Kuta Software - Infinite Algebra 2

Name_____

Geometric Sequences

Determine if the sequence is geometric. If it is, find the common ratio.

- 1) -1, 6, -36, 216, ...
 2) -1, 1, 4, 8, ...

 3) 4, 16, 36, 64, ...
 4) -3, -15, -75, -375, ...
- 5) -2, -4, -8, -16, ... 6) 1, -5, 25, -125, ...

Given the explicit formula for a geometric sequence find the first five terms and the 8th term.

- 7) $a_n = 3^{n-1}$ 8) $a_n = 2 \cdot \left(\frac{1}{4}\right)^{n-1}$
- 9) $a_n = -2.5 \cdot 4^{n-1}$ 10) $a_n = -4 \cdot 3^{n-1}$

Given the recursive formula for a geometric sequence find the common ratio, the first five terms, and the explicit formula.

11) $a_n = a_{n-1} \cdot 2$ $a_1 = 2$ 12) $a_n = a_{n-1} \cdot -3$ $a_1 = -3$

13)
$$a_n = a_{n-1} \cdot 3$$

 $a_1 = 4$
14) $a_n = a_{n-1} \cdot 5$
 $a_1 = 2$

Date_____ Period_____

Given the first term and the common ratio of a geometric sequence find the first five terms and the explicit formula.

15)
$$a_1 = 0.8, r = -5$$
 16) $a_1 = 1, r = 2$

17)
$$a_1 = 1, r = \frac{1}{2}$$
 18) $a_1 = 2, r = -3$

Given the first term and the common ratio of a geometric sequence find the recursive formula and the three terms in the sequence after the last one given.

19)
$$a_1 = -4, r = 6$$
 20) $a_1 = 4, r = 6$

21)
$$a_1 = 2, r = 6$$
 22) $a_1 = -4, r = 4$

Given a term in a geometric sequence and the common ratio find the first five terms, the explicit formula, and the recursive formula.

23)
$$a_2 = 3, r = 2$$

24) $a_5 = -\frac{16}{27}, r = \frac{2}{3}$

25)
$$a_4 = 25, r = -5$$
 26) $a_1 = 4, r = 5$

Given two terms in a geometric sequence find the 8th term and the recursive formula.

27)
$$a_4 = -12$$
 and $a_5 = -6$
28) $a_5 = 768$ and $a_2 = 12$

29)
$$a_2 = -\frac{1}{3}$$
 and $a_1 = -1$
30) $a_5 = 3888$ and $a_3 = 108$

Answers to Geometric Sequences

 $\frac{1}{8}, \frac{1}{16}$

1)
$$r=-6$$

2) Not geometric
3) Not geometric
4) $r=5$
7) First Five Terms: 1, 3, 9, 27, 81
 $a_{a}=2187$
9) First Five Terms: -2, 5, -10, -40, -160, -640
 $a_{a}=\frac{1}{8192}$
10) First Five Terms: -4, -12, -36, -108, -324
 $a_{a}=-8748$
11) Common Ratio: $r=2$
First Five Terms: -3, 9, -27, 81, -243
Explicit: $a_{a}=-3\cdot(-3)^{a-1}$
12) Common Ratio: $r=5$
First Five Terms: -1, 9, -27, 81, -243
Explicit: $a_{a}=2\cdot 2^{a^{-1}}$
13) Common Ratio: $r=3$
First Five Terms: -2, 10, 50, 250, 1250
Explicit: $a_{a}=2\cdot 5^{a^{-1}}$
14) Common Ratio: $r=5$
First Five Terms: 1, 2, 4, 8, 16
Explicit: $a_{a}=2\cdot 5^{a^{-1}}$
15) First Five Terms: -2, -6, 18, -54, 162
Explicit: $a_{a}=2\cdot (-3)^{a^{-1}}$
16) First Five Terms: -2, -6, 18, -54, 162
Explicit: $a_{a}=2\cdot (-3)^{a^{-1}}$
17) First Five Terms: 1, $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$
Explicit: $a_{a}=2\cdot (-3)^{a^{-1}}$
18) First Five Terms: -2, -6, 18, -54, 162
Explicit: $a_{a}=2\cdot (-3)^{a^{-1}}$
19) Next 3 terms: -24, -144, -864
Recursive: $a_{a}=a_{a,-1}\cdot 6$
 $a_{1}=-4$
20) Next 3 terms: -16, -64, -256
Recursive: $a_{a}=a_{a,-1}\cdot 6$
 $a_{1}=-4$
21) Next 3 terms: -16, -64, -256
Recursive: $a_{a}=a_{a,-1}\cdot 6$
 $a_{1}=-3$
22) Next 3 terms: -16, -64, -256
Recursive: $a_{a}=a_{a,-1}\cdot 6$
 $a_{1}=-3$
24) First Five Terms: -3, -2, $-\frac{4}{3}, -\frac{8}{9}, -\frac{16}{27}$
Explicit: $a_{a}=-3, (-\frac{2}{3})$
 $a_{1}=-3$
25) First Five Terms: -3, -2, $-\frac{4}{3}, -\frac{8}{9}, -\frac{16}{27}$
Explicit: $a_{a}=-3, (-\frac{2}{3})$
 $a_{1}=-3$
26) First Five Terms: 4, 20, 100, 500, 2500
Explicit: $a_{a}=4, -3, -\frac{1}{2}$
 $a_{1}=-4$
27) $a_{1}=-\frac{3}{4}$
Recursive: $a_{1}=a_{a,-1}, -5$
 $a_{1}=4$
27) $a_{1}=-\frac{3}{4}$
Recursive: $a_{1}=a_{a,-1}, -\frac{1}{2}$
 $a_{1}=-96$

28)
$$a_8 = 49152$$

Recursive: $a_n = a_{n-1} \cdot 4$
 $a_1 = 3$
29) $a_8 = -\frac{1}{2187}$
30) $a_8 = 839808$
Recursive: $a_n = a_{n-1} \cdot \frac{1}{3}$
 $a_1 = -1$
30) $a_8 = 839808$
Recursive: $a_n = a_{n-1} \cdot 6$
 $a_1 = 3$