$$
\text { Hw: p. } 497 \# 4,5,7,13,15,17,18
$$

18. A line passing through point $P(-4,0,-3)$ intersects the two lines with equations $L_{1}: \vec{r}=(1,1,-1)+s(1,1,0), s \in \mathbf{R}$, and $L_{2}: \vec{r}=(0,1,3)+t(-2,1,3), t \in \mathbf{R}$. Determine a vector equation for this line.
needed line $L_{3} \vec{r}=(-4,0,-3)+u(a, b, c)$

$$
\begin{aligned}
& y=1+t \\
& z=3+3 t
\end{aligned}
$$

L_{2} meets L_{3} :
L_{1} meets L_{3} :

$$
\text { \&.M } \begin{aligned}
x_{1} & =1+s \\
y_{1} & =1+s \\
z_{1} & =-1
\end{aligned} \quad \text { some } s \text { ER P }
$$

$$
\begin{aligned}
& p \cdot N \\
& x_{2}=-2 t \\
& y_{2}=1+t \\
& z_{2}=3+3 t
\end{aligned} \quad \text { sone } t \in \mathbb{R}
$$

$\stackrel{P M}{M}$ and $\overrightarrow{P N}$ are parallel

$$
p=(-4,0,-3)
$$

$$
\begin{aligned}
& \text { ie. } \overrightarrow{P_{M}}=k\left(\vec{P} P_{N}\right) \\
& (1+5+4,1+5,-1+3)=k(-2 t+4,1+t, 3+3 t+3) \\
& (5+5,1+5,2)=k(4-2 t, 1+t, 6+3 t)
\end{aligned}
$$

(1) $5+s=4 k-2 k t$
(2) $1+s=k+k t$
(3) $2=6 k+3 k t$

$$
\begin{equation*}
3+3 s=3 k+3 k t \tag{2}
\end{equation*}
$$

(3) subtract
(1) $5+s=4 k-2 h t$

2x(2) $2+2 s=2 k+2 k t$
(5) $7+3 s=6 k$
(4) $1+3 s=-3 k$
(5) $\frac{7+3 s=6 k}{9 k}$ subtract

$$
\begin{array}{rlr}
\therefore \stackrel{\rightharpoonup}{P N}=(6,0,3) & -6=-9 k \\
\overrightarrow{P M}=(4,0,2) & \frac{6}{9}=k \\
\text { simplest } \\
\therefore L_{\text {dir }}=(2,0,1) & \left.\frac{2}{3}=k\right) \\
\therefore L_{3}=(-4,0,-3)+t(2,0,1)
\end{array}
$$

check in (1)
17. a. Show that the lines $\frac{x}{1}=\frac{y-7}{-8}=\frac{z-1}{2}$ and $\frac{x-4}{3}=\frac{z-1}{-2}, y=-1$, lie on the plane with equation $2 x+y+3 z-10=0$.
h. Determine the point of intersection of these two lines.

$$
\begin{array}{rlrl}
L_{1} \operatorname{dir} & \stackrel{\rightharpoonup}{m} & =(1,-8,2) & L_{2} \operatorname{dir} \\
p_{n} & =(3,0,-2) \\
& (0,7,1) & p^{t} & =(4,-1,1)
\end{array}
$$

need to show vectors on the plane and $\underbrace{\text { vhs on the plane }}_{\text {if }}$
of
no wo
(L) $x=0+x$
$y=x=8 t$
$x=1 \times 2 x$ to ser V , RS
owe $\frac{\text { w th }^{\text {th }}}{22}$
if cross product

$$
\begin{aligned}
& \text { gins normal } \\
& (2,1,3) \\
& x-8,2,1-821 \\
& 30-2 \times 0-2 \\
& (16-0,6+2,0+24) \\
& (16,8,24) \\
& \text { or }(2,1,3) \quad \sqrt{y} \text { yes. } \\
& \text { dir. }(2)
\end{aligned}
$$

$$
2(0)+7+3(1)-10 \stackrel{?}{=} 0
$$

$$
2(4)+-1+3(1)-10 \stackrel{?}{=} 0
$$

$$
8-1+3-10
$$

$$
7+3-10
$$ shew.

$$
\begin{aligned}
L_{1} x & =0+t \\
y & =7-8 t \\
z & =1+2 t
\end{aligned}
$$

$$
\begin{aligned}
\text { Le } \quad \begin{aligned}
x & =4+3 p \\
y & =-1 \\
z & =1-2 p
\end{aligned} \text { 位 }
\end{aligned}
$$

(1) $t=4+3 p$
(2) $7-8 t=-1$
(3) $1+2 t=1-2 p$ equate

$$
\begin{array}{cr}
\text { sub in (1) } & \text { check in (3) } \\
\begin{array}{c}
1=4+3 p \\
-3=3 p
\end{array} & 1+2(1) \stackrel{?}{=} 1-2(-1) \\
-1-p
\end{array}
$$

\therefore mat at $(1,-1,3)$
15. The lines $\vec{r}=(-1,3,2)+s(5,-2,10), s \in \mathbf{R}$, and $\vec{r}=(4,-1,1)+t(0,2,11), t \in \mathbf{R}$, intersect at point A.
a. Determine the coordinates of point A.
b. Determine the vector equation for the line that is perpendicular to the two given lines and passes through point A.
(u) L_{1}

$$
\begin{aligned}
& x=-1+5 s \\
& y=3-2 s \\
& z=2+10 s
\end{aligned}
$$

$$
L_{2} \quad x=4
$$

$$
y=-1+2 t
$$

$$
5 s=5
$$

(1) $-1+5 s=4$ (5-1)

$$
z=1+11 t
$$

(2) $3-2 s=-1+2 t$

$$
z=1+\| t
$$

(3) $2+10 s=1+11 t$

$$
\therefore p t A=(4,1,12)
$$

(b) L if do cross of 2 dir. vectors

$$
\begin{aligned}
& 0 / 2 x_{10}^{11} \times x^{2}, 210 \\
& (20+22,55-0,0-10) \\
& (44,55,-10)
\end{aligned} \quad \begin{array}{r}
0
\end{array}
$$

13. The line $\vec{r}=(-8,-6,-1)+s(2,2,1), s \in \mathbf{R}$, intersects the $x z$ - and $y z$-coordinate planes at the points A and B, respectively. Determine the length of line segment $A B$.

