Quadratics

1. Write each of the following in standard form.

a.
$$y = (x+3)(x-4)$$

a.
$$y = (x+3)(x-4)$$
 c. $y = -(x+1)(x-3)$

e.
$$y = (3x - 5)^2$$

b.
$$y = 3(x-2)(x-5)$$

d.
$$y = -(x-5)(x+5)$$

f.
$$f(x) = 2(x-5)^2 - 4$$

2. Write each of the following in factored (intercept) form.

a.
$$y = 2x^2 + 4x$$

c.
$$y = x^2 - 64$$

e.
$$y = 2x^2 + 2x - 40$$

b.
$$y = x^2 + 4x - 32$$

d.
$$y = 3x^2 + 2x - 5$$

a.
$$y = 2x^2 + 4x$$

b. $y = x^2 + 4x - 32$
c. $y = x^2 - 64$
d. $y = 3x^2 + 2x - 5$
e. $y = 2x^2 + 2x - 40$
f. $f(x) = 3x^2 + 13x - 10$

3. Write each of the following vertex form.

a.
$$y = x^2 + 10x - 10$$

c.
$$y = -5x^2 - 10x - 30$$

e.
$$y = 2x^2 - 6x + 12$$

b.
$$y = 4x^2 - 32x + 17$$

d.
$$y = \frac{2}{3}x^2 - 12x - 20$$

f.
$$f(x) = -3x^2 + 8x - 15$$

4. Determine the roots, axis of symmetry, optimum value (max/min value), y-intercept, direction of opening and the vertex for each of the following.

a.
$$y = (x-3)(x+5)$$

and the vertex for each of the follow
c.
$$y = -3(x-2)(x+1)$$

d. $y = x^2 - 9$

e.
$$y = 2x^2 - 4x - 48$$

f.

b.
$$y = -(x-2)^2$$

d.
$$y = x^2 - 9$$

$$f(x) = -2x^2 - 7x - 40$$

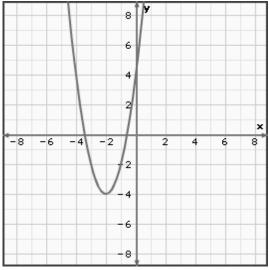
- 5. Graph the parabolas in question 4.
- 6. State the transformations for each of the parabolas below and graph each of the following using transformations.

a.
$$y = 3(x-4)^2 + 5$$

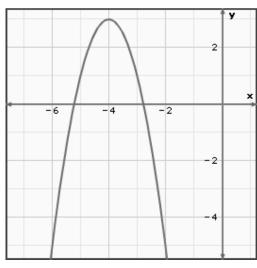
b.
$$y = -(x+4)^2 - 2$$

c.
$$f(x) = x^2 - 25$$

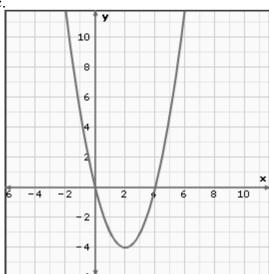
7. Find the value of the discriminant. What does it tell you about the graph?

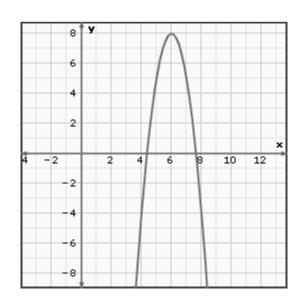

a.
$$v = 2x^2 + 4x - 5$$

b.
$$y = -3x^2 - 4x - 10$$


a.
$$y = 2x^2 + 4x - 5$$
 b. $y = -3x^2 - 4x - 10$ c. $f(x) = -x^2 - 9x + 8$

8. Find the equation of each of the parabolas.




b.

C

d.

8. Find the point of intersection of the line and the quadratic.

a.
$$y = 2x + 2$$
 and $y = x^2 + x$

c.
$$y = x + 7$$
 and $y = -x^2 - 5x + 2$

b.
$$y = x$$
 and $y = -x^2 + 3x$

d.
$$y = 2x - 2$$
 and $y = 2x^2 + 8x + 2$

- 9. A cannonball is shot out of a cannon buried 2 m in the ground. The height of the cannonball can be approximated by the equation $h = -5t^2 + 35t 2$, where h is the height of the ball, in metres, and t is the time, in seconds.
- a. How long will it take the cannonball to reach ground level, to the nearest tenth of a second?
- b. Find the maximum height of the cannonball and the time it takes to reach this height.
- c. What is the height of the cannonball 2 seconds after it was fired.
- d. When will the cannonball reach a height of 4.5 m?
- 10. Ivanka is a professional jeweler. She designs and handcrafts one-of-a-kind god bracelets. A typical bracelet sells for \$200. At that price she usually sells 80 bracelets per craft show. She figures that for every \$10 decrease in price she can sell 5 more bracelets.
- a. Write an equation that represents the revenue of the bracelets.
- b. What price will generate the maximum revenue? What is the maximum revenue?
- c. What is the break even point?
- 11. The Northern Resources Department want to mark off an area as a conservation park. One side of the rectangular-shaped area will be a large lake. Not including this side, the lengths of the remaining 3 sides must not total more than 36 km. What must be the dimensions of the conservation park in order to obtain a maximum size?