Cumulative Review of Vectors

1. For the vectors $\vec{a}=(2,-1,-2)$ and $\vec{b}=(3,-4,12)$, determine the following:
a. the angle between the two vectors
b. the scalar and vector projections of \vec{a} on \vec{b}
c. the scalar and vector projections of \vec{b} on \vec{a}
2. a. Determine the line of intersection between $\pi_{1}: 4 x+2 y+6 z-14=0$ and $\pi_{2}: x-y+z-5=0$.
b. Determine the angle between the two planes.
3. If \vec{x} and \vec{y} are unit vectors, and the angle between them is 60°, determine the value of each of the following:
a. $|\vec{x} \cdot \vec{y}|$
b. $|2 \vec{x} \cdot 3 \vec{y}|$
c. $|(2 \vec{x}-\vec{y}) \cdot(\vec{x}+3 \vec{y})|$
4. Expand and simplify each of the following, where \vec{i}, \vec{j}, and \vec{k} represent the standard basis vectors in R^{3} :
a. $2(\vec{i}-2 \vec{j}+3 \vec{k})-4(2 \vec{i}+4 \vec{j}+5 \vec{k})-(\vec{i}-\vec{j})$
b. $-2(3 \vec{i}-4 \vec{j}-5 \vec{k}) \cdot(2 \vec{i}+3 \vec{k})+2 \vec{i} \cdot(3 \vec{j}-2 \vec{k})$
5. Determine the angle that the vector $\vec{a}=(4,-2,-3)$ makes with the positive x-axis, y-axis, and z-axis.
6. If $\vec{a}=(1,-2,3), \vec{b}=(-1,1,2)$, and $\vec{c}=(3,-4,-1)$, determine each of the following:
a. $\vec{a} \times \vec{b}$
c. the area of the parallelogram determined by \vec{a} and \vec{b}
b. $2 \vec{a} \times 3 \vec{b}$
d. $\vec{c} \cdot(\vec{b} \times \vec{a})$
7. Determine the coordinates of the unit vector that is perpendicular to $\vec{a}=(1,-1,1)$ and $\vec{b}=(2,-2,3)$.
8. a. Determine vector and parametric equations for the line that contains $A(2,-3,1)$ and $B(1,2,3)$.
b. Verify that $C(4,-13,-3)$ is on the line that contains A and B.
9. Show that the lines $L_{1}: \vec{r}=(2,0,9)+t(-1,5,2), t \in \mathbf{R}$, and $L_{2}: x-3=\frac{y+5}{-5}=\frac{z-10}{-2}$ are parallel and distinct.
10. Determine vector and parametric equations for the line that passes through $(0,0,4)$ and is parallel to the line with parametric equations $x=1$, $y=2+t$, and $z=-3+t, t \in \mathbf{R}$.
11. Determine the value of c such that the plane with equation $2 x+3 y+c z-8=0$ is parallel to the line with equation $\frac{x-1}{2}=\frac{y-2}{3}=z+1$.
12. Determine the intersection of the line $\frac{x-2}{3}=y+5=\frac{z-3}{5}$ with the plane $5 x+y-2 z+2=0$.
13. Sketch the following planes, and give two direction vectors for each.
a. $x+2 y+2 z-6=0$
b. $2 x-3 y=0$
c. $3 x-2 y+z=0$

14. If $P(1,-2,4)$ is reflected in the plane with equation $2 x-3 y-4 z+66=0$, determine the coordinates of its image point, P^{\prime}. (Note that the plane $2 x-3 y-4 z+66=0$ is the right bisector of the line joining $P(1,-2,4)$ with its image.)
15. Determine the equation of the line that passes through the point $A(1,0,2)$ and intersects the line $\vec{r}=(-2,3,4)+s(1,1,2), s \in \mathbf{R}$, at a right angle.
16. a. Determine the equation of the plane that passes through the points $A(1,2,3), B(-2,0,0)$, and $C(1,4,0)$.
b. Determine the distance from $O(0,0,0)$ to this plane.
17. Determine a Cartesian equation for each of the following planes:
a. the plane through the point $A(-1,2,5)$ with $\vec{n}=(3,-5,4)$
b. the plane through the point $K(4,1,2)$ and perpendicular to the line joining the points $(2,1,8)$ and $(1,2,-4)$
c. the plane through the point $(3,-1,3)$ and perpendicular to the z-axis
d. the plane through the points $(3,1,-2)$ and $(1,3,-1)$ and parallel to the y-axis
18. An airplane heads due north with a velocity of $400 \mathrm{~km} / \mathrm{h}$ and encounters a wind of $100 \mathrm{~km} / \mathrm{h}$ from the northeast. Determine the resultant velocity of the airplane.
19. a. Determine a vector equation for the plane with Cartesian equation $3 x-2 y+z-6=0$, and verify that your vector equation is correct.
b. Using coordinate axes you construct yourself, sketch this plane.
20. a. A line with equation $\vec{r}=(1,0,-2)+s(2,-1,2), s \in \mathbf{R}$, intersects the plane $x+2 y+z=2$ at an angle of θ degrees. Determine this angle to the nearest degree.
b. Show that the planes $\pi_{1}: 2 x-3 y+z-1=0$ and $\pi_{2}: 4 x-3 y-17 z=0$ are perpendicular.
c. Show that the planes $\pi_{3}: 2 x-3 y+2 z-1=0$ and $\pi_{4}: 2 x-3 y+2 z-3=0$ are parallel but not coincident.
21. Two forces, 25 N and 40 N , have an angle of 60° between them. Determine the resultant and equilibrant of these two vectors.

22. You are given the vectors \vec{a} and \vec{b}, as shown at the left.
a. Sketch $\vec{a}-\vec{b}$.
b. Sketch $2 \vec{a}+\frac{1}{2} \vec{b}$.
23. If $\vec{a}=(6,2,-3)$, determine the following:
a. the coordinates of a unit vector in the same direction as \vec{a}
b. the coordinates of a unit vector in the opposite direction to \vec{a}
24. A parallelogram $O B C D$ has one vertex at $O(0,0)$ and two of its remaining three vertices at $B(-1,7)$ and $D(9,2)$.
a. Determine a vector that is equivalent to each of the two diagonals.
b. Determine the angle between these diagonals.
c. Determine the angle between $\overrightarrow{O B}$ and $\overrightarrow{O D}$.
25. Solve the following systems of equations:
a. (1) $x-y+z=2$
c. (1) $2 x-y+z=-1$
(2) $-x+y+2 z=1$
(2) $4 x-2 y+2 z=-2$
(3) $x-y+4 z=5$
(3) $2 x+y-z=5$
b. (1) $-2 x-3 y+z=-11$
d. (1) $\quad x-y-3 z=1$
(2) $2 x-2 y-6 z=2$
(3) $-4 x+4 y+12 z=-4$
(2) $x+2 y+z=2$
(3) $-x-y+3 z=-12$
26. State whether each of the following pairs of planes intersect. If the planes do intersect, determine the equation of their line of intersection.
a. $x-y+z-1=0$
$x+2 y-2 z+2=0$
b. $\quad x-4 y+7 z=28$
$2 x-8 y+14 z=60$
c. $x-y+z-2=0$
$2 x+y+z-4=0$
27. Determine the angle between the line with symmetric equations $x=-y$, $z=4$ and the plane $2 x-2 z=5$.
28. a. If \vec{a} and \vec{b} are unit vectors, and the angle between them is 60°, calculate $(6 \vec{a}+\vec{b}) \cdot(\vec{a}-2 \vec{b})$.
b. Calculate the dot product of $4 \vec{x}-\vec{y}$ and $2 \vec{x}+3 \vec{y}$ if $|\vec{x}|=3,|\vec{y}|=4$, and the angle between \vec{x} and \vec{y} is 60°.
29. A line that passes through the origin is perpendicular to a plane π and intersects the plane at $(-1,3,1)$. Determine an equation for this line and the cartesian equation of the plane.
30. The point $P(-1,0,1)$ is reflected in the plane $\pi: y-z=0$ and has P^{\prime} as its image. Determine the coordinates of the point P^{\prime}.
31. A river is 2 km wide and flows at $4 \mathrm{~km} / \mathrm{h}$. A motorboat that has a speed of $10 \mathrm{~km} / \mathrm{h}$ in still water heads out from one bank, which is perpendicular to the current. A marina lies directly across the river, on the opposite bank.
a. How far downstream from the marina will the motorboat touch the other bank?
b. How long will it take for the motorboat to reach the other bank?
32. a. Determine the equation of the line passing through $A(2,-1,3)$ and $B(6,3,4)$.
b. Does the line you found lie on the plane with equation $x-2 y+4 z-16=0$? Justify your answer.
33. A sailboat is acted upon by a water current and the wind. The velocity of the wind is $16 \mathrm{~km} / \mathrm{h}$ from the west, and the velocity of the current is $12 \mathrm{~km} / \mathrm{h}$ from the south. Find the resultant of these two velocities.
34. A crate has a mass of 400 kg and is sitting on an inclined plane that makes an angle of 30° with the level ground. Determine the components of the weight of the mass, perpendicular and parallel to the plane. (Assume that a 1 kg mass exerts a force of 9.8 N .)
35. State whether each of the following is true or false. Justify your answer.
a. Any two non-parallel lines in R^{2} must always intersect at a point.
b. Any two non-parallel planes in R^{3} must always intersect on a line.
c. The line with equation $x=y=z$ will always intersect the plane with equation $x-2 y+2 z=k$, regardless of the value of k.
d. The lines $\frac{x}{2}=y-1=\frac{z+1}{2}$ and $\frac{x-1}{-4}=\frac{y-1}{-2}=\frac{z+1}{-2}$ are parallel.
36. Consider the lines $L_{1}: x=2, \frac{y-2}{3}=z$ and $L_{2}: x=y+k=\frac{z+14}{k}$.
a. Explain why these lines can never be parallel, regardless of the value of k.
b. Determine the value of k that makes these two lines intersect at a single point, and find the actual point of intersection.
37. a. $x=-\frac{5}{7} t, y=1+\frac{2}{7} t, z=t, t \in \mathbf{R}$
b. $x=3, y=\frac{1}{4}, z=-\frac{1}{2}$
c. $x=3 t-3 s+7, y=t, z=s$,

$$
s, t \in \mathbf{R}
$$

9. a. $x=\frac{1}{2}+\frac{1}{36} t, y=-\frac{1}{2}+\frac{5}{12} t$,

$$
z=t, t \in \mathbf{R}
$$

b. $x=\frac{9}{8}-\frac{31}{24} t, y=\frac{1}{4}+\frac{1}{12} t, z=t$,

$$
t \in \mathbf{R}
$$

10. a. These three planes meet at the point $(-1,5,3)$.
b. The planes do not intersect. Geometrically, the planes form a triangular prism.
c. The planes meet in a line through the origin, with equation $x=t$, $y=-7 t, z=-5 t, t \in \mathbf{R}$
11. 4.90
12. a. $x-2 y+z+4=0$ $\vec{r}=(3,1,-5)+s(2,1,0), s \in \mathbf{R}$ $\vec{m} \times \vec{n}=(2,1,0)(1,-2,1)=0$ Since the line's direction vector is perpendicular to the normal of the plane and the point $(3,1,-5)$ lies on both the line and the plane, the line is in the plane.
b. $(-1,-1,-5)$
c. $x-2 y+z+4=0$
$-1-2(-1)+(-5)+4=0$
The point $(-1,-1,-5)$ is on the plane since it satisfies the equation of the plane.
d. $7 x-2 y-11 z-50=0$
13. a. 5.48
b. $(3,0,-1)$
14. a. $(-2,-3,0)$.
b. $\vec{r}=(-2,-3,0)+t(1,-2,1)$, $t \in \mathbf{R}$
15. a. $-10 x+9 y+8 z+16=0$ b. about 0.45
16. a. 1
b. $\vec{r}=(0,0,-1)+t(4,3,7), t \in \mathbf{R}$
17. a. $x=2, y=-1, z=1$
b. $x=7-3 t, y=3-t, z=t, t \in \mathbf{R}$
18. $a=\frac{2}{3}, b=\frac{3}{4}, c=\frac{1}{2}$
19. $\left(4,-\frac{7}{4}, \frac{7}{2}\right)$
20. $\left(-\frac{5}{3}, \frac{8}{3}, \frac{4}{3}\right)$
21. a. $\vec{r}=\left(\frac{45}{4}, 0,-\frac{21}{4}\right)$

$$
+t(11,2,-5), t \in \mathbf{R}
$$

$$
\begin{aligned}
& \vec{r}=\left(-\frac{37}{2}, 0, \frac{15}{2}\right) \\
&+t(11,2,-5), t \in \mathbf{R} \\
& \vec{r}=(7,0,-1)+t(11,2,-5) \\
& t \in \mathbf{R} ; z=-1-5 t, t \in \mathbf{R}
\end{aligned}
$$

b. All three lines of intersection found in part a. have direction vector $(11,2,-5)$, and so they are all parallel. Since no pair of normal vectors for these three planes is parallel, no pair of these planes is coincident.
22. $\left(\frac{1}{2}, 1, \frac{1}{3}\right),\left(\frac{1}{2}, 1,-\frac{1}{3}\right),\left(\frac{1}{2},-1, \frac{1}{3}\right)$,
$\left(\frac{1}{2},-1,-\frac{1}{3}\right),\left(-\frac{1}{2}, 1, \frac{1}{3}\right)$,
$\left(\frac{1}{2},-1,-\frac{1}{3}\right)\left(-\frac{1}{2}, 1,-\frac{1}{3}\right)$, and
$\left(-\frac{1}{2},-1, \frac{1}{3}\right)$
23. $y=\frac{7}{6} x^{2}-\frac{3}{2} x-\frac{2}{3}$
24. $\left(\frac{29}{7}, \frac{4}{7},-\frac{33}{7}\right)$
25. $A=5, B=2, C=-4$
26. a. $\vec{r}=(-1,-4,-6)$

$$
+t(-5,-4,-3), t \in \mathbf{R}
$$

b. $\left(\frac{13}{2}, 2,-\frac{3}{2}\right)$
c. about 33.26 units 2
27. $6 x-8 y+9 z-115=0$

Chapter 9 Test, p. 556

1. a. $(3,-1,-5)$
b. $3-(-1)+(-5)+1=0$

$$
\begin{aligned}
3+1-5+1 & =0 \\
0 & =0
\end{aligned}
$$

2. a. $\frac{13}{12}$ or 1.08
b. $\frac{40}{3}$ or 13.33
3. a. $x=\frac{4 t}{5}, y=1-\frac{t}{5}, z=t, t \in \mathbf{R}$
b. $(4,0,5)$
4. a. $(1,-5,4)$
b. The three planes intersect at the point $(1,-5,4)$.
5. a. $x=-\frac{1}{2}-\frac{t}{4}, y=\frac{3 t}{4}+\frac{1}{2}, z=t$, $t \in \mathbf{R}$
b. The three planes intersect at this line.
6. a. $m=-1, n=-3$
b. $x=-1, y=1-t, z=t, t \in \mathbf{R}$
7. 10.20

Cumulative Review of Vectors, pp. 557-560

1. a. about 111.0°
a. about 111.0°
b. scalar projection: $-\frac{14}{13}$,
vector projection:

$$
\left(-\frac{52}{169}, \frac{56}{169},-\frac{168}{169}\right)
$$

c. scalar projection: $-\frac{14}{3}$,
vector projection:

$$
\left(-\frac{28}{9}, \frac{14}{9}, \frac{28}{9}\right)
$$

2. a. $x=8+4 t, y=t, z=-3-3 t$, $t \in \mathbf{R}$
b. about 51.9°
3. a. $\frac{1}{2}$
b. 3
c. $\frac{3}{2}$
4. a. $-7 \vec{i}-19 \vec{j}-14 \vec{k}$
b. 18
5. x-axis: about $42.0^{\circ}, y$-axis: about $111.8^{\circ}, z$-axis: about 123.9°
6. a. $(-7,-5,-1)$
b. $(-42,-30,-6)$
c. about 8.66 square units
d. 0
7. $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$
8. a. vector equation: Answers may vary. $\vec{r}=(2,-3,1)+t(-1,5,2), t \in \mathbf{R} ;$ parametric equation:
$x=2-t, y=-3+5 t$,
$z=1+2 t, t \in \mathbf{R}$
b. If the x-coordinate of a point on the line is 4 , then $2-t=4$, or $t=-2$. At $t=-2$, the point on
the line is $(2,-3,1)-2(-1,5,2)$ $=(4,-13,-3)$. Hence,
$C(4,-13,-3)$ is a point on the line.
9. The direction vector of the first line is $(-1,5,2)$ and of the second line is $(1,-5,-2)=-(-1,5,2)$. So they are collinear and hence parallel.
The lines coincide if and only if for any point on the first line and second line, the vector connecting the two points is a multiple of the direction vector for the lines. $(2,0,9)$ is a point on the first line and $(3,-5,10)$ is a point on the second line.
$(2,0,9)-(3,-5,10)=(-1,5,-1)$ $\neq k(-1,5,2)$ for $k \in \mathbf{R}$. Hence, the lines are parallel and distinct.
10. vector equation:
$\vec{r}=(0,0,4)+t(0,1,1), t \in \mathbf{R}$;
parametric equation: $x=0, y=t$,
$z=4+t, t \in \mathbf{R}$
11. -13
12. $\left(\frac{3}{2},-\frac{31}{6}, \frac{13}{6}\right)$
13. a.

Answers may vary. For example, $(0,3,-3)$ and $(6,0,-3)$.
b.

Answers may vary. For example, $(-3,-2,2)$ and $(3,2,1)$.

Answers may vary. For example, $(0,3,6)$ and $(1,1,-1)$.
14. $(-7,10,20)$
15. $\vec{q}=(1,0,2)+t(-11,7,2), t \in \mathbf{R}$
16. a. $12 x-9 y-6 z+24=0$ b. about 1.49 units
17. a. $3 x-5 y+4 z-7=0$
b. $x-y+12 z-27=0$
c. $z-3=0$
d. $x+2 z+1=0$
18. $336.80 \mathrm{~km} / \mathrm{h}, \mathrm{N} 12.1^{\circ} \mathrm{W}$
19. a. $\vec{r}=(0,0,6)+s(1,0,-3)$
$+t(0,1,2), s, t \in \mathbf{R}$. To verify, find the Cartesian equation corresponding to the above vector equation and see if it is equivalent to the Cartesian equation given in the problem. A normal vector to this plane is the cross product of the two directional vectors.

$$
\begin{aligned}
\vec{n}= & (1,0,-3) \times(0,1,2) \\
= & (0(2)-(-3)(1),-3(0)-1(2), \\
& 1(1)-0(0)) \\
= & (3,-2,1)
\end{aligned}
$$

So the plane has the form $3 x+2 y+z+D=0$, for some constant D. To find D, we know that $(0,0,6)$ is a point on the plane, so $3(0)-2(0)+(6)+D=0$. So, $6+D=0$, or $D=-6$. So, the Cartesian equation for the plane is $3 x-2 y+z-6=0$. Since this is the same as the initial Cartesian equation, the vector equation for the plane is correct.
b.

20. a. 16°
b. The two planes are perpendicular if and only if their normal vectors are also perpendicular. A normal vector for the first plane is $(2,-3,1)$ and a normal vector for the second plane is $(4,-3,-17)$. The two vectors are perpendicular if and only if their dot product is zero.

$$
\begin{aligned}
& (2,-3,1) \cdot(4,-3,-17) \\
& =2(4)-3(-3)+1(-17) \\
& =0
\end{aligned}
$$

Hence, the normal vectors are perpendicular. Thus, the planes are perpendicular.
c. The two planes are parallel if and only if their normal vectors are also parallel. A normal vector for the first plane is $(2,-3,2)$ and a normal vector for the second plane is $(2,-3,2)$. Since both normal vectors are the same, the planes are parallel. Since
$2(0)-3(-1)+2(0)-3=0$, the point $(0,-1,0)$ is on the second plane. Yet since $2(0)-3(-1)+2(0)-1=2 \neq 0$, $(0,-1,0)$ is not on the first plane. Thus, the two planes are parallel but not coincident.
21. resultant: about $56.79 \mathrm{~N}, 37.6^{\circ}$ from the 25 N force toward the 40 N force, equilibrant: about $56.79 \mathrm{~N}, 142.4^{\circ}$ from the 25 N force away from the 40 N force
22. a.

b.

23. a. $\left(\frac{6}{7}, \frac{2}{7},-\frac{3}{7}\right)$
b. $\left(-\frac{6}{7},-\frac{2}{7}, \frac{3}{7}\right)$
24. a. $\overrightarrow{O C}=(8,9)$,

$$
\overrightarrow{B D}=(10,-5)
$$

b. about 74.9°
c. about 85.6°
25. a. $x=t, y=-1+t, z=1, t \in \mathbf{R}$
b. $(1,2,-3)$
c. $x=1, y=t, z=-3+t, t \in \mathbf{R}$
d. $x=1+3 s+t, y=t, z=s$, $s, t \in \mathbf{R}$
26. a. yes; $x=0, y=-1+t, z=t, t \in \mathbf{R}$
b. no
c. yes;

$$
x=2-2 t, y=t, z=3 t, t \in \mathbf{R}
$$

27. 30°
28. a. $-\frac{3}{2}$
b. 84
29. $\vec{r}=t(-1,3,1), t \in \mathbf{R}$,
$-x+3 y+z-11=0$
30. $(-1,1,0)$
31. a. 0.8 km
b. 12 min
32. a. Answers may vary.

$$
\vec{r}=(6,3,4)+t(4,4,1), t \in \mathbf{R}
$$

b. The line found in part a will lie in the plane $x-2 y+4 z-16=0$ if and only if both points $A(2,-1,3)$ and $B(6,3,4)$ lie in this plane. We verify this by substituting these points into the equation of the plane, and checking for consistency. For A :

$$
2-2(-1)+4(3)-16=0
$$

For B :
$6-2(3)+4(4)-16=0$
Since both points lie on the plane, so does the line found in part a.
33. $20 \mathrm{~km} / \mathrm{h}$ at $\mathrm{N} 53.1^{\circ} \mathrm{E}$
34. parallel: 1960 N , perpendicular: about 3394.82 N
35. a. True; all non-parallel pairs of lines intersect in exactly one point in \mathbf{R}^{2} However, this is not the case for lines in \mathbf{R}^{3} (skew lines provide a counterexample).
b. True; all non-parallel pairs of planes intersect in a line in \mathbf{R}^{3}.
c. True; the line $x=y=z$ has direction vector $(1,1,1)$, which is not perpendicular to the normal vector $(1,-2,2)$ to the plane $x-2 y+2 z=k, k$ is any constant. Since these vectors are not perpendicular, the line is not parallel to the plane, and so they will intersect in exactly one point.
d. False; a direction vector for the line $\frac{x}{2}=y-1=\frac{z+1}{2}$ is (2, 1, 2). A direction vector for the line $\frac{x-1}{-4}=\frac{y-1}{-2}=\frac{z+1}{-2}$ is $(-4,-2,-2)$, or $(2,1,1)$ (which is parallel to ($-4,-2,-2$)). Since $(2,1,2)$ and $(2,1,1)$ are obviously not parallel, these two lines are not parallel.
36. a. A direction vector for

$$
L_{1}: x=2, \frac{y-2}{3}=z \text { is }(0,3,1),
$$

and a direction vector for
$L_{2}: x=y+k=\frac{z+14}{k}$ is $(1,1, k)$.
But $(0,3,1)$ is not a nonzero scalar multiple of $(1,1, k)$ for any k, since the first component of $(0,3,1)$ is 0 . This means that the direction vectors for L_{1} and L_{2} are never parallel, which means that these lines are never parallel for any k.
b. $6 ;(2,-4,-2)$

Calculus Appendix

Implicit Differentiation, p. 564

1. The chain rule states that if y is a composite function, then $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$. To differentiate an equation implicitly, first differentiate both sides of the equation with respect to x, using the chain rule for terms involving y, then solve for $\frac{d y}{d x}$.
2. a. $-\frac{x}{y}$
b. $\frac{x^{2}}{5 y}$
c. $\frac{-y^{2}}{2 x y+y^{2}}$
d. $\frac{9 x}{16 y}$
e. $-\frac{13 x}{48 y}$
f. $-\frac{2 x}{2 y+5}$
3. a. $y=\frac{2}{3} x-\frac{13}{3}$
b. $y=\frac{2}{3}(x+8)+3$
c. $y=-\frac{3 \sqrt{3}}{5} x-3$
d. $y=\frac{11}{10}(x+11)-4$
4. $(0,1)$
5. a. 1
b. $\left(\frac{3}{\sqrt{5}}, \sqrt{5}\right)$ and $\left(-\frac{3}{\sqrt{5}},-\sqrt{5}\right)$
6. -10
7. $7 x-y-11=0$
8. $y=\frac{1}{2} x-\frac{3}{2}$
9. a. $\frac{4}{(x+y)^{2}}-1$
b. $4 \sqrt{x+y}-1$
10. a. $\frac{3 x^{2}-8 x y}{4 x^{2}-3}$
b. $y=\frac{x^{3}}{4 x^{2}-3} ; \frac{4 x^{4}-9 x^{2}}{\left(4 x^{2}-3\right)^{2}}$
c. $\frac{d y}{d x}=\frac{3 x^{2}-8 x y}{4 x^{2}-3}$
$y=\frac{x^{3}}{4 x^{2}-3}$
$\frac{d y}{d x}=\frac{3 x^{2}-8 x\left(\frac{x^{3}}{4 x^{2}-3}\right)}{4 x^{2}-3}$
$=\frac{3 x^{2}-\left(4 x^{2}-3\right)-8 x^{4}}{\left(4 x^{2}-3\right)^{2}}$
$=\frac{12 x^{4}-9 x^{2}-8 x^{4}}{\left(4 x^{2}-3\right)^{2}}$
$=\frac{4 x^{4}-9 x^{2}}{\left(4 x^{2}-3\right)^{2}}$
11. a.

one tangent
b.

one tangent
