## Exponentials Unit

Tentative TEST date $\qquad$
Reflect - previous TEST mark $\qquad$ , Overall mark now $\qquad$ .
Looking back, what can you improve upon?

## Big idea/Learning Goals

This unit introduces you to a new type of function - the exponential function. There are many relationships in real life that either grow or decay at a constant rate, for example: population growth, or radioactive decay. These type of relationships can be modelled with an exponential. Before you learn about properties of this function, you must review exponent laws from gr.9-10 and learn a new exponent law that allows you to work with rational (fraction) exponents. Keep in mind that this year you will not know what the inverse of the exponential is, this is something that you will learn in the gr. 12 advanced functions course - but to take this course you must take the Math for College Technology MCT 4C first.

## Success Criteria

$\square \quad I$ am ready for this unit if I am confident in the following review topics
(circle the topics you are good at \& review the ones you left uncircled before you get too far behind) Simplifying expressions, solving equations, transformations, function notation, domain \& range, exponent laws
$\square$ I understand the new topics for this unit if I can do the practice questions in the textbook/handouts (check off the topiss for which you have finished the praciice)

| Date | Topics | Done? |
| :---: | :---: | :---: |
|  | Working with Positive Exponents Section 7.2 p $400 \# 5,6,7,8,9,11$ \& EXTRA Handout |  |
|  | Working with Integer Exponents Section 7.3 p 408 \#4,7,8,9, 11,12 \& EXTRA Handout |  |
|  | Working with Rational Exponents \& Solving for $\mathrm{x}-2$ days Section 7.4416 \#7, 10, 11, 14, 15, 17 \& TWO EXTRA Handouts |  |
|  | If there is time - Collecting Exponential Data Handout |  |
|  | Properties of Exponentials with Graphing Calc Section 7.5 p423 \#1,2,4 <br> (use graphing technology online to help you if needed) |  |
|  | Intro to Exponential Growth \& Decay Section 7.6 p430 \#4,7,9, 10,11 |  |
|  | Practice Exponential Growth \& Decay Section 7.7 p 437 \#2,3,6,8, 11 , |  |

I am prepared for the test/evalutation if
$\square \quad$ I understand the main concepts from each lesson

- if not, ask other students in class to help you study or visit the peer tutoring room or ask the teacher for help or get a private tutor
- also practice "knowledge-understanding" questions from the textbook - look for questions marked by $\mathbf{K}$
$\square \quad$ I can explain/communicate the ideas clearly
- if not, practice explaining a solved question to someone else or complete the assigned journal questions
- also practice "communication" questions from the textbook - look for questions marked by $\mathbf{C}$
- I can apply these concepts in word problems
- if not, practice "application" questions from the textbook - look for questions marked by $\mathbf{A}$
- I did not just memorize steps to do for different types of questions, I understand the ideas behind each concept and therefore can do problems in new contexts
- if not, practice "thinking-inquiry-problem-solving" questions from the textbook - look for questions marked by $\mathbf{T}$
- I can do questions independently
- if not, try redoing an already solved example without looking at solutions
- I can complete questions quickly and with confidence
- if not, try timing yourself for similar type questions to see progress
$\square \quad$ I completed the review and/or practice test
Corrections for the textbook answers:
$\qquad$


## Working with Positive Exponents

1. Why do you think exponent notation was invented?
2. Summarize the exponent laws you learned in grade 9 and provide examples.

| Law | []$_{\text {Generalization }}$ | \% EXAMPLE |
| :---: | :---: | :---: |
| Multiplication |  | $3^{4} \cdot 3^{5}$ |
| Division |  | $\frac{7^{5}}{7}$ |
| Power of a Power |  | $\left(3^{2}\right)^{5}$ |
| Power of a Product |  | $\left(5 x^{6} y^{2}\right)^{3}$ |
| Power of a Quotient |  | $\left(\frac{2 x^{4}}{3^{2} y^{3}}\right)^{5}$ |
| Zero Exponent |  | $8^{0}$ |
| Power of Sum/Diff |  | $\left(2^{3}+x\right)^{2}$ |

Write each expression as a single power
3. $6 \cdot 6^{2}$
4. $\frac{4^{2}}{4^{3}}$
5. $\left(5^{2}\right)^{3}$
$\qquad$
Simplify
185 6. $3 x^{3} \cdot 4 x^{4}$
7. $\frac{8 x^{6}}{12 x^{4}}$
8. $\left(3 x y^{3}\right)^{4}$

Simplify first then solve for x .
9. $3^{x}=243$
10. $6^{x}+5=221$
12. $\left(\frac{x^{10}}{x^{7}}\right)^{3} \div x^{6}=125$
$\qquad$

## Working with Integer Exponents

1. Explore what negative exponents mean by filling in the table

| DIVIIION | EXPAND \& DIVIDE | USE EXPONENTLAW |
| :---: | :---: | :---: |
| $2^{3} \div 2^{5}$ | $\frac{2 \times 2 \times 2}{2 \times 2 \times 2 \times 2 \times 2}=\frac{1}{2^{2}}$ | $\frac{2^{3}}{2^{5}}=2^{3-5}=2^{?}$ |
| $3^{2} \div 3^{4}$ |  |  |
| $5 \div 5^{4}$ |  |  |
| $10^{4} \div 10^{5}$ |  |  |
| $x^{2} \div x^{5}$ |  |  |

State another way to write the following. (HINT: if a base has no exponent on it, place exponent ONE on it)

国
2. $3^{-2}$
3. $4^{-3}$
4. $\frac{1}{2^{-4}}$
5. $2 x^{-3}$
6. $\frac{3}{4^{-2}}$
7. $\frac{3 x^{-2}}{(2 y)^{-1}}$
8. $\frac{1}{6^{-3}}$
9. $\left(\frac{2}{3}\right)^{-4}$
10. $\frac{4^{-3}}{9^{-2}}$
11. $\frac{8^{-2}}{3}$
12. $\frac{3}{5^{-2}}$
13. $\frac{(4 a)^{-1}}{5 b^{-3}}$
14. Summarize the negative exponent rule
$\qquad$
15. There will be several ways to simplify expressions, depending on what rule you start applying first. Final answers should still match no matter what route you take. To make things easier try to use the
$\qquad$ law first and $\qquad$ law last.
16. Apply the laws to the following examples as you simplify the questions. Leave everything as exact numbers, with positive exponent answers.

B
a. $(4 x)^{2} \times 4 x^{2}$
b. $\left(3 d^{-3}\right)^{3} \times 3 d^{-2}$
c. $4\left(-2 x^{5} y^{0}\right)^{-2} \times\left(2 x^{-1} y^{2}\right)^{-3}$
e. $\left(\frac{\left(-2 a^{-2}\right)^{3} a^{3}}{4 a^{-4}}\right)^{-3}$
f. $\frac{\left(-2 x y^{3} \times 3 x^{-3} y^{-2}\right)^{3}}{6 x^{0} y^{-1}}$
$\qquad$

## Working with Rational Exponents

1. What does the word rational mean?
2. Use a calculator to complete the charts

For example, to find $4^{\frac{1}{2}}$, use the sequence $4 \boxed{y^{x}} \boxed{(1)} \div \boxed{\square} \boxed{\square}$.
To find $\sqrt[4]{16}$ use $\sqrt[x]{ }$ button: either $16 \sqrt[x]{ } 4$ or $4 \sqrt[x]{ } 16$ try BOTH to see which way you need to remember

| $4^{\frac{1}{2}}=$ | $\sqrt[2]{4}=$ | $16^{\frac{1}{4}}=$ | $\sqrt[4]{16}=$ |
| :--- | :--- | :--- | :--- |
| $\sqrt[3]{27}=$ | $27^{\frac{1}{3}}=$ | $\sqrt[5]{3125}=$ | $3125^{\frac{1}{5}}=$ |
| $216^{\frac{1}{3}}=$ | $\sqrt[3]{216}=$ | $256^{\frac{1}{4}}=$ | $\sqrt[4]{256}=$ |
| $\sqrt{25}=$ | $25^{\frac{1}{2}}=$ | $\sqrt[4]{81}=$ | $81^{\frac{1}{4}}=$ |
| $36^{\frac{1}{2}}=$ | $\sqrt{36}=$ | $1296^{\frac{1}{4}}=$ | $\sqrt[4]{1296}=$ |


| $a$ | $a^{\frac{1}{3}}$ | $a^{\frac{2}{3}}$ | $a^{\frac{3}{3}}$ | $a^{\frac{4}{3}}$ | $a^{\frac{5}{3}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | $8^{\frac{1}{3}}=\sqrt[3]{8}=2$ | $8^{\frac{2}{3}}=\sqrt[3]{8^{2}}=2^{2}=4$ |  |  |  |
| 64 |  |  |  |  |  |
| 125 |  |  |  |  |  |

3. Summarize the rule when the exponent is in a rational form $\frac{1}{n}$ and $\frac{m}{n}$
4. Rewrite the following in a different notation. Simplify if possible.
(HINT if brackets or exponents are not there - insert them)
a. $6^{\frac{2}{7}}$
b. $\sqrt[4]{2 x^{5}}$
c. $\sqrt[3]{(3 a)^{5}}$
d. $\sqrt{16 x^{7}}$
e. $\sqrt{64}$
f. $121^{\frac{1}{2}}$
g. $\sqrt[3]{-343}$
h. $-125^{\frac{1}{3}}$
$\qquad$
5. Write as both versions. Evaluate using the calculator for both versions, HOWEVER if you get decimals or error, use laws of exponents to simplify things first!
a. $-49^{\frac{1}{2}}$
b. $(-125)^{-\frac{2}{3}}$
c. $\left(\frac{8}{27}\right)^{-\frac{1}{3}}$
d. $\sqrt{121}=$
g. $8^{\frac{2}{3}}=$
6. Solve for $x$.
e. $\sqrt[3]{8}=$
h. $-25^{\frac{3}{2}}=$
i. $\quad 81^{-\frac{3}{4}}=$
a. $x^{\frac{1}{2}}=7$
b. $x^{\frac{3}{2}}=8$
c. $x^{\frac{4}{5}}=81$
d. $x^{\frac{4}{3}}=625$
$\qquad$

## MORE Working with Rational Exponents \& Solving for x.

1. Explain why you would get different answers for:
$\sqrt[3]{27 x^{4}}$ and $(27 x)^{\frac{4}{3}}$
2. Explain the steps in simplifying the following. Give a reason why you can't cancel $x^{6}$ or divide 512 with 4. $\sqrt[3]{512 x^{6}}$ $\sqrt{4 x^{6}}$
3. Simplify the following. Keep answers as exact reduced fractions and and don't leave answers with negative exponents.
a. $\left(8 x^{6} y^{9}\right)^{\frac{1}{3}}\left(27 x^{-12} y^{6}\right)^{-\frac{1}{3}}$
b. $\left(\frac{64 m^{15}}{343}\right)^{-\frac{2}{3}}$

88
c. $\left(256 a^{12} b^{20}\right)^{\frac{3}{4}}$
d. $\left(3 a^{\frac{3}{2}}\right)\left(-7 a^{\frac{1}{5}}\right)$
e. $\left(8 x^{\frac{3}{4}} y^{2}\right)^{-\frac{1}{3}}$
f. $\frac{25 x^{\frac{1}{3}}}{5 x^{\frac{1}{4}}}$
$\qquad$
4. Solve the following for $x$.HINT: Try to make the bases match, and combine multiple bases into one single base for each side, using laws of exponents. Then do trial and error.
a. $\quad 3^{2 x-5}=1$
b. $\left(\frac{1}{5}\right)^{-3 x} \cdot 25^{x-1}=\frac{1}{125}$
c. $5^{4-x}=5^{x}$
d. $4^{x} \cdot \frac{1}{16}=2^{3 x+6}$
e. $\quad 7^{2 x} \cdot 7^{3-x}=49^{x+5}$
$\qquad$

## If there is time - Collecting Exponential Data

## Eli "M" ination - Radioactive Decay of Atoms

All matter is made up of atoms. Some kinds of atoms have too much energy and are unstable. These atoms are called radioactive. It is not possible to predict exactly when a radioactive atom will release its extra energy and form a different stable atom. This process is called radioactive decay. In this experiment you will model this process

## Materials

M\&M or skittles for groups
Paper plates or napkins Plastic containers or cups

1. Pour a bag of M\&M's or skittles onto a paper plate/napkin so that the candies are one layer thick so you can see if they have the logo in them or not. The candies represent the atoms. Count the number you have at the start and record in the table.
2. Remove all the M\&M's with the logo showing on one side - these will represent atoms that have decayed. Count and record the number of M\&M's remaining on the chart below.
3. Pour the remaining candies into a container. Shake the container and pour these M\&M's back onto the plate. Again remove all the M\&M's with the logo showing. Continue to repeat this process until all the M\&M's are removed. Add additional trial numbers to the chart below if needed.
4. Fill in the table and sketch the relationship.

| Trial Number | Radioactive Atoms <br> Remaining |
| :---: | :---: |
| Start with |  |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |



TRIAL NUMBER
$\qquad$

## Germs! Germs! - Exponential Growth

Certain bacteria, under the right conditions, multiply themselves.

## Materials

Paper
5. Cut your paper in the following arrangement based on group number you're given

|  | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pieces of <br> paper to start <br> with | 1 | 2 | 3 | 1 | 2 | 3 |
| Cut each <br> given piece <br> into this many <br> equal pieces <br> each time | 2 | 2 | 2 | 4 | 4 | 4 |

6. Fill in the table and sketch the relationship.

| Cuts | \# of Bacteria |
| :---: | :---: |
| Start with |  |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |

7. Clean up after your group please.

\# OF CUTS MADE
8. What is the domain and range of the Radioactive decay question? Explain.
9. What is the domain and range of the Germs question? Explain.
$\qquad$

## Properties of Exponentials with Graphing Calculators

A. Complete the tables of values for the functions $g(x)=x, h(x)=x^{2}$ and $k(x)=2^{x}$
B. Calculate first and second differences.

| $x$ | $g(x)$ | $1^{\text {st }}$ diff | $2^{\text {nd }}$ diff |
| :---: | :---: | :---: | :---: |
| -3 |  |  |  |
| -2 |  |  |  |
| -1 |  |  |  |
| 0 |  |  |  |
| 1 |  |  |  |
| 2 |  |  |  |
| 3 |  |  |  |
| 4 |  |  |  |
| 5 |  |  |  |


| $x$ | $h(x)$ | $1^{\text {st }}$ diff | $2^{\text {nd }}$ diff |
| :---: | :---: | :---: | :---: |
| -3 |  |  |  |
| -2 |  |  |  |
| -1 |  |  |  |
| 0 |  |  |  |
| 1 |  |  |  |
| 2 |  |  |  |
| 3 |  |  |  |
| 4 |  |  |  |
| 5 |  |  |  |


| $x$ | $k(x)$ | $1^{\text {st }}$ diff | $2^{\text {nd }}$ diff |
| :---: | :---: | :---: | :---: |
| -3 |  |  |  |
| -2 |  |  |  |
| -1 |  |  |  |
| 0 |  |  |  |
| 1 |  |  |  |
| 2 |  |  |  |
| 3 |  |  |  |
| 4 |  |  |  |
| 5 |  |  |  |

C. Graph the functions. $\uparrow$

D. Complete the chart for each function.

|  | Domain | RANGE |
| :---: | :--- | :--- |
| $g(x)$ |  |  |
| $h(x)$ |  |  |
| $k(x)$ |  |  |

E. How do the $y$-values change as the $x$-values change?
F. Graph the functions $y=2^{x}, y=5^{x}$ and $y=10^{x}$ on a graphing calculator.
G. Complete the chart for each function.

|  | Domain | RANGE | InTERCEPTS | ASYMPTOTES |
| :---: | :---: | :---: | :---: | :---: |
| $y=2^{x}$ |  |  |  |  |
| $y=5^{x}$ |  |  |  |  |
| $y=10^{x}$ |  |  |  |  |

H. Which curve increases faster when you trace right? Which one decreases faster when you trace left?
$\qquad$
I. Graph the functions $y=2^{x}, y=\left(\frac{1}{2}\right)^{x}$ and $y=\left(\frac{1}{10}\right)^{x}$ on a graphing calculator.
J. Complete the chart for each function.

|  | DOMAIN | RANGE | INTERCEPTS | ASYMPTOTES |
| :---: | :---: | :---: | :---: | :---: |
| $y=\left(\frac{1}{2}\right)^{x}$ |  |  |  |  |
| $y=\left(\frac{1}{10}\right)^{x}$ |  |  |  |  |

K. How do these graphs differ from $y=2^{x}$ ?
L. What happens when the base of an exponential function is negative?
M. What type of function is $f(x)=b^{x}$ when $b=1$ ?
N. Describe how the graph of an exponential function differs from the graph of a linear and quadratic function.
O. How do the first and second differences of exponential functions differ from those of linear and quadratic functions? How can you tell that a function is exponential?
P. Investigate the graphs of the exponential function $f(x)=b^{x}$ for various values of $b$, listing all similarities and differences in their features (such as domain, range, and any intercepts and asymptotes). Generalize their features for the cases $b>1$ and $0<b<1$.
Note: An asymptote is a line that a function approaches, but never reaches.
Differences

| when $b>1$ | when $0<b<1$ |
| :---: | :---: |
|  |  |
|  |  |

## Similarities

$\qquad$

## Intro to Exponential Growth \& Decay

1. Most (but not all) real life word problems of growth or decay have a horizontal asymptote at $\mathrm{y}=0$. State the general equation for exponentials that will most often be used for exponential word problems and explain the significance of EACH letter in the context of a word problems.
After you do question 5 , come back and adjust the equation.
2. Clarify the differences between growth factor and growth rate.
3. Summarize how to find the ' $b$ ' in the equation.
4. Set up the models for the following word problems. If not obvious, explain what each variable represents.
a. 歇
The value of the $\$ 250$ thousand cottage increases by $0.1 \%$ every month.
b. 8
The 40 grams of radioactive matter within a mass decays at $2 \%$ every minute.
c.

The 200 fruit fly population doubles every week.
5. What will the equations look like if the questions were modified as follows.
a.

The value of the $\$ 250$ thousand cottage increases by $0.1 \%$ every 3 weeks.
b.

The 40 grams of radioactive matter within a mass decays at $2 \%$ every 30 seconds.
C.

The 200 fruit fly population doubles every 5 days.
6. Solve the following problems:
A. drug's effectiveness decreases as time passes. Each hour the 250 mg drug loses $5 \%$ of its effectiveness. How effective is the drug after 150 minutes?
b.

Carbon-14 has a half life of 5730 years. (If no initial amount is given, assume $100 \%$ is the initial amount) Determine the \% of original carbon left after 1000 years.
C.

A $\$ 1000$ deposit is made at a bank that pays monthly percent, $1.5 \%$ compounded monthly. How much will you have at the end of 10 years?
$\qquad$
9. 7. The population of a bacteria culture is cut in half by an antibiotic every 30 minutes.
a. If the entire bacteria culture is present at 5:00 a.m., what fraction of the bacteria culture will be left at 9:30 a.m.?
b. At what time will the bacteria culture contain $\frac{1}{128}$ of its original population?
8. After half an hour $\frac{1}{32}$ of a sample of a radioactive material remains. What is it's half-life?
9. An ant colony quadruples its population every month. Currently, there are 13000 in the nest. What is the monthly growth rate of the population?
$\qquad$

## Practice Exponential Growth \& Decay

## Pizza toppings

1. Fill in the chart below by determining the different pizza's that can be created by choosing some or all or none of the available toppings

| Toppings available | Different pizzas possible | \# of different <br> pizzas <br> possible |
| :---: | :--- | :--- |
| None |  |  |
| Cheese |  |  |
| Cheese, pepperoni |  |  |
| Cheese, pepperoni, <br> mushrooms |  |  |
| Cheese, pepperoni, <br> mushrooms, bacon |  |  |

## 2. Sketch


3. Complete the statement:

As the number of toppings increases by 1 , the number of different pizza combinations $\qquad$ .
4. Find an equation that will model this relationship.
5. Use the equation to find how many different pizzas can be created if there are nine available toppings.
6. If the restaurant owner would like to offer 200 different pizza combinations, what is the minimum number of available toppings she would need?

## NMEER OF TOPPNGS

$\qquad$

## Car Depreciation

Depreciation is the decline in a car's value over the course of its useful life. It's something new-car buyers dread. Most modern domestic vehicles typically depreciate at a rate of $15 \%-20 \%$ per year depending on the model of the car.

1. A 2007 Ford Mustang GT convertible is valued at $\$ 32000$ and depreciates on average at $20 \%$ per year. Fill in the table below. Hint: Since the car is depreciating by $20 \%$, the remaining percent is $\qquad$ .

| Year end | Value in \$ |
| :---: | :---: |
| 0 | 32000 |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |

2. Find an equation that will model this relationship.
3. How much value does the car lose in the $1^{\text {st }}$ year?
4. Sketch


YEAR-END
4. How much value does the car lose in the $5^{\text {th }}$ year?
5. After how many years will the value of the car be half of the original purchase price?
$\qquad$

## Radioactive Decay

18
The equation $A(t)=100\left(\frac{1}{2}\right)^{\frac{t}{250}}$ was used to find the present-day radioactivity of some wooden tools
at an archaeological dig.

1. What do all the letters and number represent?
2. Fill in the table

| Years | \% of Radiation |
| :---: | :---: |
| 0 | 100 |
| 250 |  |
| 500 |  |
|  |  |
|  |  |
|  |  |

4. Sketch

