18. The vector \vec{a} is a unit vector, and the vector \vec{b} is any other nonzero vector. If $\vec{c} = (\vec{b} \cdot \vec{a})\vec{a}$ and $\vec{d} = \vec{b} - \vec{c}$, prove that $\vec{d} \cdot \vec{a} = 0$.

Tia = tallal cool ie to La

= (b · a) à dir. of à multiple de d

= (b la) (a) Q

Alb (cool) à

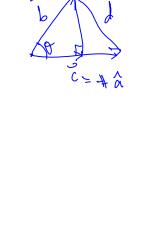
length of adjacent side to the made into right D

: a stops at as to rector to

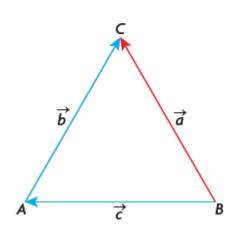
a La

a La

i d. t.



16. The three vectors \vec{a} , \vec{b} , and \vec{c} are of unit length and form the sides of equilateral triangle ABC such that $\vec{a} - \vec{b} - \vec{c} = \vec{0}$ (as shown). Determine the numerical value of $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b} + \vec{c})$.



 $\vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c}$ $|\vec{a}|^2 + |\vec{b}|^2 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$ $|\vec{a}|^2 + |\vec{b}|^2 + \vec{a} \cdot \vec{b} + (\vec{a} + \vec{b}) \cdot \vec{c}$ $|\vec{a}|^2 + |\vec{b}|^2 + \vec{a} \cdot \vec{b} + (\vec{a} + \vec{b}) \cdot \vec{c}$ $|\vec{a}|^2 + |\vec{b}|^2 + \vec{a} \cdot \vec{b} + (\vec{a} + \vec{b}) \cdot \vec{c}$ $|\vec{a}|^2 + |\vec{b}|^2 + \vec{a} \cdot \vec{b} + (\vec{a} + \vec{b}) \cdot \vec{c}$ $|\vec{a}|^2 + |\vec{a}|^2 + |\vec$

$$2 + 2(\frac{1}{2}) = 2 + 1 = 3$$

15. Prove the identity $|\vec{u} + \vec{v}|^2 + |\vec{u} - \vec{v}|^2 = 2|\vec{u}|^2 + 2|\vec{v}|^2$.

$$= \frac{(x+y)(x+y)}{(x+y)} + (x-y)(x-y)$$

$$= \frac{1}{x} \cdot \frac{1}{x} + \frac{1}{2} \frac{1}{x} \cdot \frac{1}{x} + \frac{1}{x} \cdot \frac{1}{x} - \frac{1}{x} \cdot \frac{1}{x} + \frac{1}{x} \cdot \frac{1}{x}$$

$$= \frac{1}{x} \frac{1}{x} + \frac{1}{x} \frac{1}{x} + \frac{1}{x} \frac{1}{x} \cdot \frac{1}{x} + \frac{1}{x} \frac{1}{x} \cdot \frac{1}{x} + \frac{1}{x} \frac{1}{x} \frac{1}{x} + \frac{1}{x} \frac{1}{x} \frac{1}{x} + \frac{1}{x} \frac{1}{x$$