Cumulative Review of Vectors

- 1. For the vectors $\vec{a} = (2, -1, -2)$ and $\vec{b} = (3, -4, 12)$, determine the following:
 - a. the angle between the two vectors
 - b. the scalar and vector projections of \vec{a} on \vec{b}
 - c. the scalar and vector projections of \vec{b} on \vec{a}
- 2. a. Determine the line of intersection between $\pi_1: 4x + 2y + 6z 14 = 0$ and $\pi_2: x - y + z - 5 = 0$.
 - b. Determine the angle between the two planes.
- 3. If \vec{x} and \vec{y} are unit vectors, and the angle between them is 60°, determine the value of each of the following:
 - a. $|\vec{x} \cdot \vec{y}|$ b. $|2\vec{x} \cdot 3\vec{y}|$ c. $|(2\vec{x} \vec{y}) \cdot (\vec{x} + 3\vec{y})|$
- 4. Expand and simplify each of the following, where \vec{i}, \vec{j} , and \vec{k} represent the standard basis vectors in R^3 :

a.
$$2(\vec{i} - 2\vec{j} + 3\vec{k}) - 4(2\vec{i} + 4\vec{j} + 5\vec{k}) - (\vec{i} - \vec{j})$$

b. $-2(3\vec{i} - 4\vec{j} - 5\vec{k}) \cdot (2\vec{i} + 3\vec{k}) + 2\vec{i} \cdot (3\vec{j} - 2\vec{k})$

- 5. Determine the angle that the vector $\vec{a} = (4, -2, -3)$ makes with the positive *x*-axis, *y*-axis, and *z*-axis.
- 6. If $\vec{a} = (1, -2, 3)$, $\vec{b} = (-1, 1, 2)$, and $\vec{c} = (3, -4, -1)$, determine each of the following:
 - a. $\vec{a} \times \vec{b}$ c. the area of the parallelogram determined by \vec{a} and \vec{b} b. $2\vec{a} \times 3\vec{b}$ d. $\vec{c} \cdot (\vec{b} \times \vec{a})$
- 7. Determine the coordinates of the unit vector that is perpendicular to $\vec{a} = (1, -1, 1)$ and $\vec{b} = (2, -2, 3)$.
- 8. a. Determine vector and parametric equations for the line that contains A(2, -3, 1) and B(1, 2, 3).
 - b. Verify that C(4, -13, -3) is on the line that contains A and B.
- 9. Show that the lines $L_1: \vec{r} = (2, 0, 9) + t(-1, 5, 2), t \in \mathbf{R}$, and $L_2: x 3 = \frac{y + 5}{-5} = \frac{z 10}{-2}$ are parallel and distinct.
- 10. Determine vector and parametric equations for the line that passes through (0, 0, 4) and is parallel to the line with parametric equations x = 1, y = 2 + t, and z = -3 + t, $t \in \mathbf{R}$.
- 11. Determine the value of *c* such that the plane with equation 2x + 3y + cz - 8 = 0 is parallel to the line with equation $\frac{x-1}{2} = \frac{y-2}{3} = z + 1.$

- 12. Determine the intersection of the line $\frac{x-2}{3} = y + 5 = \frac{z-3}{5}$ with the plane 5x + y 2z + 2 = 0.
- 13. Sketch the following planes, and give two direction vectors for each.

a. x + 2y + 2z - 6 = 0 b. 2x - 3y = 0 c. 3x - 2y + z = 0

- 4) 14. If P(1, -2, 4) is reflected in the plane with equation 2x 3y 4z + 66 = 0, determine the coordinates of its image point, P'. (Note that the plane 2x 3y 4z + 66 = 0 is the right bisector of the line joining P(1, -2, 4) with its image.)
 - 15. Determine the equation of the line that passes through the point A(1, 0, 2) and intersects the line $\vec{r} = (-2, 3, 4) + s(1, 1, 2), s \in \mathbf{R}$, at a right angle.
 - 16. a. Determine the equation of the plane that passes through the points A(1, 2, 3), B(-2, 0, 0), and C(1, 4, 0).
 - b. Determine the distance from O(0, 0, 0) to this plane.
 - 17. Determine a Cartesian equation for each of the following planes:
 - a. the plane through the point A(-1, 2, 5) with $\vec{n} = (3, -5, 4)$
 - b. the plane through the point K(4, 1, 2) and perpendicular to the line joining the points (2, 1, 8) and (1, 2, -4)
 - c. the plane through the point (3, -1, 3) and perpendicular to the *z*-axis
 - d. the plane through the points (3, 1, -2) and (1, 3, -1) and parallel to the *y*-axis
 - 18. An airplane heads due north with a velocity of 400 km/h and encounters a wind of 100 km/h from the northeast. Determine the resultant velocity of the airplane.
 - 19. a. Determine a vector equation for the plane with Cartesian equation 3x 2y + z 6 = 0, and verify that your vector equation is correct.
 - b. Using coordinate axes you construct yourself, sketch this plane.
 - 20. a. A line with equation $\vec{r} = (1, 0, -2) + s(2, -1, 2), s \in \mathbf{R}$, intersects the plane x + 2y + z = 2 at an angle of θ degrees. Determine this angle to the nearest degree.
 - b. Show that the planes $\pi_1: 2x 3y + z 1 = 0$ and $\pi_2: 4x 3y 17z = 0$ are perpendicular.
 - c. Show that the planes $\pi_3: 2x 3y + 2z 1 = 0$ and $\pi_4: 2x 3y + 2z 3 = 0$ are parallel but not coincident.
 - 21. Two forces, 25 N and 40 N, have an angle of 60° between them. Determine the resultant and equilibrant of these two vectors.

25 N

22. You are given the vectors \vec{a} and \vec{b} , as shown at the left.

a. Sketch $\vec{a} - \vec{b}$. b. Sketch $2\vec{a} + \frac{1}{2}\vec{b}$.

23. If $\vec{a} = (6, 2, -3)$, determine the following:

 \overrightarrow{b}

- a. the coordinates of a unit vector in the same direction as \vec{a}
- b. the coordinates of a unit vector in the opposite direction to \vec{a}
- 24. A parallelogram *OBCD* has one vertex at O(0, 0) and two of its remaining three vertices at B(-1, 7) and D(9, 2).
 - a. Determine a vector that is equivalent to each of the two diagonals.
 - b. Determine the angle between these diagonals.
 - c. Determine the angle between OB and OD.
- 25. Solve the following systems of equations:
 - a. (1) x y + z = 2c. (1) 2x y + z = -1(2) -x + y + 2z = 1(2) 4x 2y + 2z = -2(3) x y + 4z = 5(3) 2x + y z = 5b. (1) -2x 3y + z = -11(1) x y 3z = 1(2) x + 2y + z = 2(2) 2x 2y 6z = 2(3) -x y + 3z = -12(3) -4x + 4y + 12z = -4
- 26. State whether each of the following pairs of planes intersect. If the planes do intersect, determine the equation of their line of intersection.
 - a. x y + z 1 = 0 x + 2y - 2z + 2 = 0b. x - 4y + 7z = 28 2x - 8y + 14z = 60c. x - y + z - 2 = 02x + y + z - 4 = 0
- 27. Determine the angle between the line with symmetric equations x = -y, z = 4 and the plane 2x 2z = 5.
- 28. a. If \vec{a} and \vec{b} are unit vectors, and the angle between them is 60°, calculate $(6\vec{a} + \vec{b}) \cdot (\vec{a} 2\vec{b})$.
 - b. Calculate the dot product of $4\vec{x} \vec{y}$ and $2\vec{x} + 3\vec{y}$ if $|\vec{x}| = 3$, $|\vec{y}| = 4$, and the angle between \vec{x} and \vec{y} is 60°.

- 29. A line that passes through the origin is perpendicular to a plane π and intersects the plane at (-1, 3, 1). Determine an equation for this line and the cartesian equation of the plane.
- 30. The point P(-1, 0, 1) is reflected in the plane π : y z = 0 and has P' as its image. Determine the coordinates of the point P'.
- 31. A river is 2 km wide and flows at 4 km/h. A motorboat that has a speed of 10 km/h in still water heads out from one bank, which is perpendicular to the current. A marina lies directly across the river, on the opposite bank.
 - a. How far downstream from the marina will the motorboat touch the other bank?
 - b. How long will it take for the motorboat to reach the other bank?
- 32. a. Determine the equation of the line passing through A(2, -1, 3) and B(6, 3, 4).
 - b. Does the line you found lie on the plane with equation x 2y + 4z 16 = 0? Justify your answer.
- 33. A sailboat is acted upon by a water current and the wind. The velocity of the wind is 16 km/h from the west, and the velocity of the current is 12 km/h from the south. Find the resultant of these two velocities.
- 34. A crate has a mass of 400 kg and is sitting on an inclined plane that makes an angle of 30° with the level ground. Determine the components of the *weight* of the mass, perpendicular and parallel to the plane. (Assume that a 1 kg mass exerts a force of 9.8 N.)
- 35. State whether each of the following is true or false. Justify your answer.
 - a. Any two non-parallel lines in R^2 must always intersect at a point.
 - b. Any two non-parallel planes in R^3 must always intersect on a line.
 - c. The line with equation x = y = z will always intersect the plane with equation x 2y + 2z = k, regardless of the value of k.
 - d. The lines $\frac{x}{2} = y 1 = \frac{z+1}{2}$ and $\frac{x-1}{-4} = \frac{y-1}{-2} = \frac{z+1}{-2}$ are parallel.
- 36. Consider the lines $L_1: x = 2, \frac{y-2}{3} = z$ and $L_2: x = y + k = \frac{z+14}{k}$.
 - a. Explain why these lines can never be parallel, regardless of the value of k.
 - b. Determine the value of *k* that makes these two lines intersect at a single point, and find the actual point of intersection.

8. **a.**
$$x = -\frac{5}{7}t$$
, $y = 1 + \frac{2}{7}t$, $z = t$, $t \in \mathbf{R}$
b. $x = 3$, $y = \frac{1}{4}$, $z = -\frac{1}{2}$
c. $x = 3t - 3s + 7$, $y = t$, $z = s$,
 s , $t \in \mathbf{R}$
9. **a.** $x = \frac{1}{2} + \frac{1}{36}t$, $y = -\frac{1}{2} + \frac{5}{12}t$,
 $z = t$, $t \in \mathbf{R}$
b. $x = \frac{9}{8} - \frac{31}{24}t$, $y = \frac{1}{4} + \frac{1}{12}t$, $z = t$,
 $t \in \mathbf{R}$

- **10. a.** These three planes meet at the point (-1, 5, 3).**b.** The planes do not intersect.
 - Geometrically, the planes form a triangular prism.
 - $\mathbf{c}.$ The planes meet in a line through the origin, with equation x = t, $y = -7t, z = -5t, t \in \mathbf{R}$
- **11.** 4.90

12. a.
$$x - 2y + z + 4 = 0$$

 $\vec{r} = (3, 1, -5) + s(2, 1, 0), s \in \mathbb{R}$
 $\vec{m} \times \vec{n} = (2, 1, 0)(1, -2, 1) = 0$
Since the line's direction vector is
perpendicular to the normal of the
plane and the point $(3, 1, -5)$ lies
on both the line and the plane, the
line is in the plane.

b. (−1, −1, −5) **c.** x - 2y + z + 4 = 0-1 - 2(-1) + (-5) + 4 = 0The point (-1, -1, -5) is on the plane since it satisfies the equation of the plane. **d.** 7x - 2y - 11z - 50 = 0

1),

13. a. 5.48
b.
$$(3, 0, -1)$$

14. a. $(-2, -3, 0)$.
b. $\vec{r} = (-2, -3, 0) + t(1, -2, -3, 0$

- $t \in \mathbf{R}$ **15. a.** -10x + 9y + 8z + 16 = 0**b.** about 0.45
- **16.** a. 1 **b.** $\vec{r} = (0, 0, -1) + t(4, 3, 7), t \in \mathbf{R}$ **17. a.** x = 2, y = -1, z = 1

b.
$$x = 7 - 3t, y = 3 - t, z = t, t \in \mathbf{R}$$

18. $a = \frac{2}{3}, b = \frac{3}{4}, c = \frac{1}{2}$

19. $\left(4, -\frac{7}{4}, \frac{7}{2}\right)$ **20.** $\left(-\frac{5}{4}, \frac{8}{4}, \frac{4}{4}\right)$

20.
$$\left(-\frac{3}{3},\frac{3}{3},\frac{4}{3}\right)$$

21. a.
$$\vec{r} = \left(\frac{45}{4}, 0, -\frac{21}{4}\right) + t(11, 2, -5), t \in \mathbf{R};$$

$$\vec{r} = \left(-\frac{37}{2}, 0, \frac{15}{2}\right) + t(11, 2, -5), t \in \mathbf{R};
\vec{r} = (7, 0, -1) + t(11, 2, -5),
t \in \mathbf{R}; z = -1 - 5t, t \in \mathbf{R}$$
b. All three lines of intersection found in part a. have direction vector (11, 2, -5), and so they are all parallel. Since no pair of normal vectors for these three planes is parallel, no pair of these planes is coincident.
22. $\left(\frac{1}{2}, 1, \frac{1}{3}\right), \left(\frac{1}{2}, 1, -\frac{1}{3}\right), \left(\frac{1}{2}, -1, \frac{1}{3}\right), \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), t \in \mathbf{R}$
b. $\left(\frac{13}{2}, 2, -\frac{3}{2}\right)$
c. about 33.26 units²
27. $6x - 8y + 9z - 115 = 0$

Chapter 9 Test, p. 556

1. a. (3, -1, -5) **b.** 3 - (-1) + (-5) + 1 = 0 3 + 1 - 5 + 1 = 00 = 0**2. a.** $\frac{13}{12}$ or 1.08 **b.** $\frac{40}{3}$ or 13.33 **3. a.** $x = \frac{4t}{5}, y = 1 - \frac{t}{5}, z = t, t \in \mathbf{R}$ **b.** (4, 0, 5) **4. a.** (1, −5, 4) **b.** The three planes intersect at the point (1, -5, 4). 5. **a.** $x = -\frac{1}{2} - \frac{t}{4}, y = \frac{3t}{4} + \frac{1}{2}, z = t,$ $t \in \mathbf{R}$ **b.** The three planes intersect at this line. **6. a.** m = -1, n = -3**b.** $x = -1, y = 1 - t, z = t, t \in \mathbf{R}$ 7.

Cumulative Review of Vectors, pp. 557-560

1. a. about 111.0°
b. scalar projection:
$$-\frac{14}{13}$$
, vector projection:
 $\left(-\frac{52}{169}, \frac{56}{169}, -\frac{168}{169}\right)$
c. scalar projection: $-\frac{14}{3}$, vector projection:
 $\left(-\frac{28}{9}, \frac{14}{9}, \frac{28}{9}\right)$
2. a. $x = 8 + 4t$, $y = t$, $z = -3 - 3t$, $t \in \mathbb{R}$
b. about 51.9°
3. a. $\frac{1}{2}$
b. 3
c. $\frac{3}{2}$
4. a. $-7\vec{i} - 19\vec{j} - 14\vec{k}$
b. 18
5. *x*-axis: about 42.0°, *y*-axis: about 111.8°, *z*-axis: about 123.9°
6. a. $(-7, -5, -1)$
b. $(-42, -30, -6)$
c. about 8.66 square units
d. 0
7. $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$ and $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$
8. a. vector equation: Answers may vary.
 $\vec{r} = (2, -3, 1) + t(-1, 5, 2), t \in \mathbb{R};$ parametric equation:
 $x = 2 - t, y = -3 + 5t$, $z = 1 + 2t, t \in \mathbb{R}$
b. If the *x*-coordinate of a point on the line is 4, then $2 - t = 4$, or
 $t = -2$. At $t = -2$, the point on the line is (2, -3, 1) - 2(-1, 5, 2) = (4, -13, -3). Hence, $C(4, -13, -3)$ is a point on the line.
9. The direction vector of the first line is $(1, -5, -2) = -(-1, 5, 2)$. So they are collinear and hence parallel. The lines coincide if and only if for any point on the first line and second line, the vector connecting the two points is a multiple of the direction vector for the lines $(2, 0, 9)$ is a point on the second line.
 $(2, 0, 9) - (3, -5, 10) = (-1, 5, -1)$ $\neq k(-1, 5, 2)$ for $k \in \mathbb{R}$. Hence, the lines are parallel and distinct.

Answers may vary. For example, (0, 3, 6) and (1, 1, -1).

- **14.** (-7, 10, 20)
- **15.** $\vec{q} = (1, 0, 2) + t(-11, 7, 2), t \in \mathbf{R}$
- **16. a.** 12x 9y 6z + 24 = 0**b.** about 1.49 units
- **17. a.** 3x 5y + 4z 7 = 0 **b.** x - y + 12z - 27 = 0 **c.** z - 3 = 0**d.** x + 2z + 1 = 0
- **18.** 336.80 km/h, N 12.1° W
- **19. a.** $\vec{r} = (0, 0, 6) + s(1, 0, -3) + t(0, 1, 2)$, $s, t \in \mathbf{R}$. To verify, find the Cartesian equation corresponding to the above vector equation and see if it is equivalent to the Cartesian equation given in the problem. A normal vector to this plane is the cross product of the two directional vectors.

$$\vec{n} = (1, 0, -3) \times (0, 1, 2)$$

$$= (0(2) - (-3)(1), -3(0) - 1(2), 1(1) - 0(0)) = (3, -2, 1)$$

So the plane has the form 3x + 2y + z + D = 0, for some constant *D*. To find *D*, we know that (0, 0, 6) is a point on the plane, so 3(0) - 2(0) + (6) + D = 0. So, 6 + D = 0, or D = -6. So, the Cartesian equation for the plane is 3x - 2y + z - 6 = 0. Since this is the same as the initial Cartesian equation, the vector equation for the plane is correct.

20. a. 16°

b. The two planes are perpendicular if and only if their normal vectors are also perpendicular. A normal vector for the first plane is (2, -3, 1) and a normal vector for the second plane is (4, -3, -17). The two vectors are perpendicular if and only if their dot product is zero.

$$(2, -3, 1) \cdot (4, -3, -17) = 2(4) - 3(-3) + 1(-17) = 0$$

Hence, the normal vectors are perpendicular. Thus, the planes are perpendicular.

- c. The two planes are parallel if and only if their normal vectors are also parallel. A normal vector for the first plane is (2, -3, 2) and a normal vector for the second plane is (2, -3, 2). Since both normal vectors are the same, the planes are parallel. Since 2(0) - 3(-1) + 2(0) - 3 = 0, the point (0, -1, 0) is on the second plane. Yet since $2(0) - 3(-1) + 2(0) - 1 = 2 \neq 0$, (0, -1, 0) is not on the first plane.
 - Thus, the two planes are parallel but not coincident.
- resultant: about 56.79 N, 37.6° from the 25 N force toward the 40 N force, equilibrant: about 56.79 N, 142.4° from the 25 N force away from the 40 N force
- 22. a.

b.

$$\frac{1}{2}\overrightarrow{b}$$

$$2\overrightarrow{a} + \frac{1}{2}\overrightarrow{b}$$

$$2\overrightarrow{a}$$
23. a. $\left(\frac{6}{7}, \frac{2}{7}, -\frac{3}{7}\right)$
b. $\left(-\frac{6}{7}, -\frac{2}{7}, \frac{3}{7}\right)$
24. a. $\overrightarrow{OC} = (8, 9),$
 $\overrightarrow{BD} = (10, -5)$
b. about 74.9°
c. about 85.6°
25. a. $x = t, y = -1 + t, z = 1, t \in \mathbb{R}$
b. $(1, 2, -3)$
c. $x = 1, y = t, z = -3 + t, t \in \mathbb{R}$
d. $x = 1 + 3s + t, y = t, z = s,$
s. $t \in \mathbb{R}$
26. a. yes; $x = 0, y = -1 + t, z = t, t \in \mathbb{R}$
b. no
c. yes;
 $x = 2 - 2t, y = t, z = 3t, t \in \mathbb{R}$
27. 30°
28. a. $-\frac{3}{2}$
b. 84
29. $\overrightarrow{r} = t(-1, 3, 1), t \in \mathbb{R},$
 $-x + 3y + z - 11 = 0$
30. $(-1, 1, 0)$
31. a. 0.8 km
b. 12 min
32. a. Answers may vary.
 $\overrightarrow{r} = (6, 3, 4) + t(4, 4, 1), t \in \mathbb{R}$
b. The line found in part a will lie in
the plane $x - 2y + 4z - 16 = 0$ if
and only if both points $A(2, -1, 3)$
and $B(6, 3, 4)$ lie in this plane. We verify this by substituting these
points into the equation of the
plane, and checking for consistency.
For A:
 $2 - 2(-1) + 4(3) - 16 = 0$
For B:
 $6 - 2(3) + 4(4) - 16 = 0$
Since both points lie on the plane,
so does the line found in part a.
33. 20 km/h at N 53.1° E
34. parallel: 1960 N,
perpendicular: about 3394.82 N
35. a. True; all non-parallel pairs of lines
intersect in exactly one point in \mathbb{R}^2 .
However, this is not the case for
lines in \mathbb{R}^3 (skew lines provide a

counterexample).b. True; all non-parallel pairs of planes intersect in a line in R³.

c. True; the line x = y = z has direction vector (1, 1, 1), which is not perpendicular to the normal vector (1, -2, 2) to the plane x - 2y + 2z = k, k is any constant. Since these vectors are not perpendicular, the line is not parallel to the plane, and so they will intersect in exactly one point. d. False; a direction vector for the line False; a direction vector for the line $\frac{x}{2} = y - 1 = \frac{z+1}{2}$ is (2, 1, 2). A direction vector for the line $\frac{x-1}{-4} = \frac{y-1}{-2} = \frac{z+1}{-2}$ is (-4, -2, -2), or (2, 1, 1) (which is parallel to (-4, -2, -2)). Since (2, 1, 2) and (2, 1, 1) are obviously not parallel, these two lines are not parallel. 36. a. A direction vector for $L_1: x = 2, \frac{y-2}{3} = z \text{ is } (0, 3, 1),$ and a direction vector for $L_2: x = y + k = \frac{z + 14}{k}$ is (1, 1, k).

But (0, 3, 1) is not a nonzero scalar multiple of (1, 1, k) for any k, since the first component of (0, 3, 1) is 0. This means that the direction vectors for L_1 and L_2 are never parallel, which means that these lines are never parallel for any k.

b. 6; (2, −4, −2)

Calculus Appendix

Implicit Differentiation, p. 564

1. The chain rule states that if y is a composite function, then $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$. To differentiate an equation implicitly, first differentiate both sides of the equation with respect to x, using the chain rule for terms involving y, then solve for $\frac{dy}{dx}$.

2. **a.**
$$-\frac{x}{y}$$

b. $\frac{x^2}{5y}$
c. $\frac{-y^2}{2xy + y^2}$
d. $\frac{9x}{16y}$
e. $-\frac{13x}{48y}$
f. $-\frac{2x}{2x}$

f.
$$-\frac{1}{2y+5}$$

a.
$$y = \frac{2}{3}x - \frac{13}{3}$$

b. $y = \frac{2}{3}(x+8) + 3$
c. $y = -\frac{3\sqrt{3}}{5}x - 3$
d. $y = \frac{11}{10}(x+11) - 4$
(0, 1)
a. 1
b. $\left(\frac{3}{\sqrt{5}}, \sqrt{5}\right)$ and $\left(-\frac{3}{\sqrt{5}}, -\sqrt{5}\right)$
-10
 $7x - y - 11 = 0$
 $y = \frac{1}{2}x - \frac{3}{2}$
a. $\frac{4}{(x+y)^2} - 1$
b. $4\sqrt{x+y} - 1$
a. $\frac{3x^2 - 8xy}{4x^2 - 3}$
b. $y = \frac{x^3}{4x^2 - 3}; \frac{4x^4 - 9x^2}{(4x^2 - 3)^2}$
c. $\frac{dy}{dx} = \frac{3x^2 - 8xy}{4x^2 - 3}$
 $y = \frac{x^3}{4x^2 - 3}$
 $\frac{dy}{dx} = \frac{3x^2 - 8x(\frac{x^3}{4x^2 - 3})}{4x^2 - 3}$
 $\frac{dy}{dx} = \frac{3x^2 - 8x(\frac{4x^2}{4x^2 - 3})}{4x^2 - 3}$
 $= \frac{3x^2 - (4x^2 - 3) - 8x^4}{(4x^2 - 3)^2}$
 $= \frac{12x^4 - 9x^2 - 8x^4}{(4x^2 - 3)^2}$

11. a.

3.

4.

5.

6. 7.

8.

9.

10.

one tangent

b.

one tangent