0 \\
& 2-2 \sin ^{2} x+\sin x-1=0 \\
& 0=2 \sin ^{2} x-\sin x-1 \quad \text {)rearrange } \\
& 0=(2 \sin x+1)(\sin x-1) \quad \text { Factor } \\
& 2 \sin x+1=0 \quad \text { or } \quad \sin x-1=0 \\
& \sin x=\frac{-1}{2}, \quad \quad \quad \sin x=1
\end{aligned}
$$

(b)
commmor
fator $\tan x\left(\cos ^{2} x-1\right)=0$

$$
\tan x(\cos x+1)(\cos x-1)=0
$$

$$
x=\sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}
$$

$$
x_{3}=\pi / 2 \sim 1.571
$$

$x=-0.542$ in radions!

$$
\begin{aligned}
& \therefore x_{1} \doteq \pi+0.542 \sim 3.665=\frac{7 \pi}{6} \\
& x_{2} \doteq 2 \pi-0.542 \sim 5.760=\frac{11 \pi}{6}
\end{aligned}
$$

$\tan x=0$ or $\cos x+1=0$ or $\cos x-1=0$

\therefore the only solutions are $0, \pi, 2 \pi$ on $[0,2 \pi]$

6@

$$
\begin{aligned}
\sin \frac{7 \pi}{12}=\sin 105^{\circ} & =\sin \left(45^{\circ}+60^{\circ}\right) \\
\operatorname{compoor} t \rightarrow & =\sin 45^{\circ} \cos 60^{\circ}+\cos 45^{\circ} \sin 60^{\circ} \\
& =\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)+\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{1+\sqrt{3}}{2 \sqrt{2}} \text { rationalize! } \\
& =\frac{(1+\sqrt{3})}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

6(C) $\cos \frac{3 \pi}{8}$
6 b)

$$
\begin{aligned}
& \sin \frac{7 \pi}{6} \cos \frac{4 \pi}{3}-\cos \frac{5 \pi}{4} \tan \frac{5 \pi}{6} \\
& =\sin 210^{\circ} \cos 240^{\circ}-\cos 225^{\circ} \tan 150^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(-\frac{1}{2}\right)\left(\frac{-1}{2}\right)-\left(-\frac{1}{\sqrt{2}}\right)\left(\frac{-1}{\sqrt{3}}\right) \\
& \left.=\frac{1}{4}-\frac{1}{\sqrt{6}}\right)_{\text {LCD }} \\
& \left.=\frac{\sqrt{6}-4}{4 \sqrt{6}}\right) \text { rationalize } \\
& =\frac{(\sqrt{6}-4)}{4 \sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} \\
& \left.=\frac{6-4 \sqrt{6}}{24}\right) \text { common } \\
& \left.=\frac{2(3-2 \sqrt{6})}{24}\right) \\
& =\frac{3-2 \sqrt{6}}{12}
\end{aligned}
$$

add
ore

isolate $\cos 67,5^{\circ}$

LCD (,
$\therefore \mathrm{by}^{2}\left(\frac{\sqrt{2}-1}{\sqrt{2}}=2 \cos ^{2} 67.5^{\circ}\right.$
rationalize(, $\frac{\sqrt{2}-1}{2 \sqrt{2}}=\cos ^{2} 67.5^{\circ}$
$\begin{aligned} & \frac{2-\sqrt{2}}{4}=\cos ^{2} 67,5^{\circ} \\ & \text { sq. } C \\ & \text { root. } \\ & \pm \sqrt{\frac{2-\sqrt{2}}{4}}=\cos 67,5^{\circ}\end{aligned}$
inquad $\Psi \frac{\sqrt{2-\sqrt{2}}}{2}=\cos 67.5^{\circ}=\cos \frac{3 \pi}{8}$

7 @ $\frac{500}{x}+x<60$
$\operatorname{lol}_{\text {or is or }}^{\text {ar }}\left(\frac{500}{x}+x-60<0\right.$
${ }_{\text {LCD }} \frac{500+x^{2}-60 x}{x}<0$
Fact $\left(\begin{array}{l}\frac{x^{2}-60 x+500}{x}<0 \\ \frac{(x-50)(x-10)}{x}<0\end{array}\right.$

+ /- chert:

$$
\therefore x \in(-\infty, 0) \text { and }(10,50)
$$

76) $x^{3}+5 x^{2}+2 x-8 \geqslant 16 x-8$
$\underset{\substack{\text { side } \\ \text { orle }}}{\text { and }} x^{3}+5 x^{2}-14 x \geqslant 0$
common),

$$
x\left(x^{2}+5 x-14\right) \geqslant 0
$$

factor $x(x+7)(x-2) \geqslant 0$
+/-chart:

$$
\therefore x \in[-7,0] \text { and }[2, \infty)
$$

7(1)

$$
\begin{aligned}
& \frac{2 x+1}{2 x-3} \geqslant \frac{x+1}{x-5} \\
& \frac{2 x+1}{2 x-3}-\frac{(x+1)}{x-5} \geqslant 0 \quad \begin{array}{l}
\text { all on ore } \\
\frac{(2 x+1)(x-5)-(x+1)(2 x-3)}{(2 x-3)(x-5)} \geqslant 0 \\
\frac{2 x^{2}-9 x-5-\left(2 x^{2}-x-3\right)}{(2 x-3)(x-5)} \geqslant 0 \\
\frac{-8 x-2}{(2 x-3)(x-5)} \geqslant 0 \\
\frac{-2(4 x+1)}{(2 x-3)(x-5)} \geqslant 0
\end{array}>\text { Limp }_{\text {common }}^{\text {fimplity }}
\end{aligned}
$$

+ l-chart:

$$
\therefore x \in\left(-\infty,-\frac{1}{4}\right] \text { and }(3 / 2,5)
$$

Fd) $\quad 5^{2 x+2}-3126(5)^{x}=-125$
rewire
using $($
$\left.\begin{array}{l}\text { exponent } \\ \text { law }\end{array} 5^{2 x}\right)\left(5^{2}\right)-3126\left(5^{x}\right)=-125$
law
let $a=5^{x}$

$$
a^{2}\left(5^{2}\right)-3126(a)=-125
$$

this is a quadratic

$$
25 a^{2}-3126 a+125=0
$$

by quad. formula

$$
\begin{aligned}
& a=\frac{+3126 \pm \sqrt{(-3126)^{2}-4(25)(125)}}{2(25)} \\
& a=\frac{3126 \pm 3124}{50} \\
& a=125 \text { or } a=\frac{1}{25}
\end{aligned}
$$

put back 5^{x} as a

$$
\begin{aligned}
& 5^{x}=125 \quad \text { or } \quad 5^{x}=\frac{1}{25} \\
& 5^{x}=5^{3} \\
& \therefore x=3
\end{aligned}\left\{\begin{array}{l}
5^{x}=5^{-2} \\
\therefore x=-2
\end{array}\right.
$$

7(e) $\log _{5}(x+1)+\log _{5}(x-3)=1$
(product law

$$
\log _{5}[(x+1)[x-3)]=1
$$

(, change the form

$$
(x+1)(x-3)=5^{\prime}
$$

$$
\begin{aligned}
& x^{2}-2 x-3-5=0 \\
& x^{2}-2 x-8=0 \\
& (x-4)(x+2)=0 \\
& x=4 \text { or } x=-2
\end{aligned}
$$

not in the domain of \log.
$7 f$
$2 \tan x=\sqrt{3} \tan ^{2} x-\sqrt{3}$

$$
0=\sqrt{3} \tan ^{2} x-2 \tan x-\sqrt{3}
$$

C quad formula

$$
\tan x=\frac{2 \pm \sqrt{16}}{2 \sqrt{3}}
$$

$$
\tan x=\frac{2 \pm 4}{2 \sqrt{3}}=\frac{1 \pm 2}{\sqrt{3}}
$$

$\tan x=\frac{3}{\sqrt{3}}$ or $\tan x=-\frac{1}{\sqrt{3}}$

$$
\begin{aligned}
& x_{1}=\pi / 3 \\
& x_{2}=\frac{4 \pi}{3}
\end{aligned}
$$

$$
x_{3}=\frac{5 \pi}{6}
$$

$$
x_{4}=\frac{11 \pi}{6}
$$

7 gi) $\sqrt{2 x-1}+\sqrt{x+11}=7$
the only way to get rid of square roots is to square both sides

$$
(\sqrt{2 x-1}+\sqrt{x+11})^{2}=(7)^{2} \begin{aligned}
& \text { but we then } \\
& \text { must Foil }
\end{aligned}
$$

$$
(\sqrt{2 x-1}+\sqrt{x+11})(\sqrt{2 x-1}+\sqrt{x+11})=49^{5 n}
$$ sine not monomials

$$
(2 x-1)+2 \sqrt{2 x-1} \sqrt{x+11}+(x+11)=49
$$ 2 foil

$$
3 x+10+2 \sqrt{(2 x-1)(x+11)}=49 \text { simplify }
$$

$$
2 \sqrt{(a x-1)(x+11)}=49-10-3 x \quad \text { isolate the } \text { radical. }
$$

$$
2 \sqrt{(2 x-1)(x+11)}=39-3 x \quad \text { squire both } \text { sides to get }
$$

$$
\left.(2 \sqrt{(2 x-1)(x+11)})^{2}=(39-3 x)^{2}\right)
$$

square $(4(2 x-1)(x+11)=1521$) Foil Binomials each
factor of
this monomial

$$
\begin{aligned}
4\left(2 x^{2}+21 x-11\right) & =1521-234 x+9 x^{2} \\
8 x^{2}+84 x-44 & =1521-234 x+9 x^{2} \\
0 & =x^{2}-318 x+1565 \\
x & =\frac{+318 \pm \sqrt{(-318)^{2}-4(1)(1565)}}{2} \\
x & =\frac{318 \pm 308}{2} \\
x & =313 \text { or } x=5
\end{aligned}
$$

* check if both x 's work in the original. only $x=5$ work!!!

7 (b)

$$
7(x) \quad 2^{x-1}=6^{x}
$$

$$
\begin{aligned}
& \log _{9}\left(\frac{9}{5} x\right)=\log _{9}\left(\frac{63}{10}\right)+\log _{9}(2) \\
& \log _{9}\left(\frac{9}{5} x\right)=\log _{9}\left(\frac{63}{10} \cdot 2\right)
\end{aligned}
$$

canst make bases match \therefore take log of both sides

$$
\begin{aligned}
& \log (2)^{(x-1)}=\log (6)^{x} \\
& (x-1) \log 2=x \log 6 \text { power }
\end{aligned}
$$

Dequate inputs
(orly can be dore (or sore log bases

$$
\frac{9}{5} x=\frac{63}{5}
$$

$$
9 x=63
$$

$$
x=7
$$

7 (i)

$$
\begin{aligned}
& \log _{5} x-2 \log _{\frac{1}{2}}\left(2^{-1}\right)=2 \\
& \log _{5} x-2 \log _{\frac{1}{2}}\left(\frac{1}{2}\right)^{1}=2 \text { neg. } \\
& \log _{5} x-2(1)=2 \text { base of } \log \\
& \text { and exposer } \\
& \log _{5} x=4 \text { charge the form } \\
& 5^{4}=x \\
& 625=x
\end{aligned}
$$

$$
\text { or } x=\log _{\frac{1}{3}} 2
$$

$$
7 d
$$

$$
|2 x+3| \geqslant 5
$$

$$
|2|\left|x+\frac{3}{2}\right| \geqslant 5
$$

$$
2\left|x+\frac{3}{2}\right| \geqslant 5
$$

$$
\begin{aligned}
& 7(j)\left(\frac{1}{3}\right)^{x}=\sqrt[16]{81} \\
& 3^{-x}=(81)^{1 / 16} \text {) export laws (reg .exp } \\
& \text { rational } \\
& 3^{-x}=\left(3^{4}\right)^{1 / 4} \quad \text { rewrite } 81 \text { as } 3^{4} \\
& 3^{-x}=3^{1 / 4} \quad \text { power of power law. }
\end{aligned}
$$

$$
|x+3 / 2| \geqslant 5 / 2
$$

$7(m)$

$$
\begin{aligned}
& \frac{600}{x-5}=\frac{600}{x}+20 \\
& \sum_{L C D} \\
& \frac{600}{x-5}=\frac{600+20 x}{x} \\
& \int \text { con cross } \\
& \text { since not } \\
& \text { inequality } \\
& 600 x=(600+20 x)(x-5) \\
& \text { but kep } \\
& \text { in mind } \\
& 600 x=600 x+3000-20 x^{2}+100 x \\
& 20 x^{2}-100 x-3000=0 \\
& 20\left(x^{2}-5 x-150\right)=0 \\
& \begin{array}{ll}
x & -15 \\
x & 10
\end{array} \\
& 20(x-15)(x+10)=0 \\
& \therefore x=15 \text { or } x=-10
\end{aligned}
$$

multiply $O R$ move all to ore side
then LCD
then ignore denominator since solutions come from zeros.

8

radius $=49 \quad \therefore$ amplitude $=49$

8 b)

$$
\begin{aligned}
& 90=-49 \cos [\pi / 15 x]+50 \\
& \frac{40}{-49}=\cos \left[\frac{\pi}{15} x\right] \\
& \begin{array}{ll}
\theta_{1} & \theta=\cos ^{-1}\left(-\frac{40}{49}\right) \\
\theta_{2} & \theta=2.526 \\
\therefore \theta_{1} & =2.526
\end{array} \\
& \text { and } \theta_{2}=2 \pi-2.526 \\
& \theta_{2} \doteq 3.757
\end{aligned}
$$

but need x 's not angles

$$
\begin{aligned}
\therefore \theta_{1}=2.526 & =\frac{\pi}{15} x_{1} \\
12.06 & =x_{1}
\end{aligned}
$$

$\frac{2 \mathrm{rev}}{1 \mathrm{~min}}$ means 1 cycle takes $0.5 \mathrm{~min}=30 \mathrm{sec}$
(a) $y=-49 \cos \left[\frac{2 \pi}{30} x\right]+50$
or

$$
y=49 \cos \left[\frac{\pi}{15}(x-15)\right]+50
$$

or

$$
y=49 \sin \left[\frac{\pi}{15}(x-7,5)\right]+50
$$

$$
\begin{array}{r}
\theta_{2}=3.757=\frac{\pi}{15} x_{2} \\
17.94=x_{2}
\end{array}
$$

and
(OR can also add/subtruet period to get
other answers
But these answers are for the lIst cycle as the question asks.

8(c)

$$
\begin{gathered}
y=-49 \cos \left[\frac{\pi}{15} x\right]+50 \\
\operatorname{sub} x=5 \min 20 \sec \\
x=320 \mathrm{sec} \\
y=-49 \cos \left[\frac{\pi}{15} \cdot 320\right]+50 \\
y=74.5 \text { meters }
\end{gathered}
$$

8d

$$
\begin{aligned}
\frac{\Delta y}{\Delta x} & =\frac{y(10)-y(0)}{10-0} \\
& =\frac{74.5-1}{10} \\
& =7.35 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

9.

$$
\text { period }=12 \text { hows }
$$

(a)

$$
\begin{aligned}
& y= 3 \sin \left[\frac{2 \pi}{12}(x-6)\right]+6 \\
& \text { OR } \\
& y= 3 \cos [\pi / 6(x-9)]+6
\end{aligned}
$$

(b) sub $x=14$ for 2 PM.

$$
\begin{aligned}
& y=3 \cos \left[\frac{\pi}{6}(14-9)\right]+6 \\
& y=3,402 \text { feet high }
\end{aligned}
$$

$10 @ x-x^{3}=\frac{15}{8}$

$$
\begin{aligned}
& 0=x^{3}-x+15 / 8 \quad \text { get nd } \\
& 0=8 x^{3}-8 x+15=f(x)
\end{aligned}
$$

use factor theorem $f(a)=0 \quad$ try for a $\pm 15, \pm 5, \pm 3, \pm 1$ over $\pm 8, \pm 4, \pm 2, \pm 1$

$$
f(-3 / 2)=0
$$

$\therefore x+3 / 2$ is a factor

$$
\begin{aligned}
& -1.5 \left\lvert\, \begin{array}{cccc}
8 & 0 & -8 & 15 \\
1 & -12 & 18 & -15 \\
8 & -12 & 10 & 0
\end{array}\right. \\
& \therefore f(x)=(x+3 / 2)(\underbrace{8 x^{2}-12 x+10}) \\
& \text { try to factor } \\
& \text { quad. formula } \\
& x=\frac{+12 \pm \sqrt{12^{2}-4(1)}(10)}{2(8)}
\end{aligned}
$$

$\therefore x=-\frac{3}{2}$ is the only number that exceeds its cube by $15 / 8$
$11 @ 1200(0,5)^{w / 4}$ in weeks
lld $\frac{\Delta M}{\Delta w}=\frac{M(2)-M(0)}{2-0}$

$$
\begin{aligned}
& \overrightarrow{\text { approx. }} \underset{ }{\sim} 1200(0,5)^{m / 1} \quad \text { in months } \\
& \sim 1200(0,5)^{y / 4 / 52} \text { in years }
\end{aligned}
$$

$$
1200(0,5)^{13 y}
$$

11 (c) Sub $x=2$ days
$x=\frac{2}{7}$ weeks into weeks formula

$$
\begin{aligned}
& M=1200(0.5)^{2 / 7 / 4} \\
& M=1200(0.5)^{2 / 28} \\
& M=1200(0.5)^{1 / 14} \\
& M=1142.03 \mathrm{grams}
\end{aligned}
$$

"(b) Sub $M=0.59$

$$
=I(3)^{\text {or }}
$$

$$
\begin{aligned}
0.5 & =1200(0.5)^{w / 4} \\
\frac{1}{2400} & =0.5{ }^{w / 4} \\
\log \left(\frac{1}{2400}\right) & =\log (0.5)^{w / 4} \\
\log \frac{1}{2400} & =\frac{w}{4} \log 0.5 \\
4 \times \frac{\log \frac{1}{2400}}{\log 0.5} & =w \\
44.9 & \doteq w
\end{aligned}
$$

$$
3=a(2.5)(-2.5)
$$

weeks.
12. let I be initial amount (I showed have given that)

$$
\begin{aligned}
& B=I(3)^{5 / 5} \text { in seconds } \\
& B=I(3)^{m / 5 / 60} \mathrm{in}_{\text {minutes }}
\end{aligned}
$$

$$
B=I(3)^{h / 5} / 5600 \text { in }
$$

$\therefore y=a(x-2)(x-7)$ sub pt. $(4,5,3)$

$$
3=a(4.5-2)(4.5-7)
$$

$$
\begin{array}{ll}
\frac{3}{-6.15}=a & \therefore y=0.48(x-2)(x-7) \\
\therefore a=-0.48 & y=-0.48(x-4.5)^{2}+3
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { proximately } \\
\begin{array}{l}
4 \text { weeder in one } \\
\text { month }
\end{array}
\end{array}=\frac{848.53-1200}{2} \\
& =-175.7 \text { grams } / \text { weak } \\
& \text { * note if use a } \\
& \text { diffent formula } \\
& \text { you'd get: } \\
& -43.9 \mathrm{gram} / \mathrm{munth} \\
& \text { - } 3.38 \text { grams/year. }
\end{aligned}
$$

13(b) $\frac{\Delta y}{\Delta x}=\frac{\Delta \text { height }}{\Delta \text { distance }}$ at one point $x=5$
\therefore instorteneous
\checkmark

$$
\operatorname{him}_{0} \frac{y(5+h)-y(5)}{h}
$$

use equation from © that has only one x

$$
=\frac{-0.48(5+h-4.5)^{2}+3-2.88}{h}
$$ in it for simplicity!

$$
\begin{aligned}
14(c)(f \circ g)(x) & =f(g(x)) \\
& =f\left(x^{2}-6 x\right) \\
& =3\left(x^{2}-6 x\right)-2 \\
& =3 x^{2}-18 x-2
\end{aligned}
$$

Domain is NOT intersection
Consider what gees on from input to output
input domain of g

$$
\begin{aligned}
& {[-1,4] \underset{9}{ } \text { [cont use }} \\
& \begin{array}{l}
\text { This whole } \\
\text { interval in } f(x)
\end{array} \\
& \begin{array}{c}
\text { only }[0,6] \text { is } \\
\text { allowed. }
\end{array} \xrightarrow[f]{\longrightarrow}[-2,16] \\
& \left(\begin{array}{l}
\text { ty subbing } \\
\text { m-1 cos } 4 \\
\text { into } \\
\text { and turning }
\end{array}\right) \\
& \text { allowed. }
\end{aligned}
$$

into gunning point of $g \quad x=3$ to - see ABSOLLIE MIN
\therefore Domain of fog is $[-1,4]$
Range of $f \circ g$ is $[-2,16]$
(d) $(h+i)(x)$ can only add pouts with sane x 's

$$
=\{(3,9),(5,12)\}
$$

(e) $(h \circ i)(x)=h(i(x))$
(take all inputs of i, find outputs
then put them into h to find new outputs)

$$
=\{(1,2),(2,1),(3,4)(4,3),(5,5)\}
$$

15.@ $y=a(x+2)(x)^{2}(x-3)^{3}$
sub pt. $(-1,-30)$

$$
\begin{aligned}
-30 & =a(-1+2)(-1)^{2}(-1-3)^{3} \\
-30 & =a(1)(1)(-4)^{3} \\
-30 & =-64 a \\
\frac{15}{32} & =a \\
\therefore y & =\frac{15}{32}(x+2)(x)^{2}(x-3)^{3}
\end{aligned}
$$

(C) asymptote at $x=0$ and decreasing all the tire, so this is $\cot x$

- period usually π the it is 8

$$
\begin{gathered}
\therefore k=\frac{\pi}{8} \\
\therefore y=\cot (\pi / 8 x)
\end{gathered}
$$

16 @ $f(x)<0$ on

$$
x \in(-2,0) \quad(0,3)
$$

(b) $f(x) \geqslant-10$ on

$$
x \in(-\infty,-1.9][-0.6,0,8][1.8, \infty)
$$

approx.
(C) many answers
ave.r.o.c. $\quad x \in(-\infty,-1.5)$ is negative on

$$
x \in(0,1.2)
$$

(d) instar. r.O.C is zero at $X=-1,5$ or 0 or 1.2 or 3
17.
(b). asymptote at $x=0$
so this is ese x no horizontal shift (or $\sec x$ with horiz. shift)

- period usually 2π here prod is 4

$$
\therefore k=\frac{2 \pi}{4}=\pi / 2
$$

- max/min valuer usually at ± 1 he at ± 5

$$
\therefore a=5
$$

$\therefore y=5 \csc (\pi / 2 x)$

	People	Lunches	Rate boxes/prson
original	6	225	$\frac{225}{6}=30$
hope to have	p	225	n

$$
n=n(p)=\frac{225}{p}
$$

(b) this is a rational function with a vertical stretch

(c) not part of domain can't have negative people
\rightarrow also p can't be decimals since con't have a part of the person but n can be since a person can put together part of the lunch.
$\therefore \operatorname{Domain}\{p \geqslant 1, p \in \mathbb{I}\}$
18. cont

17 (1) c sub $n=15$

$$
\begin{aligned}
15 & =\frac{225}{p} \\
15 p & =225 \\
p & =15
\end{aligned}
$$

$\therefore 15$ people in total are needed
or 9 more people than the original 6 people who were these already.

create equation using tire column:

$$
\text { LCD }\left(\begin{array}{c}
\frac{30}{12-c}+\frac{27}{12+c}=5 \\
\operatorname{expar}(120+c)+27(12-c) \\
(12-c)(12+c)
\end{array} \frac{360+30 c+324-27 c}{1 H 4-c^{2}}=5\right.
$$

cross milt.

$$
3 c+684=720-5 c^{2}
$$

bring (,

$$
\begin{aligned}
& 5 c^{2}+3 c-36=0 \\
& \left(\begin{array}{lllllll}
5 & 6 & 4 & 9 & 2 & 18 & 3 \\
1
\end{array}\right) \\
& (5 c-12)(c+3)=0 \\
& \therefore c=\frac{12}{5}=2.4 \mathrm{miles} / \mathrm{hr}
\end{aligned}
$$

or $c \geqslant 3$ miles $/ h_{r}$ can't be negative current.
19.

	$D^{K m}$	$V^{k m / h}$	$T^{\text {hr }}$
Era	30	$1,4+x$	walk time ser stop the (char (hat) 2 hrs (wait utitd for Jamal)
Jamal	30	x	$\frac{30}{x}$

(D) walk time

Create equation using time column

$$
\operatorname{LCD}\left(\begin{array}{l}
\frac{30}{1.4+x}+\frac{7}{3}=\frac{30}{x} \\
\frac{3(30)+7(1.4+x)}{3(1.4+x)}=\frac{30}{x} \\
\frac{90+9.8+7 x}{3(1.4+x)}=\frac{30}{x} \\
\frac{99.8+7 x}{4.2+3 x}=\frac{30}{x}
\end{array}\right.
$$

cross ult. other page

19 continued

$$
\begin{aligned}
& 99.8 x+7 x^{2}=126+90 x \\
& 7 x^{2}+9.8 x-126=0 \\
& x=\frac{-9.8 \pm \sqrt{3624.04}}{2(7)} \\
& x=\frac{-9.8 \pm 60.2}{14} \\
& x=3.6 \text { or } x=-35
\end{aligned}
$$ negative speed.

\therefore Jamal's speed
was $3.6 \mathrm{~km} / \mathrm{hr}$ and Err's speed was $5 \mathrm{~km} / \mathrm{h}$
20.

$$
V=1000=x^{2} h
$$

@

$$
\begin{aligned}
\text { Cost }=C(x) & \left.=\frac{\$ 3}{100}(\text { Top }+ \text { bottom })+\frac{\$ 1.25}{100}(\text { sides })\right) \\
C(x) & =0.03\left(x^{2}+x^{2}\right)+0.0125(4 x h) \\
C(x) & =0.06 x^{2}+0.05 x\left(\frac{1000}{x^{2}}\right) \\
C(x) & =0.06 x^{2}+\frac{50}{x}
\end{aligned}
$$

b)

$$
\begin{aligned}
& 39,50=0.06 x^{2}+\frac{50}{x} \\
& 39.50=\frac{0.06 x^{3}+50}{x} \int_{L C D} \\
& 39.50 x=0.06 x^{3}+50
\end{aligned}
$$

20 cont

$$
0=0.06 x^{3}-39.50 x+50
$$

multi. by 100 ,
to yet rid of
decanal

$$
0=6 x^{3}-3950 x+5000
$$

$$
\text { decimals } O=2(\underbrace{3 x^{3}-1975 x+2500}_{\text {let } f(x) \text { equal this }})
$$

$$
f(25)=0 \quad \therefore(x-25) \text { is }
$$ a factor

cant be

$$
\therefore 0=2(x-25)\left(3 x^{2}+75 x-100\right)
$$

$$
\begin{aligned}
x=25 \text { or } x & =\frac{-75 \pm \sqrt{6825}}{2(3)} \\
x & =\frac{-75 \pm 82.6}{6} \\
x & =1.27 \text { or } x \geqslant-26
\end{aligned}
$$

\therefore dimensions can be

$$
\left\{\begin{array} { l }
{ x = 2 5 } \\
{ h = 1 . 6 }
\end{array} \text { or } \quad \left\{\begin{array}{l}
x \doteq 1.27 \\
h=620 .
\end{array}\right.\right.
$$

21.@ end behaviour as $x \rightarrow \infty \quad y \rightarrow \infty$

Degree $=4$
Lead. copt $=2$
as $x \rightarrow-\infty \quad y \rightarrow \infty$

3 or 1
possible zeros
4 or 3 or 2 or 1 or none
b)

$$
\begin{aligned}
& \text { Degree }=5 \\
& \text { Lead.coet }=-2
\end{aligned}
$$

end behaviour as $x \rightarrow \infty \quad y \rightarrow-\infty$ as $x \rightarrow-\infty y \rightarrow \infty$
possible turning points
4 or 2 or none
possible zeros
5 or 4 or 3 or 2 or 1
22. i)@exporential since true only

$$
\text { st } \left._{\text {st }} \text { ratios }=\frac{\text { next }}{\text { prev }}=2\right\} \begin{aligned}
& \text { if } \\
& \text { is } y=0 \\
& \text { iii }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=a b^{x / c} \\
& y=a(2)^{x / 5}
\end{aligned}
$$

sub pt. $(-6,0.3)$

$$
\begin{aligned}
& 0.3=a(2)^{-6 / 5} \\
& \frac{0.3}{2^{-6 / 5}}=a \\
& 0.3(2)^{6 / 5}=a \\
& 0.69=a \\
& 0 \\
& 00 y=0.69(2)^{x / 5}
\end{aligned}
$$

22.ii)@ linear since

$$
1^{\text {st }} \text { dittrences }=3
$$

(b)

$$
\begin{aligned}
y & =m x+b \\
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-2}{0.6-0.2} \\
& =\frac{3}{0.4}=7.5
\end{aligned}
$$

$$
\begin{aligned}
& y=7.5 x+b \\
& 2=7.5(0.2)+b \\
& 2=1,5+b
\end{aligned}
$$

$$
\operatorname{sub} \text { pt. }(0.2,2)
$$

$$
0,5=b
$$

$$
\therefore y=7.5 x+0.5
$$

@ quadratic since $2^{\text {rd }}$ differences $=2$
sub pt.

$$
\begin{aligned}
& \text { Sub pt. } \\
& (1,8) \rightarrow(1)
\end{aligned}
$$

sub pt.
$(2,5)$
(2) $5=4 a+2 b+13$
(1) $\times 2 \xrightarrow{16}=2 a+2 b+26$ and
subtract $-11=2 a-13$ $8=a+b+13$

$$
\begin{gathered}
\quad 8=1+b+13 \\
2=2 a \\
1=a \\
0=1 x^{2}-6 x+13
\end{gathered}
$$

23.@ $@=?$

$$
\begin{aligned}
& \omega=80 \pi \frac{\mathrm{rad}}{\mathrm{~min}} \\
& v=\frac{10 \pi \mathrm{~m}}{15 \mathrm{sec}} \\
& \omega=\frac{v}{r} \\
& r=\frac{v}{\omega}=\frac{10 \pi \mathrm{~m}}{15 \mathrm{sec}} \times \frac{1 \mathrm{mon}}{80 \pi \text { rad }} \times \frac{60 \mathrm{sec}}{1 \mathrm{~mm}} \\
& r=\frac{600 \pi}{1200 \pi} \mathrm{~m} \quad \text { not really } \\
& r=0,5 \mathrm{~m}
\end{aligned}
$$

(b) period $=$? reciprocal of ω in rev

$$
\begin{aligned}
& \omega=\frac{80 \pi \mathrm{rad}}{\min } \times \frac{1 \mathrm{rev}}{2 \pi r e d} \times \frac{1 \mathrm{mox}}{60 \mathrm{sec}} \\
& \omega=\frac{80 \pi \mathrm{rec}}{120 \pi \mathrm{sec}} \frac{2}{3} \mathrm{rev} / \mathrm{sec}
\end{aligned}
$$

$$
\therefore \text { period }=\frac{3}{2}=1.5 \mathrm{sec}
$$

(c)

$$
y=-0.5 \cos \left[\frac{4 \pi}{3} x\right]+3
$$

or

$$
y=0.5 \sin \left[\frac{4 \pi}{3}(x-0.375)^{2}\right]+3
$$

$$
\text { (d) } \begin{aligned}
2.7 & =-0.5 \cos \left[\frac{4 \pi}{3} x\right]+3 \\
-0.3 & =-0.5 \cos \theta \\
\frac{0.3}{0.5} & =\cos \theta \\
\theta_{1} & =\cos ^{-1}(0.6) \\
\theta_{1} & =53.13^{\circ} \\
\theta_{1} & =0.9273 \text { rations } \\
\therefore \frac{4 \pi}{3} x_{1} & =0.9273 \\
x_{1} & =0.22 \mathrm{sec}
\end{aligned}
$$

$$
\theta_{2}=306.87^{\circ}
$$

$$
\theta_{2}=5.3559 \text { radians }
$$

$$
\begin{aligned}
\therefore \frac{4 \pi}{3} x_{2} & =5.3559 \\
x_{2} & =1.28 \mathrm{sec}
\end{aligned}
$$

to get others add $/$ subtract prod $=1.5$

$$
\begin{aligned}
& x_{3}=1.72 \\
& x_{4}=2.78 \\
& x_{5}=3.22 \\
& x_{6}=4.28<t_{00} \text { big }
\end{aligned}
$$

24.

$$
\begin{aligned}
& r=70 \mathrm{~m} \\
& \omega=\frac{1 \mathrm{rev}}{30 \mathrm{~min}} \\
& \omega=\frac{1 \mathrm{rev}}{30 \mathrm{~min}} \times \frac{2 \pi \mathrm{r}}{1 \mathrm{rey}} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}} \\
& \omega=\frac{2 \pi \mathrm{rad}}{1800 \mathrm{sec}} \\
& \omega=\frac{\pi}{900} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

(a)
(e)

$$
\begin{aligned}
& 141 \cdots 30 \mathrm{~min} \\
& y=70 \cos \left[\frac{2 \pi}{30}(x-22.5)\right]+71
\end{aligned}
$$

Or

$$
y=-70 \cos [\pi / 15(x-7,5)]+71
$$

(b)

$$
\begin{aligned}
& V=\omega r \\
& v=\frac{\pi}{900 \mathrm{rad}} \times 70 \mathrm{mo} \times \frac{1 \mathrm{~km}}{1000 \mathrm{mo}} \times \frac{3600 \mathrm{sec}}{1 \mathrm{hr}} \\
& v=\frac{252000 \pi}{900000 \mathrm{~km}} \mathrm{~h} \\
& V=\frac{7 \pi}{25} \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

(c)

$$
\begin{aligned}
a & =? \\
v & =\frac{a}{t} \\
\therefore a & =v t \\
a & =\frac{7 \pi \mathrm{~km}}{25 \mathrm{hr}} \times 160 \mathrm{mmor} \times \frac{1 \mathrm{hr}}{60 \mathrm{~mm}} \\
a & =\frac{1120 \pi}{1500} \mathrm{~km} \\
a & =\frac{56}{75} \pi \mathrm{~km}
\end{aligned}
$$

$$
y=70 \sin [\pi / 15(x-d)]+67
$$

sub $p t(0,0)$ to find d

$$
\begin{aligned}
& 0=70 \sin [\pi / 15(0-d)]+67 \\
& \frac{-67}{70}=\sin \theta \\
& \theta_{1}=\sin ^{-1}\left(\frac{-67}{70}\right)
\end{aligned}
$$

$$
\theta_{1}=-73.17^{\circ}=286.8^{\circ}=5.0062
$$

radions

$$
\therefore \frac{\pi}{15}(-d)=5.0062
$$

$$
d_{1} \doteq-23.9
$$

OR $\theta_{2}=101818_{0}^{\circ}=1080446$ radions and
B one version of the equation.
\#25.@ a.r.0.c $=\frac{f(4)-f(-2)}{4--2}=\frac{257-17}{6}=\frac{240}{6}=40$
(b)

$$
\begin{array}{lll}
y^{\prime} & 1 & \prime \\
1 & 2_{1}^{\prime} \\
1 & 3 & 3 \\
1 & 6 & 6
\end{array}
$$

$$
\begin{aligned}
& =\frac{x^{y}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}+X-x^{4}-1}{h} \\
& =\frac{h\left[4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}\right]}{\not x} \\
& \underset{\text { as } h \rightarrow 0}{\longrightarrow} \text { i.c.0.c }=4 x^{3}+6 x^{2}(0)+4 x(0)^{2}+0^{3} \\
& =4
\end{aligned}
$$

$$
=4 x^{3}
$$

\therefore i,ro.c at $x=3$

$$
=4(3)^{3}
$$

$$
=108,
$$

.. Find domain algebraically, then sketch and find range graphically
$a(x)=\sqrt{2 x-5}+3$

radicand $\geqslant 0$

$2 x \geqslant 5$
$x \geqslant \frac{5}{2}$
$\therefore D=\{x \in \mathbb{R}, x \geqslant 5 / 2\}$

* $x \in[5 / 2, \infty)$

shift right 5/2 up 3

$$
c(x)=\frac{x-11}{2 x^{2}-15 x-8}
$$

$$
\text { denom } \neq 0
$$

$$
2 x^{2}-15 x-8 \neq 0
$$

$$
(2 x+1)(x-8) \neq 0
$$

$$
\therefore D=\left\{x \in \mathbb{R}, x \neq \frac{-1}{2}, 8\right\}
$$

$$
\text { or } x \in\left(-\infty,-\frac{1}{2}\right),\left(-\frac{1}{2}, 8\right),(8, \infty)
$$

$$
\therefore R=\{y \in \mathbb{R}\}
$$

$$
\text { or } y \in(-\infty, \infty)
$$

$\begin{aligned} & b(x)= 3 \log _{5}(14-7 x)-4 \\ & \log _{\text {input }}>0 \\ & 14-7 x>0 \\ &-7 x>-14 \\ & x<2 \\ & \therefore D=\{x \in \mathbb{R}, x<2\} \\ & \text { or } x \in(-\infty, 2)\end{aligned}$

$$
d(x)=2 x^{2}-8 x-10
$$

no restrictions
$\therefore D=\{x \in \mathbb{R}\}$
or $x \in(-\infty, \infty)$
slutch
$3 \log _{5}(-7(x-2))-4$
parent $y=\log _{5} x$
shift right 2
down 4
reflected in y-axis
(With stretch/compress

scutch:
$2\left(x^{2}-4 x \quad\right)-10$ $2\left(x^{2}-4 x+4-4\right)-10$ $2(x-2)^{2}-4(2)-10$ $2(x-2)^{2}-18$
$\therefore R=\{y \in \mathbb{R}, y \geqslant-28\}$
or $y \in[-\mathbb{B}, \infty)$

Find domain algebraically, then sketch and find range graphically
$e(x)=-2(3.5)^{x}-6$
exponential no restrictions

$$
D=\{x \in \mathbb{R}\}
$$

sketch:
parent $y=3.5^{x}$ growth

$c=-6 \mathrm{HA}$.

$$
g(x)=-2|x+5|
$$

abs.val, no restrictions

$$
D=\{x \in \mathbb{R}\}
$$

shetet:
parent $y=|x| Y$
reflected stretited left

$$
\therefore R=\{y \in R, y<-6\}
$$

$i(x)=4 \log _{0.5}(2 x-1)$
\log input >0

$$
\begin{aligned}
& 2 x-1>0 \\
& 2 x 21 \\
& x>\frac{1}{2}
\end{aligned} \quad \begin{aligned}
& \therefore D=x \in\left(\frac{1}{2}, \infty\right)
\end{aligned}
$$

sketch:
parent $y=\log _{0.5} x$

$$
y=4 \log _{0.5}\left(2\left(x-\frac{1}{2}\right)\right)
$$

stretched + Compressed no reflection right

$$
\begin{gathered}
h(x)=\left\{\begin{array}{l}
x+2, x \leq-3 \\
4^{x}, 0<x \leq 5
\end{array}\right\} \\
\text { piecewise } \\
\text { domain is }
\end{gathered}
$$

sketch:
$\therefore R=\{y \in R, y \leq 4\}$ or $y \in(-\infty, 4]$
parent $y=\sqrt{x}$
radicand $\geqslant 0$

$$
\begin{aligned}
& 5-10 x \geqslant 0 \\
&-10 x \geqslant-5 \\
& x \leqslant 0.5 \\
& \therefore D=\{x \in R, x \leqslant 0.5\} \\
& \text { or } x \in(-\infty, 0.5]
\end{aligned}
$$

$$
D=\{x \in \mathbb{R}, x \leq-3,0<x \leq 5\}
$$

$f(x)=4-\sqrt{5-10 x}$
$\begin{aligned} \text { radicand } & \geqslant 0 \\ 5-102 & \geqslant 0\end{aligned}$

$$
\begin{array}{r}
x \leq-3,0<x \leqslant 5\} \\
1024
\end{array}, \begin{array}{r}
R=y \in(-\infty,-1] \\
{[1,1024]}
\end{array}
$$

$$
\begin{aligned}
& j(x)=\frac{3 x^{2}}{2 x^{3}+3 x^{2}-18 x+8} \\
& \quad \text { denom } \neq 0 \\
& f=2 x^{3}+3 x^{2}-18 x+8 \neq 0 \\
& \pm \frac{p}{q}= \pm \frac{8}{2}, \frac{8}{1}, \frac{4}{2}, \frac{4}{1}, \frac{2}{2}, \frac{2}{1}, \frac{1}{2}, \frac{1}{1}
\end{aligned}
$$

$$
\begin{aligned}
& \left. \pm \frac{p}{q}= \pm \frac{0}{2}, \frac{0}{1}, \frac{1}{2}, 1,2\right) \\
& f(2)=0 \quad \therefore(x-2) \text { is a factor }
\end{aligned}
$$

$$
\begin{aligned}
& \left.2\right|_{2} ^{2} \begin{array}{lcc}
3 & -18 & 8 \\
2 & 14 & -8
\end{array} \\
& (x-2)\left(2 x^{2}+7 x-4\right) \neq 0 \\
& (x-2)(2 x-1)(x+4) \neq 0 \\
& D=\left\{x \in R, x \neq 2, \frac{1}{2},-4\right\}
\end{aligned}
$$

sketch:

$$
\frac{3 x^{2}}{(x-2)(2 x-1)(x+4)}
$$

$$
\text { VA } x=2, \frac{1}{2},-4
$$

$$
\text { HA } y=0
$$

$$
\begin{aligned}
& \text { zero } x=0 \\
& y \text {-int } y=0
\end{aligned}
$$

Find domain algebraically, then sketch and find range graphically

27. All customers pay a monthly customer fee of $\$ 8.91$, plus a fee of $10.49 ष$ per kilowatt hour (kWhr) for the first 400 kWhr supplied in the month, plus a fee of $7.91 \&$ per kWhr for all usage over 400 kWhr . Write the piecewise equation for this relation.
$\underset{\text { in }}{c(x)=\left\{\begin{array}{ll}0.1049 x+8.91, & 0<x \leqslant 400 \\ \text { dolors } & 0.0791(x-400)+50.87,\end{array}, 400<x\right.}$
28. A restaurant patron has decided to leave a 15% tip for meals costing up to $\$ 40$, an 18% tip for meals costing at least $\$ 40$ but less than $\$ 100$, and a 20% tip for meals costing $\$ 100$ or more. Write a piecewise function to describe the total amount, T , the patron will pay in terms of the meal cost c

$$
T(c)= \begin{cases}1.15 c & , 0 \leq c<40 \\ 1.18(c-40)+46, & 40 \leq c<100 \\ 1.20(c-100)+116.8, & 100 \leq c\end{cases}
$$

(29. the pH of water in a small lake in northern Quebec has dropped from 5.4 to 4.8
in the last three years. How many times as acidic as it was three years ago, is
in the last three
the lake now?

$$
\begin{aligned}
p H & =-\log \left[H^{+}\right] \\
P_{2}-P_{1} H_{1} & =-\log \left[\frac{H_{2}}{H_{1}}\right] \\
4.8-5.4 & =-\log \left[\frac{H_{2}}{H_{1}}\right] \\
-0.6 & =-\log \left[\frac{H_{1}}{H_{1}}\right] \\
0.6 & =\log \left[\frac{H_{2}}{H_{1}}\right] \leftrightarrow 10^{0.6}=\frac{H_{2}}{H_{1}} \quad \therefore \text { about } 4 \text { tinner is acidic }
\end{aligned}
$$

(30)

Anna can scream at 56 db and Billy can yell at 48 db . How many more times intense is Anna's scream than Billy's yell?

$$
\begin{aligned}
& \text { AnnA's } \angle=56 \mathrm{db} \\
& L=10 \cdot \log \left(\frac{I_{a}}{10^{-12}}\right) \\
& 56=10 \cdot \log \left(\frac{I}{10^{-2}}\right) \\
& 5.6=\log \left(\frac{x_{2}}{10^{-12}}\right) \\
& 10^{5.6}=\frac{\tau_{a}}{10^{-12}} \\
& 10^{5.6} \cdot 10^{-12}=I_{a} \\
& 10^{-6.4}=I_{a}\left\{\begin{array}{l}
\text { Inrger } \\
\text { Intensity }
\end{array}\right. \\
& x \cdot I_{b}=I_{a} \\
& x=\frac{I_{a}}{I_{b}}=\frac{10^{-6.4}}{10^{-7.2}}=10^{.8} \approx 6.3
\end{aligned}
$$

Anna's scream is 6.3 times as intense as billy's.

