Review

September-26-13
6:57 PM

(1.) Andrij claims that the following statement is true: $x^{3}-y^{3}=(x-y)\left(x^{2}+y^{2}\right)$
Is he correct? Justify your answer.
2.) Simplify and state any restrictions on the variables.
a. $\frac{x^{2}-9 x+20}{16-x^{2}}$
b. $\frac{2 x^{2}-x y-y^{2}}{x^{2}-2 x y+y^{2}}$
c. $\frac{2}{y+1}+\frac{3}{y-2}$
d. $\frac{5}{x^{2}}-\frac{3}{4 x^{3}}$

$$
\text { e) } \frac{x^{2}-y^{2}}{4 x^{2}-y^{2}} \times \frac{4 x^{2}+8 x y+3 y^{2}}{x+y} \div \frac{2 x+3 y}{2 x-y}
$$

$$
\text { f) } \frac{7}{3 n^{2}+24 n}-\frac{7}{2 n}
$$

$$
\text { g) } \frac{7 x}{x^{2}+x-12}-\frac{2 x}{x^{2}+9 x+20}
$$

$$
\text { h) } \frac{8}{7 v-6}+\frac{4}{3 v^{2}}
$$

3. Determine the area of the triangle in simplified form if the height of the triangle is $\frac{5 x-35}{x+3}$, and the base of the triangle is
$\frac{4 x^{2}}{x^{2}-16 x+63}$.
4. When two resistors, s and t, are connected in
parallel, their combined resistance, R, is given
by
$\frac{1}{k}=\frac{1}{z}+\frac{1}{t}$
If s is increased by 1 unit and t is decreased by 1 unit, what is the change in R ?

(5)

An isosceles triangle has two sides of length
$9 x+3$. The perimeter of the triangle is $30 x+10$. Suppose base is the missing side.
a. Determine the ratio of the base to the perimeter, in simplified form. State the restriction on x.
b. Explain why the restriction on x in part a. is necessary in this situation.

