S14QuadraticsNOTES

QuadraticsNOTES

Zee behow

		Quadratics Un	it 3	
	Tentative	e TEST date		
2	This unit range, tr real life.	lea/Learning Goals is mostly review from grade 10. However, you will a ansformations and inverses of quadratics. You will al Finally, you will make an extension from solving lineas of the textbook answers: 6 -1/105(x+12.5)²+1805/84	so see more advance	d applications of quadration
William Milliam		ess Criteria I <u>understand the new topics</u> for this unit if I can do the		
Date	pages	Topics	# of quest. done? You may be asked to show them	Questions I had difficulty with ask teacher before test!
1	2-4	Properties of Quadratics Section 3.1 # \15,7,\		
	5-7	Max & Min of Quadratics Section 3.2 & Handout # 3-13		
	8-9	Inverses of Quadratics Section(3.3) # (0,13		
n	10-12		#4,5,6,7	(Handowt 4) #15-20
5	13-15	Solve Quadratics Section 3.5 & Handout		
		QUIZ no calculators (radicals 3.4 and set up word prob like 3.1 #16, 3.2 #12,15, 3.3 #16, 3.5 #9,10,11,12,14)		
SLIP. P. PA	16-17	# of Zeros of Quadratics Section 3.6) # 4 8 9 1		
Λ	18-19	Systems Section(3.8)		
9	20	Solving Square Root Equations – if there is time Handout		
SLIP	₁₂₃ 21-23	Families of Quadratics Section 3.7 & Handout		

Properties of Quadratics

Review from grade 10:

1. What do differences of the dependent variable tell you about the relation given?

If 1st differences in y are constant then it's LINEAR

2rd diff. "" " QUADRATIC

2. Determine what type of functions are these?

	x	f(x)	15
	0	-90 \	-3090=60
	2	-30 🔾	36
	4	6 <	
verte	6	18	18-6 = 13
Notice	8	6	-1
	10	-30	~

$ \begin{array}{c c} $		
= 12)-24		
-36))-24	. QUAD.	

<i>.</i> 6	f(x)	15+	
1 X1	-8 71) 10	
¥2	2 Y ₂	ń.	
13	12	10	:LINEAR
19	22	10	LINE
V22 ~	~27~	01 (
25	32	7	

Find the equations for the functions al	bove.
y= a(x-h)2+k	
$y = a(1-6)^2 + 18$	pt.(4,6)
$6 = a(4-6)^2 + 18$	
6 = a(-2)2 + 18	
6 = a(4) +18	
6= 4a +18	
-18	
-12 = 4a	-3(x-6)2+18
-3-a 0. y=	3(20)

$$y = mx + b$$

$$y = mx + b$$

$$m = rise = \Delta y = y^{2} - y_{1}$$

$$m = \frac{2+8}{7-1} = \frac{10}{6} = \frac{5}{3}$$

$$y = \frac{5}{3}x + b \quad \text{pt.}$$

$$-8 = \frac{5}{3}(1) + b$$

$$\frac{3}{4}x - \frac{5}{3} = b$$

$$\frac{3}{3}x - \frac{5}{3} = b$$

4. Quadratic equations can be written in 3 forms. What are they? What is the key information that can be found from

Standard:

rdord: $ax^2 + bx + c$ y = a(x - r)(x - t) $y = a(x - h)^2 + k$ $y = a(x - h)^2 + k$

5. Find the equation of the following parabolas. Use the most convenient form.

y = a(1 - r)(1 - t) y = a(1 - 4)(1 - 10)

- $y=a(x-h)^2+k$
 - y= 2(2-4)2+2

The parabola is vertically compressed by 2, opens down, goes through the point (-6, 10) and has a y-intercept of 4,

d. The parabola has the axis of symmetry at 3 and xintercept at 7 and y-intercept at -2.

- 10-4+18

6. Sketch the following parabolas FACTORED form

- (3) complete sy. to vertex

VERTEX form

b. $y = 1.5(x+2)^2 + 1$

15, 4.5,75 ,...

STANDARD TOIM

c. $y = x^2 + 10x - 5$ (omplate square then do it

That we

- 7. A golfer hits a ball into the air. The relationship between the height of the ball, h metres, and the time, t seconds, can be modelled by the equation $h = -4.9t^2 + 19.6t$
 - a. Determine the length of time that the ball is in the air.

h = -4.9(t)(t - 4)

- factor Of - quad. Formula.

: t=0 and t=4

. The ball was in the air for 4 sec.

b. Determine the maximum height

-> complete square

a.ds = 0+4 = 2opt. val = $-4.9(2)^2 + 19.6(2)$ = 19.6 : vertex (2,19.6)

.. Max hight is 19.6m.

What is the domain and range in the context of the real life problem.

EtItER,

D= SteR 0 et = 49 R= { hER | 0 = h = 19.6}

 $0.\sqrt{5} = \frac{9+-3}{2} = \frac{6}{2} = 3$ optival = = = (3)2-4(3)~

- Find $(\frac{b}{2})^2$, add then subtract in the bracket.

 Subtract in the bracket.

 Y=\frac{2}{3}(\frac{1}{2}-\beta_1) = \frac{18}{3}(\frac{1}{2}-\beta_2) = \frac{3}{3}(\frac{1}{2}-\beta_2) = \frac{1}{3}(\frac{1}{2}-\beta_2) = \frac{3}{3}(\frac{1}{2}-\beta_2) = \frac{3}{3}(\frac{1}{2}-\beta_2) = \frac{3}{3}(\frac{1}{2}-\beta_2) = \frac{3}{3}(\frac{1}{2}-\beta_2) = \frac{3}{3}(\frac{1}{2}-\beta_2) = \frac{1}{3}(\frac{1}{2}-\beta_2) = \

6 U n i t 3	Name:
5. For word problems sometimes you must	find zeros and sometimes the vertex. What are the words you should look out
for that would indicate what you must fin	NAX" or MIN" or "largest/greatest"
Then you must find	the vertex
· Otherwise you probably	need to solve for a -> 2801
Revenue problem 6. The circus sells 1000 tickets for \$6 each owners want to increase their revenues, increase prices. They have noticed that decrease by 45 tickets every time the proby \$0.50. a. What is the revenue equation? b. What price will maximize the revenue will be the revenue of the control of the price of	revenue is given by $R(x) = 150x - x^2$, where x is the number of items sold. a. What is the profit equation? b. Determine the items sold that would produce the maximum profit. c. Find the number of items to sell to have the profit of \$100. d. What is the initial profit?
R= (6+0,50x) (1000-1	
D 22-05: 079,700 1 070,5x=0 0.5x=-1 1=-12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Vertex: a.ds=-12+22.7 = 5.7 (5.7, 6587.7) R optival= (6+0.5(5.7)) = 6587.7	Jerry (30,300)
6) price = \$8.56	$0 = -x^2 + 60x - 700$
(a) Price 2 0130	2= -60 ± \ 800 -2
(c) quantity= 770 trollets	z=15.9 z= 44.1
d) Pavenue=\$6587.78	or tor 16 or 44 items sold profit is \$100.
	(a) P(0) = -02 +60(0) -600 6 = -600 Loss of \$600 ally

Fence (or rope) off an area problem
8. For a park swimming area (55) 8. For a park swimming area, 4500 m of line is used to mark off the permissible area. One side not roped off is next to the beach. Find the dimensions of the swimming area that will make it a maximum

Goal: equation that use 2 variables that is guadratic

> t=-2()-1215675/2) A= -2 (4-118) + 25 31250

4500 = x + 2y 4500-24 = x

veter (1125, 2531250)

oo dimensions are

Falling object problem

A water balloon is catapulted into the air so that its height, in meters after t seconds is given by a quadratic function. The balloon's initial speed is 27 meters/second and it was released from the height of 3 meters. When does the balloon reach the height of 35m?

0=-4.922 +27t -32

t=-27+5 101.8

Inverses of Quadratics

1. Find the equations for each of the following:

For square roots consider if there are any reflections that would make the 'k' negative.

Then use k=1 or k=-1 and solve for 'a' using a point.

- 2. Find the equations for the inverse functions.

- 3. What would be the domain and range of the inverse functions?
- 4. Sketch the inverse graphs for the above functions. Do your answers for domain and range make sense?

$$D_{f'} = \{x \in \mathbb{R} \mid x > -u\}$$

$$D_{g'} = \{x \in \mathbb{R} \mid x \leq -1\}$$

$$R_{g'} = \{y \in \mathbb{R} \mid y > -3\}$$
ie. find Range of the inverse
$$R_{g'} = \{y \in \mathbb{R} \mid y > -3\}$$

8

Cost aspor Name: $R : \{y | y \in \mathbb{R} \mid -0.35 \le y \le 60\}$ $= 0.75x^2 - 1.5x + 0$ $= 0.35(x^2 - 2x + 1 - 1) + 0$ $= 0.75(x - 1)^2 - 0.75$ **5.** The cost function in thousands of dollars for x thousand of items sold is $C(x) = 0.75x^2 - 1.5x + 0$

a. What is the range of this function on the domain of $0 \le x \le 10$?

$$= 0.75(x^2 - 2x + 1 - 1) + 0$$

$$= 0.75(x - 1)^2 - 0.75$$

b. How should the domain $0 \le x \le 10$ be further restricted so that the inverse is a function?

D: {x | xER, 1 \(\) x \(\) 10} then the inverse is a function line test)

c. Write the model for the items sold as a function of cost.

equation output input.

isolate the output a.

 $C = 0.75(x-1)^2 - 0.75$

$$C = 0.45 (x-1)^{2} - 0.15$$

$$\frac{C+0.75}{0.75} = 0.75 (x-1)^{2}$$

$$\frac{C+0.75}{0.75} = (x-1)^{2}$$
items
ord
ord
positive.
$$\frac{C+0.75}{0.75} + 1 = \infty$$
items sold

0.75(10)2-1.5(10)

7. Simplify the following

a.
$$\sqrt{12} + 2\sqrt{48} - 5\sqrt{175}$$

= $\sqrt{13} + 2\sqrt{6}\sqrt{3} - 5\sqrt{35}\sqrt{7}$
= $2\sqrt{3} + 2\sqrt{6}\sqrt{3} - 5\sqrt{5}\sqrt{7}$
= $2\sqrt{3} + 2\sqrt{6}\sqrt{3} - 25\sqrt{7}$
= $10\sqrt{3} - 25\sqrt{7}$
= $10\sqrt{3} - 25\sqrt{7}$
= $10\sqrt{3} - 25\sqrt{7}$

Name:	

8. What are the steps of multiplying radicals?

1) Raduce
2.) Multiply coefficients separately from roots. ex. 253 . 652
=(276) 5(37.2)
= 1256

9. Simplify the following

a. $3\sqrt{12} \times 4\sqrt{6}$

c. $5\sqrt{14x}(2\sqrt{x}-4\sqrt{7x})$ a. $3\sqrt{12} \times 4\sqrt{0}$ $= (3)\sqrt{1})\sqrt{(12)(6)}$ $= (3)\sqrt{1}\sqrt{12} = 20\sqrt{98x^2}$ $= (0)\sqrt{14x^2} - 20\sqrt{9}$ $= (0)\sqrt{14x^2} - 20\sqrt{9}$ = (0

🚺 10. Show that the steps of **dividing** radicals are similar to

multiplying radicals with the following example

11. It is considered improper form to leave radicals in the denominator. You must rationalize the denominators for your final answers. What does the word rationalize mean to you? Make sure your answer to the previous question is in proper form.

Rationalize means to make the denominator a rational # (fraction or integer

12. What are the steps of rationalizing/MONOMIAL denominators?

Multiply top and bottom by the radical you wish to eliminate

13. What are the steps of rationalzing BINOMIAL denominators?

have +/-Multiply top and bottom by the CONTUGATE of the denominator.

14. Simplify the following

= 16 or 16

b. $\frac{6\sqrt{5}}{7\sqrt{2}}$

11

no need for not wi

(e)
$$\frac{-12\sqrt{24}}{3\sqrt{2}} = \frac{-12\sqrt{24}}{3\sqrt{2}}$$

$$(5-\sqrt{3})$$
 $(2\sqrt{3}+\sqrt{5})$ $(2\sqrt{3}+\sqrt{5})$ $(2\sqrt{3}+\sqrt{5})$

$$= \frac{10\sqrt{3} + 5\sqrt{5} - 2\sqrt{9} - \sqrt{15}}{4(3) - 5}$$

$$= \frac{10\sqrt{3} + 5\sqrt{5} - 6 - \sqrt{15}}{4(3) - 5}$$

(f.)
$$\sqrt{(\sqrt{2}-5\sqrt{3})}$$
 $\sqrt{(\sqrt{2}+5\sqrt{3})}$

$$= \frac{4\sqrt{2} + 20\sqrt{3}}{2 - 25(3)}$$

$$= \frac{4\sqrt{2} + 20\sqrt{3}}{-73}$$

15. All of the above rules are for square root questions. How can you reduce cube root or other type of roots?

ex.

$$\frac{2}{\sqrt[3]{3}}$$
 $\frac{\sqrt[3]{3^2}}{\sqrt[3]{3^2}}$

$$=\frac{939}{3}$$

13 Unit 3 11U Date: Name:					
Solve Quadratics	the related quadratic that has one side zer				
x-intercepts of the quadratic. The hypotenuse of a right leg. Find the lengths of a leg. Find the leng	in doesn't ask for maximum or minimum then the question often reduces to finding the Explain why? (Use the following word problem in your explanation.) inth triangle is 6 cm more than the shorter leg. The longer leg is three more than the shorter all three sides." $a^2 + b^2 = c^2$ $(x+3)^2 + x^2 = (x+6)^2$ $x^2 + (bx+4)^2 + x^2 = x^2 + 12x + 36$ $x^2 - (bx-1)^2 = x^2 + 12x + 36$ $x^2 + (bx+3)^2 + x^2 + x^2 = x^2 + 12x + 36$ $x^2 + (bx+3)^2 + x^2 + x^2$				
	Thod (3) need to complete square Then SAMDEB				

Geometry problem

In this is a diagram of a practice field. The track and field coach wants two laps around the field to be 1000m. But the Phys. Ed. department wants the

rectangular field to be as large as possible. What dimensions would satisfy both conditions?

500 = 2x + 2TTr Circumference

$$A = 1$$
 is date $2: \frac{500 - 2\pi r}{2} = \frac{2\pi}{2}$

$$A = (2)(2r)$$

$$A = (250 - \pi r)(2r)$$

$$A = -2\pi r^{2} + 500r$$

$$A = -2\pi (r^{2} - 250r + (125)^{2} - (125)^{2})$$

$$A = -2\pi (r - \frac{125}{47})r - \frac{15625}{47}(-2\pi)$$

$$A = -2\pi \left(x - \frac{125}{\pi} \right)^2 + \frac{31250}{\pi}$$

$$A = -2\pi \left(x - 39.8 \right)^2 + 9947.2$$

$$Vertex \left(39.8, 9947.2 \right)$$

of dimensions are - semicirales should have a radius of 39.8 m > length of field 2 = 250 - 178
2 = 125 m - width of field 2r= 79,6 m

Translating English into Math problem

Find three consecutive integers such that four times the sum of all three is 2 times the product of the larger two

$$4(3x+3) = 2(x^2 + 3x + 2)$$

$$|2x+12-2x^{2}-6x-1|=0$$

$$-2x^{2} + 6x + 8 = 0$$

$$-2(x^{2} - 3x - 4) = 0$$

$$-2(x - 4)(x + 1) = 0$$

$$x = 4 \quad \text{or} \quad x = -1$$

$$\therefore \text{ in teges can be } 4, 5, 6$$

_		D (km)	V (kmh)	$T(k_{rs})$		$\bigwedge_{\mathcal{D}}$			
	Dan	42	x+0.4	stop: 0.5 drive: 42	- 	VIT			
	Sue	42	x	stop: 0.25 drive: 42 x	hrs = 15 min	$T=\frac{D}{V}$			
	D	an's Total	l Time =	Sue's Total	1 Time	DIVT			
	$0.5 + \frac{42}{240.4} = 0.25 + \frac{42}{20}$								
	$\frac{(x_{10}^{2},0.4x)}{(x_{10}^{2},0.4x)} = \frac{42.(x)}{240.4(x)} = \frac{42.(x_{10}^{2},0.4x)}{2.(x_{10}^{2},0.4x)} = \frac{(x_{10}^{2},0.4x)}{2.(x_{10}^{2},0.4x)} = \frac{(x_{10}^{2},0.4x)}{2.(x_{10}^{2},0.4x)}$								
_CD	$\frac{0.35(x^2+0.4x)+42x-42(x+0.4)}{1(x+0.4)(x)}=0$								
	$\frac{0.25x^2 + 0.1x + 42x - 42x - 16.8}{x(x + 0.4)} = 0$								
	$0.25x^2 + 0.1x - 16.8 = 0$								
	$x = -0.1 \pm \sqrt{16.81}$ $3x = -8.4$								
				Sue's of Dan's	speed is 8	Km/h 8.4 lem/h			

y=az2+bx+c

Discriminant = b2-4ac

Lunder rost of
quadratic formula

NO zeros if b2-4ac <0

y= a(a-r)(a-t)
Two 2800

· ONE zero if 62-4ac=0

$$y = \alpha(1-r)(1-r)$$

$$y = \alpha(x-r)^{2}$$

$$0NE$$

$$280$$

discriminant = 0

$$b^2-4ac = 0$$

 $b^2-4(-4)(-10) = 0$
 $b^2-160 = 0$

Vreflections?

X shifts wildown?

Vinites left/right?

Vertical/horiz. stretch/compress?

@
$$R_{10}f_{11} = R_{01} - Cost$$

 $R = (1600x - x^{2}) - (1600 + 1500 x)$
 $R = -x^{2} + 100x - 1600$

discriminant = b^2 -yac = 100^2 -y(-1)(-1600) = +3600 pos#.

of Yes, the company will break even for 2 different a , items sold.

$$J = \alpha x^{2} + bx + C$$

$$O = \alpha x^{2} + bx + C$$

$$O = a \left(x^{2} + \frac{b}{ax} + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + C$$

$$\vdots 2 \text{ and square.}$$

$$O = a \left(x + \frac{b}{2a}\right)^{2} + \frac{b^{2}}{4a^{2}} \cdot \alpha + C$$

$$0 = a\left(2 + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} \cdot \alpha + C$$

$$0 = a \left(x + \frac{b}{2a} \right)^2 \qquad -\frac{b^2}{4a} + c \qquad \text{$\#$ No x appears once. , solve for x}$$

$$\frac{1}{a} \left(\frac{b^2}{4a} - c \right) = a \left(x + \frac{b}{2a} \right)^2$$

$$\frac{-\frac{b^2}{4a} + c}{4a}$$

$$\frac{b^2}{4a^2} - \frac{c \cdot 4a}{c \cdot 4a} \left(x + \frac{b^2}{2a}\right)$$

$$\pm \frac{b^2 - 4ac}{4a^2} = \frac{1}{2a} \left(x + \frac{b^2}{2a}\right)$$

$$\frac{\pm \sqrt{b^2 - 4ac}}{\sqrt{4a^2}} = 2 \pm \frac{b}{2a}$$

$$\frac{1}{2}\sqrt{b^2-4ac} = x + \frac{b}{2a}$$

$$\frac{-b}{2a} \pm \sqrt{b^2 - 4ac} = x$$
Common denom.

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = x$$

17

(-7.6)2+(-2.3)2

Solving Square Root Equations – if there is time

The only way to get rid of a square root in an equation is to square both sides of the equation. But before you do that, make sure the square root is isolated. Also make sure you square SIDES not TERMS! Explain why that is so.

Must square whole side, not term by term since terms are separated by +/- and you cannot distribute the square over addition/subtraction ex. (9+1)2=92+12

2. Solve the following. Check your answers if all of them actually make sense

a. $\sqrt{x-1} + 7 = x$ (xx-1)=(x-7)2 Foil

b. $\sqrt{9x^2+4} = 3x+2$) $\sqrt{25+4} \neq 5+2$ $\sqrt{9x^2+4} = 3x+2$) $\sqrt{25+4} \neq 5+2$ $\sqrt{29+4} = 3x+2$) $\sqrt{29+4} = 3x+2$ $\sqrt{$

 $x^{2} + 6x - 16 = 0$ (x+8)(1-2)=01=-8 OK 1=2 V BOTH .: d. $\sqrt{x-3} - \sqrt{x} = 3$ $\sqrt{x-3} = 3 + \sqrt{x}$ Foil 2-3=9+65x+2 -12 = 652 $(-2)^{2} = (52)^{2}$ chech: $\sqrt{4-3} - \sqrt{4} \stackrel{?}{=} 3$

Families of Quadratics

Sometimes the given problems may have many solutions only because not enough information was provided to make the solution unique. The many solutions that satisfy the given conditions are called a familty of functions. Give a

Vertex (0,1) a reg. $y=-(x-0)^2+1=-x^2+1$ $y=-0.5(x-0)^2+1=-0.5x^2+1$ is a grant of functions that have zeros at -9, and 5

2. Find a family of functions that have zeros at -9, and 5

y= a(x+9)(x-5), atR, a+0 / family

a. Give another condition that will ensure that this family of many quadratics is one unique parabo

a. Sive another condition that will ensure that this family of many quadratics is one unique parabola. It is get a unique solution of the point on a quadratic to get a unique solution of the point of a quadratic to get a unique solution of the point of a quadratic to get a unique solution of the point of a quadratic to get a unique solution of the point of a quadratic to get a unique solution of the point of a quadratic to get a unique solution of the point of a quadratic to get a unique solution of the point of a quadratic to get a unique solution of the point of a quadratic to get a unique solution of the point of a quadratic to get a unique solution of the point of the get a unique solution of the point of

Find the unique equation of the family that passes through the point (1, -5).

Make $y = \alpha \left((x-2)^2 - \sqrt{9} \right)$ Now Unique: $5 = \alpha \left((^2 - 4(1) + 1) \right)$ Ly the property $y = \alpha \left((^2 - 4(1) + 1) \right)$ Ly the property $y = \alpha \left((^2 - 4(1) + 1) \right)$ $y = \alpha \left((^2 - 4(1) + 1) \right)$ $y = \alpha \left((^2 - 4(1) + 1) \right)$ $y = \alpha \left((^2 - 4(1) + 1) \right)$

: unique: y====[x2-4x+1)

3. Give two non-equivalent functions that satisfy the following conditions. f(2) = g(2) = 0 and

Both have x-int at (2,0) f(x) and g(x) have the same y-intercept = -3 Both have y-int (0,-3)

 $y=ax^2+bx+c$ y=a(x-r)(x-t) y=a(x-r)(x-t) y=a(x-r)(x-t)

give 2 possibilities:
$$f(x) = -\frac{3}{2}(x-1)(x-2)$$

21

choose y(x)=-3(x-2)(x-2)

- Sometimes a given problem can have many different-looking equations that give the same answer. This can happen when many frames of reference can be chosen, i.e. the x and y axes can be placed differently since the question doesn't specify where to place them. (Note: these are NOT considered to be a family of functions since graphing them in the same frame of reference/coordinate system will yield different graphs)
- lg.

"Many suspension bridges hang from cables that are supported by two towers. The shape of the suspension bridge has large cables that are supported by two towers that are 20 m high and 80 m apart. The bridge surface is suspended from the

hanging cables is very close to a parabola. A typical large cables by many smaller vertical cables. The shortest vertical cable is 4 m long."

Red version:

$$y = a(x-h)^2 + k$$

 $0 = a(0-40)^2 - 16$ pt. $(0,0)$
 $0 = 1600 a - 16$
 $\frac{16}{1600} = a$ $\therefore y = \frac{1}{100}(x-40)^2 - 16$

- a. If another vertical support is needed to be placed 10 m away from the end, and the available support pole is 12 m tall, prove that it will NOT be tall enough to support the cable.
- Find TWO different equations using different frames of reference that can model the following problem: (40,20) (0,4) $y=a(x-h)^2+k$ Green Version:

 - c. Does it matter which equation is used to answer questions a and b? Why or why not?
 - in red system: x=10 or x=70 $y = \frac{1}{100} (10 - 40)^2 - 16 = -7$ x = 30 or x = -30 (Same you the picture.

 (c)
- $x = \frac{30}{100}$ or x = -30 $y = \frac{1}{100}(30-0)^2 + 4 = 13$
- b. Where should the 12 m support pole be placed?
 - I use only green now: sub y=12 $12=\frac{1}{100}(x-0)^2+4$ 100 x 8 = 1 100 x2

 - \$00 = 22 con place the support away to poles 28.3 m centre from the centre
- 22

23 Unit 3 11U Date:

COMMINCO		
Name:		

Sometimes a given problem can have many very close approximate solutions. This occurs when dealing with raw real life data because it is not possible to have perfect measurements and real life situations can fluctuate from many different variables. (Note: again, these are NOT considered to be a family of functions, since the approximate equations will yield slightly different results)

Plot the given data as a scatter plot and create a quadratic curve of best fit.

Year 1-0 1992	Number (in thousands) of people over 100 years old in a country
t=2 1994	68
₹≈¥ 1996	55
1=6 1998	54
8 2000	50
2002	55
17 2004	65
y 2006	70
2008	94
18 2010	110

b. Determine the approximate equation for your graph that will model this senario.

c. Use your equation to interpolate (mnd the value within data points) how many people will be over 100 years old in 2007.

 $1 = \frac{1}{2}(15-8)^2 + 50 = 74.5$... 75 people.

d. Use your equation to extrapolate (find the value outside of data points) how many people will be over 100 years old in 2012.

e. Can this model be used to predict number of people very far in the future? Why or why not?

No. Since parabolas go to so on both sides.

Highly unitary life span would increase that way for more people.

Summary:

Family of functions must Swhshy the given conditions in the SAME system(frame of referene) and answers must be Exact.