Review

September-17-13
6:22 PM
|. Identify whether each relation is a function or not. Explain your thinking.
a. The relation between shoe size and height of students in the school.
b. The relation between distance and time if Brian walks at $5 \mathrm{~km} / \mathrm{h}$.
c. The relation between number of people in the family and number of rooms in their house.
2. For $g(x)=\frac{x}{3}-2$ and $f(x)=x^{2}+6 x-5$ find
(a) $f(\sqrt{2})$
(b) $3 f(2)$
(c) $g^{-1}(x)$
(d) $g^{-1}(1)+g(1)$
(e) $g\left[g^{-1}(3)\right]$
3. Find domain and range for:

4. For the function $f(x)=\frac{1}{x}$ with following transformations:

- Reflected in x -axis
- vertically compressed (choose 4 or $1 / 4$)
- horizontally compressed (choose 5 or $1 / 5$)
- shifted right by 5
- shifted up by 6
a. rewrite the equation with transformations
b. sketch (can ignore stretches/compressions)
c. state domain and range
S. For the function $i(x)=4 \sqrt[8]{6-2 x}-1$
a. state transformations
b. sketch
c. state domain and range
d. Find $i^{-1}(x)$
e. Sketch the inverse
(6. a) Find the inverse for

$$
i(x)=3 x^{2}+6 x+5
$$

b) What should be the restricted domain of the original to make the inverse a function?
c) Sketch the original function only on your chosen domain and then sketch the corresponding inverse

