8. a.
$$x = -\frac{5}{7}t, y = 1 + \frac{2}{7}t, z = t, t \in \mathbb{R}$$

b.
$$x = 3, y = \frac{1}{4}, z = -\frac{1}{2}$$

c.
$$x = 3t - 3s + 7, y = t, z = s, s, t \in \mathbb{R}$$

9. a.
$$x = \frac{1}{2} + \frac{1}{36}t$$
, $y = -\frac{1}{2} + \frac{5}{12}t$,

b.
$$x = \frac{9}{8} - \frac{31}{24}t, y = \frac{1}{4} + \frac{1}{12}t, z = t,$$

10. a. These three planes meet at the point
$$(-1, 5, 3)$$
.

c. The planes meet in a line through the origin, with equation
$$x = t$$
, $y = -7t$, $z = -5t$, $t \in \mathbb{R}$

12. a.
$$x - 2y + z + 4 = 0$$

 $\vec{r} = (3, 1, -5) + s(2, 1, 0), s \in \mathbb{R}$
 $\vec{m} \times \vec{n} = (2, 1, 0)(1, -2, 1) = 0$
Since the line's direction vector is perpendicular to the normal of the plane and the point $(3, 1, -5)$ lies on both the line and the plane, the line is in the plane.

b.
$$(-1, -1, -5)$$

c.
$$x - 2y + z + 4 = 0$$

 $-1 - 2(-1) + (-5) + 4 = 0$
The point $(-1, -1, -5)$ is on the plane since it satisfies the equation of the plane.

d.
$$7x - 2y - 11z - 50 = 0$$

b.
$$(3, 0, -1)$$

14. a.
$$(-2, -3, 0)$$
.

14. a.
$$(-2, -3, 0)$$
.
b. $\vec{r} = (-2, -3, 0) + t(1, -2, 1)$, $t \in \mathbb{R}$

15. a.
$$-10x + 9y + 8z + 16 = 0$$

b. about 0.45

b.
$$\vec{r} = (0, 0, -1) + t(4, 3, 7), t \in \mathbf{R}$$

17. a.
$$x = 2, y = -1, z = 1$$

b.
$$x = 7 - 3t, y = 3 - t, z = t, t \in \mathbf{R}$$

18.
$$a = \frac{2}{3}, b = \frac{3}{4}, c = \frac{1}{2}$$

19.
$$\left(4, -\frac{7}{4}, \frac{7}{2}\right)$$

20.
$$\left(-\frac{5}{3}, \frac{8}{3}, \frac{4}{3}\right)$$

21. a.
$$\vec{r} = \left(\frac{45}{4}, 0, -\frac{21}{4}\right) + t(11, 2, -5), t \in \mathbb{R};$$

$$\vec{r} = \left(-\frac{37}{2}, 0, \frac{15}{2}\right) + t(11, 2, -5), t \in \mathbf{R};$$

$$\vec{r} = (7, 0, -1) + t(11, 2, -5),$$

$$t \in \mathbf{R}; z = -1 - 5t, t \in \mathbf{R}$$

b. All three lines of intersection found in part a. have direction vector (11, 2, -5), and so they are all parallel. Since no pair of normal vectors for these three planes is parallel, no pair of these planes is

22.
$$\left(\frac{1}{2}, 1, \frac{1}{3}\right), \left(\frac{1}{2}, 1, -\frac{1}{3}\right), \left(\frac{1}{2}, -1, \frac{1}{3}\right), \left(\frac{1}{2}, -1, -\frac{1}{3}\right), \left(-\frac{1}{2}, 1, \frac{1}{3}\right), \left(\frac{1}{2}, -1, -\frac{1}{3}\right) \left(-\frac{1}{2}, 1, -\frac{1}{3}\right), \text{ and } \left(-\frac{1}{2}, -1, \frac{1}{3}\right)$$

23.
$$y = \frac{7}{6}x^2 - \frac{3}{2}x - \frac{2}{3}$$

24.
$$\left(\frac{29}{7}, \frac{4}{7}, -\frac{33}{7}\right)$$

25.
$$A = 5, B = 2, C = -4$$

26. a.
$$\vec{r} = (-1, -4, -6) + t(-5, -4, -3), t \in \mathbb{R}$$

b. $\left(\frac{13}{2}, 2, -\frac{3}{2}\right)$

27.
$$6x - 8y + 9z - 115 = 0$$

Chapter 9 Test, p. 556

1. **a.**
$$(3, -1, -5)$$

b. $3 - (-1) + (-5) + 1 = 0$
 $3 + 1 - 5 + 1 = 0$

2. a.
$$\frac{13}{12}$$
 or 1.08

b.
$$\frac{40}{3}$$
 or 13.33

3. a.
$$x = \frac{4t}{5}, y = 1 - \frac{t}{5}, z = t, t \in \mathbf{R}$$

b. (4, 0, 5)

4. a.
$$(1, -5, 4)$$

b. The three planes intersect at the point (1, -5, 4).

5. **a.**
$$x = -\frac{1}{2} - \frac{t}{4}$$
, $y = \frac{3t}{4} + \frac{1}{2}$, $z = t$, $t \in \mathbb{R}$

b. The three planes intersect at this line.

6. a.
$$m = -1, n = -3$$

b.
$$x = -1, y = 1 - t, z = t, t \in \mathbf{R}$$

Cumulative Review of Vectors, pp. 557-560

1. a. about 111.0°

b. scalar projection:
$$-\frac{14}{13}$$
, vector projection:

$$\left(-\frac{52}{169}, \frac{56}{169}, -\frac{168}{169}\right)$$

c. scalar projection:
$$-\frac{14}{3}$$
, vector projection:

$$\left(-\frac{28}{9}, \frac{14}{9}, \frac{28}{9}\right)$$
2. a. $x = 8 + 4t, y = t, z = -3 - 3t,$

b. about 51.9°

3. a.
$$\frac{1}{2}$$

c.
$$\frac{3}{2}$$

4. a.
$$-7\vec{i} - 19\vec{j} - 14\vec{k}$$

5.
$$x$$
-axis: about 42.0°, y -axis: about 111.8°, z -axis: about 123.9°

6. a.
$$(-7, -5, -1)$$

b.
$$(-42, -30, -6)$$

7.
$$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$$
 and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$
8. a. vector equation: Answers may vary.

8. a. vector equation: Answers may vary.
$$\vec{r} = (2, -3, 1) + t(-1, 5, 2), t \in \mathbb{R}$$
; parametric equation: $x = 2 - t, y = -3 + 5t$,

$$z = 1 + 2t$$
, $t \in \mathbb{R}$
b. If the *x*-coordinate of a point on the line is 4, then $2 - t = 4$, or $t = -2$. At $t = -2$, the point on the line is $(2, -3, 1) - 2(-1, 5, 2) = (4, -13, -3)$. Hence,

C(4, -13, -3) is a point on the line.

9. The direction vector of the first line is (-1, 5, 2) and of the second line is (1, -5, -2) = -(-1, 5, 2). So they are collinear and hence parallel. The lines coincide if and only if for any point on the first line and second line, the vector connecting the two points is a multiple of the direction vector for the lines. (2, 0, 9) is a point on the first line and (3, -5, 10) is a point on the second line. (2,0,9) - (3,-5,10) = (-1,5,-1)

$$(2, 0, 9) - (3, -3, 10) - (-1, 3, -1)$$

 $\neq k(-1, 5, 2)$ for $k \in \mathbb{R}$. Hence, the lines are parallel and distinct.

10. vector equation: $\vec{r} = (0, 0, 4) + t(0, 1, 1), t \in \mathbf{R};$ parametric equation: x = 0, y = t, $z = 4 + t, t \in \mathbf{R}$

11.
$$-13$$

12. $\left(\frac{3}{2}, -\frac{31}{6}, \frac{13}{6}\right)$

Answers may vary. For example, (0, 3, -3) and (6, 0, -3).

Answers may vary. For example, (-3, -2, 2) and (3, 2, 1).

c.

Answers may vary. For example, (0, 3, 6) and (1, 1, -1).

15.
$$\overrightarrow{q} = (1, 0, 2) + t(-11, 7, 2), t \in \mathbf{R}$$

16. a.
$$12x - 9y - 6z + 24 = 0$$

b. about 1.49 units

17. a.
$$3x - 5y + 4z - 7 = 0$$

b.
$$x - y + 12z - 27 = 0$$

c.
$$z - 3 = 0$$

d. $x + 2z + 1 = 0$

19. a.
$$\vec{r} = (0, 0, 6) + s(1, 0, -3)$$

+ t(0, 1, 2), $s, t \in \mathbb{R}$. To verify, find the Cartesian equation corresponding to the above vector equation and see if it is equivalent to the Cartesian equation given in the problem. A normal vector to this plane is the cross product of the two directional vectors.

$$\vec{n} = (1, 0, -3) \times (0, 1, 2)$$

$$= (0(2) - (-3)(1), -3(0) - 1(2),$$

$$1(1) - 0(0))$$

$$= (3, -2, 1)$$

So the plane has the form 3x + 2y + z + D = 0, for some constant D. To find D, we know that (0, 0, 6) is a point on the plane, so 3(0) - 2(0) + (6) + D = 0. So, 6 + D = 0, or D = -6. So, the Cartesian equation for the plane is 3x - 2y + z - 6 = 0. Since this is the same as the initial Cartesian equation, the vector equation for the plane is correct.

b.

20. a. 16°

b. The two planes are perpendicular if and only if their normal vectors are also perpendicular. A normal vector for the first plane is (2, -3, 1) and a normal vector for the second plane is (4, -3, -17). The two vectors are perpendicular if and only if their dot product is zero.

$$(2, -3, 1) \cdot (4, -3, -17)$$

= $2(4) - 3(-3) + 1(-17)$
= 0

Hence, the normal vectors are perpendicular. Thus, the planes are perpendicular.

c. The two planes are parallel if and only if their normal vectors are also parallel. A normal vector for the first plane is (2, -3, 2) and a normal vector for the second plane is (2, -3, 2). Since both normal vectors are the same, the planes are parallel. Since 2(0) - 3(-1) + 2(0) - 3 = 0, the point (0, -1, 0) is on the second plane. Yet since $2(0) - 3(-1) + 2(0) - 1 = 2 \neq 0$, (0, -1, 0) is not on the first plane. Thus, the two planes are parallel but not coincident.

21. resultant: about 56.79 N. 37.6° from the 25 N force toward the 40 N force, equilibrant: about 56.79 N, 142.4° from the 25 N force away from the 40 N force

22. a.

b.
$$\overrightarrow{2a} + \frac{1}{2}\overrightarrow{b}$$

$$\overrightarrow{2a}$$

23. a.
$$\left(\frac{6}{7}, \frac{2}{7}, -\frac{3}{7}\right)$$
 b. $\left(-\frac{6}{7}, -\frac{2}{7}, \frac{3}{7}\right)$

24. a.
$$\overrightarrow{OC} = (8, 9),$$
 $\overrightarrow{BD} = (10, -5)$

b. about 74.9°

c. about 85.6°

25. a.
$$x = t, y = -1 + t, z = 1, t \in \mathbb{R}$$

c.
$$x = 1, y = t, z = -3 + t, t \in \mathbb{R}$$

d.
$$x = 1 + 3s + t, y = t, z = s,$$

 $s, t \in \mathbb{R}$

26. a. yes;
$$x = 0$$
, $y = -1 + t$, $z = t$, $t \in \mathbb{R}$

b. no

$$x = 2 - 2t, y = t, z = 3t, t \in \mathbf{R}$$

28. a.
$$-\frac{3}{2}$$

29.
$$\vec{r} = t(-1, 3, 1), t \in \mathbb{R},$$

 $-x + 3y + z - 11 = 0$

- **30.** (-1, 1, 0)
- **31. a.** 0.8 km
 - **b.** 12 min
- 32. a. Answers may vary. $\vec{r} = (6, 3, 4) + t(4, 4, 1), t \in \mathbf{R}$
 - **b.** The line found in part a will lie in the plane x - 2y + 4z - 16 = 0 if and only if both points A(2, -1, 3)and B(6, 3, 4) lie in this plane. We verify this by substituting these points into the equation of the plane, and checking for consistency. For A:

$$2 - 2(-1) + 4(3) - 16 = 0$$

For *B*:

6 - 2(3) + 4(4) - 16 = 0Since both points lie on the plane, so does the line found in part a.

- **33.** 20 km/h at N 53.1° E
- **34.** parallel: 1960 N,

perpendicular: about 3394.82 N

- a. True; all non-parallel pairs of lines intersect in exactly one point in \mathbb{R}^2 . However, this is not the case for lines in \mathbb{R}^3 (skew lines provide a counterexample).
 - b. True; all non-parallel pairs of planes intersect in a line in \mathbb{R}^3 .

- **c.** True; the line x = y = z has direction vector (1, 1, 1), which is not perpendicular to the normal vector (1, -2, 2) to the plane x - 2y + 2z = k, k is any constant. Since these vectors are not perpendicular, the line is not parallel to the plane, and so they will intersect in exactly one point.
- d. False; a direction vector for the line $\frac{x}{2} = y - 1 = \frac{z+1}{2}$ is (2, 1, 2). A direction vector for the line $\frac{x-1}{-4} = \frac{y-1}{-2} = \frac{z+1}{-2}$ is (-4, -2, -2), or (2, 1, 1) (which is parallel to (-4, -2, -2)). Since (2, 1, 2) and (2, 1, 1) are obviously not parallel, these two lines are not parallel.
- 36. a. A direction vector for L_1 : x = 2, $\frac{y - 2}{3} = z$ is (0, 3, 1),

and a direction vector for
$$L_2$$
: $x = y + k = \frac{z + 14}{k}$ is $(1, 1, k)$.

But (0, 3, 1) is not a nonzero scalar multiple of (1, 1, k) for any k, since the first component of (0, 3, 1) is 0. This means that the direction vectors for L_1 and L_2 are never parallel, which means that these lines are never parallel for any k.

b. 6; (2, -4, -2)

Calculus Appendix

Implicit Differentiation, p. 564

- **1.** The chain rule states that if y is a composite function, then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$. To differentiate an equation implicitly, first differentiate both sides of the equation with respect to x, using the chain rule for terms involving y, then solve for $\frac{dy}{dx}$
- - $\mathbf{e.} \quad -\frac{13x}{48y}$ $\mathbf{f.} \quad -\frac{2x}{2y+5}$

- **3. a.** $y = \frac{2}{3}x \frac{13}{3}$
 - **b.** $y = \frac{2}{3}(x+8) + 3$
 - **c.** $y = -\frac{3\sqrt{3}}{5}x 3$
 - **d.** $y = \frac{11}{10}(x+11) 4$
- - **b.** $\left(\frac{3}{\sqrt{5}}, \sqrt{5}\right)$ and $\left(-\frac{3}{\sqrt{5}}, -\sqrt{5}\right)$

- **6.** -10 **7.** 7x y 11 = 0 **8.** $y = \frac{1}{2}x \frac{3}{2}$
- **9. a.** $\frac{4}{(x+y)^2}-1$
- **10. a.** $\frac{3x^2 8xy}{4x^2 3}$ **b.** $y = \frac{x^3}{4x^2 3}; \frac{4x^4 9x^2}{(4x^2 3)^2}$
 - **c.** $\frac{dy}{dx} = \frac{3x^2 8xy}{4x^2 3}$ $y = \frac{x^3}{4x^2 - 3}$
 - $\frac{dy}{dx} = \frac{3x^2 8x\left(\frac{x^3}{4x^2 3}\right)}{4x^2 3}$ $= \frac{3x^2 (4x^2 3) 8x^4}{(4x^2 3)^2}$
 - $=\frac{12x^4-9x^2-8x^4}{(4x^2-3)^2}$
 - $=\frac{4x^4-9x^2}{(4x^2-3)^2}$
- 11. a.

one tangent

one tangent