(0) $F(t)= \begin{cases}2^{t / 5} & \text { if } 0<t \leqslant 60 \\ 2^{t / 5}-e^{\frac{t / 60}{3}} & \text { if } t \geq 60\end{cases}$
equation to
maximize
domain: $t \in(0, \infty)$

$$
\begin{aligned}
& \text { crit: } F^{\prime}(t)= \begin{cases}2^{t / 5} \ln (2)\left(\frac{1}{5}\right) & \text { if } 0<t<60 \\
\text { pt: } \\
2^{t / 5} \ln (2)\left(\frac{1}{5}\right)-e^{\frac{t-60}{3}}\left(\frac{1}{3}\right) \text { if } t 260\end{cases} \\
& 0=2^{t / 5} \ln (2)\left(\frac{1}{5}\right) \text { or } 0=2^{t / 5} \frac{\ln 2}{5}-\frac{e^{\frac{t-60}{3}}}{3} \\
& N / A \\
& \frac{e^{\frac{t-60}{3}}}{3}=2^{t / 5} \frac{\ln 2}{5} \\
& e^{\frac{t-60}{3}}=\frac{3(\ln 2) 2^{t / 5}}{2} \quad 2 \text { of both } \begin{array}{l}
\text { take } \ln \\
\text { sides }
\end{array} \\
& \operatorname{expran}_{\cos ^{u l}}^{\operatorname{Pan}} \ln \left[e^{\frac{t-60}{3}}\right]=\ln \left[\frac{3}{5}(\ln 2) 2^{t / 5}\right]
\end{aligned}
$$

separate then cor

$$
\left.\left.\begin{array}{rl}
\left(\frac{1}{3} t-20\right) \underbrace{\ln e}_{1} & =\ln \left[\frac{3}{5}(\ln 2)\right]+\ln (2)^{t / 5)} \\
\text { pull exponent do }
\end{array}\right]+\ln [3 / 5 \ln 2)\right]+\frac{1}{5} t \ln (2) .
$$

$$
\begin{aligned}
& 1 / 3-1 / 5 \ln 2 \\
& t=98.2
\end{aligned}
$$

show MAX:

$$
\begin{aligned}
& \text { W MAX: } \\
& F^{\prime \prime}(t)=2^{t / 5}\left(\frac{\ln 2}{5}\right)^{2}-\left(\frac{1}{3}\right)^{2} e^{t-\frac{60}{3}} \\
& F^{\prime \prime}(98.2)=2^{19.64}(0.019)-\frac{1}{9}(338856.9)=\text { neg } \therefore C D \therefore t=98.2 \text { is }
\end{aligned}
$$

answer question: O at $98.2 \mathrm{~min}\left(\begin{array}{l}38.2 \mathrm{~min} \text { after drug } \\ \text { introduced })\end{array}\right.$

$$
F(98.2)=478158.5 \text { is MAX \# of bactiva }
$$

(b) obliterated if $F(t)=0$

$$
\begin{aligned}
& 2^{t / 5}=0 \quad \text { or } \\
& N / A
\end{aligned}
$$

$$
2^{t / 5}-e^{t / 60}=0
$$

$$
2^{t / 5}=e^{\frac{t-60}{3}} \int_{t / 5}^{\text {tale } \ln \text { of both }} \text { sides }
$$

$$
\ln 2^{t / 5}=\ln e^{\frac{t-60}{3}}
$$

$$
\frac{t}{5} \ln 2=\frac{t-60}{3}(\ln e)^{-1}
$$

$$
\frac{t}{5} \ln 2-\frac{t}{3}=-20
$$

$$
t\left(\frac{1}{5} \ln 2-\frac{1}{3}\right)=-20
$$

$$
t=\frac{-20}{\frac{1}{5} \ln 2-\frac{1}{3}}
$$

$t=102.72 \mathrm{~min}\binom{42.72 \mathrm{~min}}{$ after drug }
the bacteria after drug.
introduced is obliterated.

