Review

September-17-13 6:22 PM

- Identify whether each relation is a function or not. Explain your thinking.
 - The relation between shoe size and height of students in the school.
 - The relation between distance and time if Brian walks at 5 km/h.
 - c. The relation between number of people in the family and number of rooms in their house.
 - 2. For $g(x) = \frac{x}{3} 2$ and $f(x) = x^2 + 6x 5$ find
 - (a) $f(\sqrt{2})$
 - (b) 3f(2)
 - (c) $g^{-1}(x)$
 - (d) $g^{-1}(1) + g(1)$
 - (e) $g[g^{-1}(3)]$
- 3. Find domain and range for:

- For the function $f(x) = \frac{1}{x}$ with following transformations:
 - · Reflected in x-axis
 - vertically compressed (choose 4 or ¹/₄)
 - horizontally compressed (choose 5 or 1/5)
 - shifted right by 5
 - shifted up by 6
 - a. rewrite the equation with transformations
 - b. sketch (can ignore stretches/compressions)
 - c. state domain and range

- For the function $i(x) = 4\sqrt[5]{6 2x} 1$
 - a. state transformations
 - b. sketch
 - c. state domain and range d. Find $i^{-1}(x)$

 - e. Sketch the inverse
- (e. a) Find the inverse for $i(x) = 3x^2 + 6x + 5$
 - b) What should be the restricted domain of the original to make the inverse a function?
 - c) Sketch the original function only on your chosen domain and then sketch the corresponding inverse