Survival Guide: Exponential

EXPONENTIALS

EXPONENT LAWS

LAW	DESCRIPTION	Examples
Multiplication	When the bases are the same, keep the base and the exponent.	$3^4 \cdot 3^5$
Division	When the bases are the same, keep the base and the exponent.	$\frac{7^5}{7}$
Power of a Power	Keep the base the same and the exponents.	$(3^2)^5$
Power of a Product	the exponent to all numbers/variables in the product.	$\left(5x^6y^2\right)^3$
Power of a Quotient	the exponent to all numbers/variables in the quotient.	$\left(\frac{2x^4}{3^2y^3}\right)^5$
Negative Exponents	Change the base to it's and make the exponent	$\frac{3x^{-2}}{(2y)^{-1}}$
Zero Exponents	Anything to the power of 0 is equal to	8 ⁰
Pational Exponents	Change to an equivalent where $\frac{m}{n}$ indicates the root of the base raised to the exponent	$\sqrt[4]{16x^8}$
Kational Exponents		$121^{\frac{1}{2}}$

SOLVE EXPONENTIAL EQUATIONS

STEPS	Example
	$64^{2x-4} \cdot 8^x = 512^{-x}$

DISTINGUISH BETWEEN TYPES OF FUNCTIONS:

EXAMPLE		TYPE	REASON	DOMAIN	EXAMPLE		TYPE	REASON
				& RANGE				
Spread of a Pumo = 1600 = 1200- 5 800- = 400- N 1	Scatter Plot Scatter Plot				Time (days) 1 2 3 4 5 6	Number of E- mails with Virus 15 225 3 375 50 625 759 375 11 390 625		
	Scatter Rot ▼ Scatter Rot ▼ 60 80 100 120 140 160 Speed in km per h (Speed in km per h - 63) ² + 10				Time (s) 0 1 2 3 4 5	Height of Ball (m) 18 15 12 9 6 3		
Ferris Wheel Scatter Plot \checkmark Scatter Plot \checkmark			h(t) = -	$5t^2 + 4t + 100$				
					N(t) =	5000 + 0.4t		
Time (min) 0 4 8 12 16 20	Temperature 55 47 40 34 29 25				A(n)	$=5000(1.12)^{n}$		

Characteristics of the BASIC - PARENT EXPONENTIAL FUNCTION, $f(x) = b^x$, $b \neq 1$:

- when *b* > 1, the function is ______
- when 0 < *b* < 1, the function is _____
- $b^x \neq 0$ because there is a ______at the x-axis
- the domain is _____
- the range is _____

CHARACTERISTICS OF EXPONENTIAL MODELS

 $y = a(b)^{\frac{x}{c}}$

_____ is the growth/decay factor

it is found by:

is the initial value

_____ is how long it takes to grow/decay

Solve these examples:

- 1. The half-life of a radioactive substance is 70 years. What fraction will remain in 140 years?
- 2. The fox population in a national wildlife refuge has been decreasing by 4% every year. The fox population was 580 in 2007. Estimate the fox population in 2015.

	FINANCE	
For single deposits you'd use either	or	formula
For many deposits you'd use either	or	formula
To determine if it is simple interest calculation a	nd not compounded look for	
To determine if it is present value not future valu	ue look for	
Simple Interest – the interest earned on the princ	ipal for the whole term	
where	= the total interest to be paid o = the principal, or what is bor	r earned rowed or invested

- ____ = the interest rate, in decimal form
 - ____ = the length of time in years

Compound Interest - interest is added on to the principal after a set period of time and then calculated again

wher	e = the final amount (future value) = the periodic interest rate (rate per compounding period) $i = \frac{r}{C}$, where = the annual interest rate and
	<pre> = the number of compounding periods per year = the principal, or initial amount (present value) = the total number of compounding periods</pre>

Annuities - annuity is a series of equal payments made at equal intervals of time

Solve the examples

3. Joe invested \$500 at option A: 5% compounded quarterly for 2 years, or option B: 5% simple interest. Determine what the investment be worth at the end of the 2-year term for both options.

- 4. Andrea is planning to save \$2000 in 2 years.
 - a. Determine what her regular quarterly deposits must be if her savings account earns 6% interest per year, compounded quarterly.
 - b. How much interest will Andrea earn during the 2 years?