1. Identify what each of the statements indicates about the function. Where multiple statements are given, provide a conclusion that can be drawn from the group of statements.
a) $f^{\prime}(10)=0$
b) $p^{\prime}(x)<0$ for $0<x<5$
C) $\quad q^{\prime}(x)>0$ for $x>8$
d) $r^{\prime \prime}(x)>0$ for $-2<x<2$
e) $s^{\prime \prime}(x)<0$ for $x<9$
f) $g^{\prime}(5)=0$ and $g^{\prime \prime}(5)>0$
g) $h^{\prime}(-3)=0$ and $h^{\prime \prime}(-3)<0$
h) $v^{\prime}(15)=0$
$v^{\prime}(x)>0$ for $x<15$
$v^{\prime}(x)<0$ for $x>15$
i) $\quad w^{\prime}(4)=0$

$$
\begin{aligned}
& w^{\prime}(x)<0 \text { for } x<4 \\
& w^{\prime}(x)>0 \text { for } x>4
\end{aligned}
$$

j) $m^{\prime}(3)=0$
$m^{\prime}(x)<0$ for $x<3$
$m^{\prime}(x)<0$ for $x>3$
k) $a^{\prime \prime}(6)=0$

$$
\begin{aligned}
& a^{\prime \prime}(x)<0 \text { for } x<6 \\
& a^{\prime \prime}(x)>0 \text { for } x>6
\end{aligned}
$$

1) $\quad b^{\prime \prime}(12)=0$
$b^{\prime \prime}(x)<0$ for $x<12$
$b^{\prime \prime}(x)<0$ for $x>12$
2. Information is supplied regarding a function f.

Provide conclusions that can be drawn from the given information. Using the information provided, sketch a possible graph of $y=f(x)$.
a) $f^{\prime}(-1)=f^{\prime}(0)=f^{\prime}(4)=0$
$f^{\prime}(x)<0$ for $\{x \mid x<-1,0<x<4, x \in R\}$
$f^{\prime}(x)>0$ for $\{x \mid-1<x<0, x>4, x \in R\}$
b) Domain off $\{x \mid x>2, x \in R\}$
$f^{\prime}(x)>0$ for $\{x \mid x>2, x \in R\}$
$f^{\prime \prime}(x)<0$ for $\{x \mid x>2, x \in R\}$
$f^{\prime}(x)$ is never zero
$f^{\prime \prime}(x)$ is never zero
C) $f^{\prime}(-1)=f^{\prime}(2)=0$
$f^{\prime}(0)=f^{\prime}(2)=0$
$f^{\prime}(x)>0$ for $\{x \mid-1<x<2, x>2, x \in R\}$
$f^{\prime}(x)<0$ for $\{x \mid x<-1, x \in R\}$
$f^{\prime \prime}(-1)>0, f^{\prime \prime}(2)=0$
$f^{\prime \prime}(x)>0$ for $\{x \mid x<0, x>2, x \in R\}$
$f^{\prime \prime}(x)<0$ for $\{x \mid 0<x<2, x \in R\}$
d) $f(3)=f(-3)=0$
$f^{\prime}(0)=0$
$f^{\prime}(x)>0$ for $\{x \mid x>3,-3<x<0, x \in R\}$
$f^{\prime}(x)<0$ for $\{x \mid x<-3,0<x<3, x \in R\}$
e) $f^{\prime}(3)=0$
$f^{\prime \prime}(3)=0$
$f^{\prime \prime}(x)>0$ for $\{x \mid x<3, x \in R\}$
$f^{\prime \prime}(x)>0$ for $\{x \mid x>3, x \in R\}$
f) $f^{\prime}(0)=f^{\prime}(6)=0$
$f^{\prime \prime}(0)>0$
$f^{\prime \prime}(6)<0$
$f^{\prime}(10)=f^{\prime \prime}(2)=0$
$f^{\prime \prime}(x)>0$ for $\{x \mid x<2, x>10, x \in R\}$
$f^{\prime \prime}(x)<0$ for $\{x \mid 2<x<10, x \in R\}$
g) $f(-4)=f(0)=f(4)=0$
$f^{\prime}(-2)=f^{\prime}(0)=f^{\prime}(2)=0$
$f^{\prime}(x)<0$ for $\{x \mid-2<x<0,0<x<2, x \in R\}$
$f^{\prime}(x)>0$ for $\{x \mid x<-2, x>2, x \in R\}$
$f^{\prime \prime}(x)>0$ for $\{x \mid-1<x<0, x>1, x \in R\}$
$f^{\prime \prime}(x)<0$ for $\{x \mid x<-1,0<x<1, x \in R\}$
h) $f^{\prime}(4)=0$
$f^{\prime \prime}(4)=0$
$f^{\prime \prime}(x)<0$ for $\{x \mid x<4, x \in R\}$
$f^{\prime \prime}(x)<0$ for $\{x \mid x>4, x \in R\}$
i) $f(0)=0$
$f^{\prime \prime}(x)>0$ for $x \neq 0$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\infty \\
& \lim _{x \rightarrow 0^{+}} f^{\prime}(x)=-\infty \\
& \lim _{x \rightarrow-\infty} f(x)=-\infty \\
& \lim _{x \rightarrow \infty} f(x)=\infty
\end{aligned}
$$

Graphs. Matching

3. Match each of the livelve graphs (all) with the correct graph (Λ-L) of its derivative.

Sketch the graph of the derivative for the relation below.

					\bigcirc										
					-					\bigcirc					
										1					
									\bigcirc						

