Review

October-08-13 9:16 AM

wed 2009-3

(i)

Examine the parabola graph.

- State the direction of opening and step pattern
- b. Name the coordinates of the vertex
- c. List the values of x-intercepts
- d. Determine the algebraic models

(ie. equations) for this quadratic in factored form, standard form and vertex form

Find the maximum or minimum value of $y = 4x^2 - 16x$ in two different ways

b) For what value of y will there be only one

solution to this equation?

- Simplify, rationalize denominators when needed.
 - a. $\sqrt{100 36}$
 - b. √45
 - C. $\frac{3\sqrt{5}\times8\sqrt{7}}{16\sqrt{10}}$
 - d. $9\sqrt{8} 5\sqrt{40} + 4\sqrt{18} \sqrt{160}$
 - e. $(\sqrt{6} 3\sqrt{7})^2$
 - f. $\frac{\sqrt{2}}{\sqrt{8}-\sqrt{2}}$

- (4) Given the quadratic $y = -\left(\frac{1}{2}x 5\right)^2 + 9$
 - a. rewrite the equation so that x has coefficient one
 - describe all the transformations
 - c. sketch

& Find the inverse function

- [5]A punter kicks a football. Its height, h(t), in meters, t seconds after the kick is given by the equation $h = -4.9t^2 + 18.24t + 0.8$. The height of an approaching blocker's hands is modelled by the equation h = -1.43t + 4.26, using the same t. Can the blocker knock down the punt? If so, at what point will it happen?
- Determine the equation of the quadratic in standard form if the parabola has zeros at $2 + 4\sqrt{6}$ and $2 - 4\sqrt{6}$ and goes through the point (1, -5)
- A bus company has 4000 passengers daily, each paying a fare of \$2. For each \$0.15 increase, the company estimates that it will lose 40 passengers per day. If the company needs to take in \$10450 per day to stay in business, what fare should be charged?