Gonnecting Graphs \& Equations to Real-Life Situations

Given the two equations

1. $d=0.2 t^{2}-0.6 t+0.95$

Given the two equations
3. $d=-3 t^{2}+6 t+45$
2. $d=-5 t^{2}+20 t$
4. $\quad d=0.08 t^{2}-1.6 t+9$

The holder places the football on the ground and holds it for the place kicker. The ball is kicked up in the air and lands down field.	A four-wheeled cart is held at the bottom of a ramp. It is given a gentle push so that is rolls part of the way up the ramp, slows, stops and then rolls back down the ramp. A motion detector is placed at the top of the ramp to detect the motion of the cart.	A student stands facing a motion detector. He quickly walks toward the detector, slows down, stops and then slowly walks away from the detector. He speeds up as he gets farther away from the detector.	A diver is on the diving platform at Wonder Mountain in Canada's Wonderland. She jumps up and dives into the water at the base of the mountain.
Equation:	Equation:	Equation:	Equation:
1. What is the height of the football at 0 seconds?	1. How far is the cart from the detector at the start?	1. How far is the student from the detector when he starts to walk?	1. How high is the platform above the ground?
2. What is the maximum height of the football?	2. When is the cart closest to the detector?	2. When is the student closest to the detector?	2. What is the diver's maximum height above the water?
3. What is the height of the ball after 3 seconds?	3. How far is the cart from the detector at 1 second?	3. What is his distance from the detector after 2 seconds?	3. At what time does the diver reach his maximum height?
	4. How far does the cart travel before it stops and starts going back down the ramp?		

Gonnetting Graphs \& Equations to Real-Life Situations
Given the two equations

1. $d=0.2 t^{2}-0.6 t+0.95$

Given the two equations
3. $d=-3 t^{2}+6 t+45$
2. $d=-5 t^{2}+20 t$
4. $d=0.08 t^{2}-1.6 t+9$

The holder places the football on the ground and holds it for the place kicker. The ball is kicked up in the air and lands down field.	A four-wheeled cart is held at the bottom of a ramp. It is given a gentle push so that is rolls part of the way up the ramp, slows, stops and then rolls back down the ramp. A motion detector is placed at the top of the ramp to detect the motion of the cart.	A student stands facing a motion detector. He quickly walks toward the detector, slows down, stops and then slowly walks away from the detector. He speeds up as he gets farther away from the detector.	A diver is on the diving platform at Wonder Mountain in Canada's Wonderland. She jumps up and dives into the water at the base of the mountain.
Equation: $d=-5 t^{2}+20 t$	Equation: $d=0.2 t^{2}-0.6 t+0.95$	Equation: $d=0.08 t^{2}-1.6 t+9$	Equation: $d=-3 t^{2}+6 t+45$
4. What is the height of the football at 0 seconds?	1. How far is the cart from the detector at the start? $0.95 \mathrm{~m}$	1. How far is the student from the detector when he starts to walk? $9 \mathrm{~m}$	1. How high is the platform above the ground?
5. What is the maximum height of the football?	2. When is the cart closest to the detector? $1.5 \mathrm{sec}$	2. When is the student closest to the detector? 10 sec	2. What is the diver's maximum height above the water? $48 \mathrm{~m}$
6. What is the height of the ball after 3 seconds?	3. How far is the cart from the detector at 1 second? $0.55 \mathrm{~m}$	3. What is his distance from the detector after 2 seconds? $6.12 \mathrm{~m}$	3. At what time does the diver reach his maximum height?
	4. How far does the cart travel before it stops and starts going back down the ramp? $0.95-0.5=0.45 m$		

