Day (1) How: p. 553 \#8,9,10
Day (2) HW: p. 517 \#6-12
12. Determine the Cartesian equation of the plane that is parallel to the line with equation $x=-2 y=3 z$ and that contains the line of intersection of the planes with equations $x-y+z=1$ and $2 y-z=0$.

$$
\begin{aligned}
& \text { (1) } \begin{array}{l}
x-y+z=1 \\
\text { (2) } \begin{array}{l}
2 y-z=0 \\
x+y=1
\end{array} \\
\text { et } x=t \\
\text { then } y=1-t \\
\text { and } z=2-2 t
\end{array}
\end{aligned}
$$

parallel to $x=-2 y=3 z$

$$
\begin{aligned}
& x=-2 y=3 z \\
& \frac{x-1}{1}=\frac{-2(y-0)}{1}=\frac{3(z-0)}{1} \\
& \frac{x-1}{1}=\frac{y-0}{-1 / 2}=\frac{z-0}{1 / 3}
\end{aligned}
$$

$$
\therefore d i r=\left(1,-\frac{1}{2}, \frac{1}{3}\right)
$$

$$
\begin{aligned}
& =(6,-3,2)
\end{aligned}
$$

\therefore line of intersection is

$$
\vec{r}=(0,1,2)+t(1,-1,-2)
$$

find \vec{n}

$$
A x+B y+C z+D=0
$$

$$
8(0)+14(1)+-3(2)+D=0
$$

$$
14-6+8=0
$$

$$
D=-8
$$

$$
\begin{gathered}
\left(\begin{array}{c}
-1-2 \\
6-3 \\
6 \\
(-2-6,-12-2,-3+6) \\
b-3
\end{array}\right) \\
\vec{h}=(-8,-14,3) \\
\text { or }(8,14,-3) \\
A, B, C
\end{gathered}
$$

$\therefore 8 x+14 y-3 z-8=0$ is the plane
11. The line of intersection of the planes $\pi_{1}: 2 x+y-3 z=3$ and $\pi_{2}: x-2 y+z=-1$ is L.
a. Determine parametric equations for L.
b. If L meets the $x y$-plane at point A and the z-axis at point B, determine the length of line segment $A B$.
©
(1) $2 x+y-3 z=3$
(2) $x-2 y+z=-1$

2(2) $2 x-4 y+2 z=-2$
(1) $\begin{aligned} 2 x+y-3 z & =3 \\ -5 y+5 z & =-5 \\ -4+z & =-1\end{aligned}$
let $y=t$
then $z=t-1$
and $x=2(t)-t+1-1$
$L\left\{\begin{array}{l}x=t \\ y=t \\ z=t-1\end{array}\right.$

$$
\begin{gathered}
\text { pt. } A(x, y, 0) \rightarrow \begin{array}{l}
x=t \\
y=t \\
0=t-1
\end{array} \quad \therefore p t A(1,1,0) \\
\text { pt. } B(0,0, z) \\
\left(\begin{array}{l}
t=1
\end{array}\right. \\
0=t \\
0=t \\
z=t-1 \quad
\end{gathered} \quad \therefore \operatorname{ct.}(0,0,-1) .
$$

$$
|\overrightarrow{A B}|=\sqrt{1^{2}+1^{2}+1^{2}}
$$

$$
\sqrt{3} \sim 1, x
$$

\therefore intrection $\vec{r}=(0,0,-1)+t(1,1,1)$

$$
\begin{aligned}
& x=t \\
& y=t \\
& z=t-1
\end{aligned}
$$

