

Using Excel to mode	I Gas Prices -	BONUS
---------------------	----------------	-------

Year	Years since 1981	Price (cents/L)	Year	Years since 1981	Price (cents/L)
1981	0	40.5	1994	13	50.65
1982	1	45.4	1995	14	53.5
1983	2	47.95	1996	15	58.0
1984	3	48.4	1997	16	58.05
1985	4	51.65	1998	17	53.45
1986	5	44.1	1999	18	58.1
1987	6	48.8	2000	19	72.75
1988	7	47.6	2001	20	69.85
1989	8	51.5	2002	21	70.85
1990	9	56.55	2003	22	72.45
1991	10	54.4	2004	23	79.55
1992	11	54.35	2005	24	88.25
1993	12	52.3	2006	25	93.65

1. Open Excel: Start, Programs, Excel

- 2. Enter the data given.
- 3. Select the data values for year and price and create a scatter plot.

Da	e:	Name:				
	Click on any data point. Then do Right click and type .	d pop up menu will appear. Select Add Trendline , then select Trend/Regression				
5.	Find Options Tab. Check " Display Equation on Note the closer R-squared value is to 1, the better the mod	Chart " and " Display R-squared value on chart " del is to the data given.				
مم 6.	Try different Regression types: LINEAR Record the equation y =	and R ² =				
7.	EXPONENTIAL Record the equation y =	and R ² =				
8.	QUADRATIC Record the equation y =	and R ² =				
9.	CUBIC Record the equation y =	and R ² =				
10.	Use all the models to predict the gas price in the	ne year 1999 and 2015.				

11. Based on the results discuss the usefulness of mathematical models to interpolate versus extrapolate values. Discuss why this is so.

Using Fathom to model a Bungee Jump - BONUS

The height versus time data of a bungee jumper are given in the table, for the first half minute or so of his jump. Heights are referenced to the rest position of the bungee jumper, which is well above ground level.

Time(s)	0	1	2	3	4	5	6	7	8	9	10	11	12
Height(m)	100	90	72	45	14	-15	-41	-61	-71	-73	-66	-52	-32
Time(s)	13	14	15	16	17	18	19	20	21	22	23	24	25
Height(m)	-11	11	30	44	53	54	48	37	23	6	-8	-23	-33
Time(s)	26	27	28	29	30	31	32	33	34	35	36	37	
Height(m)	-39	-39	-35	-27	-16	-4	6	17	24	28	29	26	

Open Fathom: Start, Programs, Fathom 1.

2. Drag a collection

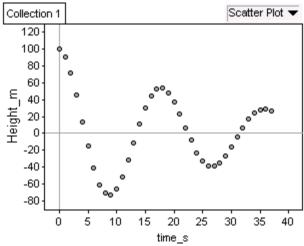
3.

into the workspace. Double click on the box (not the name of it) and enter the following information

	Cases	Measu	ures	Comme	ents Display			
	Attribute		Value		Formula			
	time_s							
	Height_m							

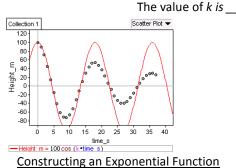
		1	
	F		ł
			1

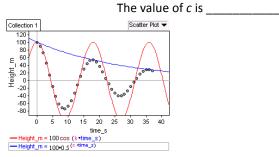
<new>


- Drag a table **the workspace**. 4.
- Enter the values from the table above like shown 5.

Collecti	on 1		
	time_s	Height_m	<new></new>
1	0	100	
2	1	90	
3	2	72	
4	3	45	
5	4	14	
6	5	-15	
7	6	-41	
8	7	-61	
9	8	-71	

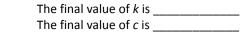
Drag a graph into the workspace.

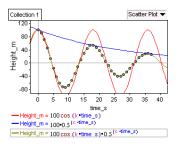

Select the time column and drag it onto the x-axis of the 6. graph. Then select the height column and drag it into the y-axis of the graph to get this result:


- 7. Describe how the graph exhibits sinusoidal features.
- 8. Describe how the graph exhibits exponential features.

Constructing a Cosine Function:

Drag a slider into the workspace. Rename it k.
Click on the graph. From the Graph menu, choose Plot Function. Enter the function 100*cos(k*time_s) Adjust the slider until the crests and troughs of the function occur at the same time values on the scatter plot.




10. Repeat the steps used for cosine function with a new slider called *c*, and new equation 100*0.5^(*c**time_s). Adjust the slider so that the graph of exponential touches each crest of the scatter plot.

Construct a Combined function

11. Click on the graph. From the Graph menu, choose Plot Function. Enter the function 100*cos(k*time_s)* 0.5^(c*time_s). Adjust the values of k and c if needed.

- 12. How far will the bungee jumper be above the rest position at his fourth crest?
- 13. For how long will the bungee jumper bounce before his amplitude has diminished to 10m?
- 14. What is the significance of the factor of 100?
- 15. Why was a cosine function chosen instead of a sine function?
- 16. When the cosine function and the exponential function are combined, only one factor of 100 is used. Why?
- 17. When is the magnitude of the rate of change of this function the greatest? What does this mean from a physical perspective?

Find Applications of Functions & Compare to Polynomials - BONUS

Note to students: See the rubric below for the criteria.

Be prepared to discuss the following with your teacher and peers.

- 1. In this course, you had the opportunity to investigate several different types of functions: Polynomial, Rational, Exponential, Logarithmic and Trigonometric. Select one **non-polynomial** function, exponential, trigonometric, or another type, and use your favourite search engine to hunt for an application – something that is a part of 'real life' – of your family of functions. Use a search phrase like "Interesting Exponential Functions" or one of your own invention.
- 2. Find a site that you think is interesting. Explore it.
- 3. Record:
 - The search engine you used, and the search phrase you used.
 - The URL you found.
 - A brief description of the contents of the site, and your reasons for choosing this site.
 - A description of the key features of your chosen function and a comparison to the key features you've learned about of polynomial functions.
- 4. Share your site with one of your classmates. Check out your classmates' site.

Categories	Level 1 (50 - 59%)	Level 2 (60 - 69%)	Level 3 (70 - 79%)	Level 4 (80 - 100%)
Knowledge/Understanding: distinguish polynomial functions from sinusoidal and exponential functions. PO1.04.		Distinguishes polynomial functions from sinusoidal and exponential functions with some accuracy.	Distinguishes polynomial functions from sinusoidal and exponential functions with considerable accuracy.	Distinguishes polynomial functions from sinusoidal and exponential functions with a high degree of accuracy.
Communication: compare the graphs of various polynomial functions with the graphs of other types of functions. PO1.04.	Compares the graphs of various polynomial functions with the graphs of other types of functions with limited relevance.	Compares the graphs of various polynomial functions with the graphs of other types of functions with some relevance.	Compares the graphs of various polynomial functions with the graphs of other types of functions with considerable relevance.	Compares the graphs of various polynomial functions with the graphs of other types of functions with a high degree of relevance.
Application: describe key features of the graphs of polynomial functions. PO1.03.	Describes a few key features of the graphs of polynomial functions.	Describes some key features of the graphs of polynomial functions.	Describes most key features of the graphs of polynomial functions.	Describes almost all key features of the graphs of polynomial functions.

Activity 2: Identifying a Variety of Functions Graphically

Note: A student whose achievement is below Level 1 (50%) has not met the expectations for this assignment or activity.