MBF 3C

Name: _____

Changing Quadratic Relations: The Values of 'h' and 'k'

Investigate $y = x^2 + k$

	Function	Value of k in $y = x^2 + k$	Direction of Opening	Vertex	Axis of Symmetry	Same shape as $y = ax^2$?
a.	$y = x^2$	0	up	(0, 0)	x = 0	
b.	$y = x^2 + 2$	2	Υ	(0,2)	X=0	yes
c.	$y = x^2 + 4$	4	Yp	(0,4)	X=0	Yes
d.	$y = x^2 - 1$	-1	up	(0,-1)	X=0	yes
e.	$y = x^2 - 3$	-3	up	(0,-3)	X=O	yes

How does the value of k affect the basic parabola?

- when k is greater than 0, the parabola shifts
- when k is less than 0, the parabola shifts _____ down

The value of k describes the Vertical translation of the parabola.

It is known as the optimal value or y-coordinate of Verlex

Example 1

For each of the following, (i) state the transformations, and (ii) graph the parabola.

	$y = x^2 + 3$	$y = x^2 - 2$
MATIONS	$y = x^2 + 3$ $0 = 1 \text{nothing}$	$y = x^2 - 2$ $\alpha = 1 \text{snothing}$
(i) TRANSFORMATIONS	K= 3, shift up	K=-2→shift down
(п) сварн		

MBF 3C1 Investigate $y = (x - h)^2$

Name:

* To determine the value of h, remove it from the brackets by setting the expression equal to zero and solving. *

	Function	Value of h in $y = (x - h)^2$	Direction of Opening	Vertex	Axis of Symmetry	Same shape as $y = ax^2$?
a.	$y = x^2$	0	up	(0, 0)	x = 0	
b.	$y = (x-2)^2$	x - 2 = 0 $x = 2$	W	(2,0)	X=2	y 5
c.	$y = (x-4)^2$	X-4=0 X=4	w	(4,0)	X=4	yer
d.	$y = (x+1)^2$	X+1=0	hp	(-1,0)	X=-	yes
e.	$y = (x+3)^2$	X+3=0 X=-3	np	(-3,0)	x=-3	yes

How does the value of h affect the basic parabola?

- when h is greater than 0, the parabola shifts _
- right (h pos., # in bracket nog.)
 left (h neg, # in bracket pos.)
- when h is less than 0, the parabola shifts _____

The value of h describes the horizontal translation of the parabola.

The value of h describes the horizontal translation of the parabola.

It provides the value for the axis of symmetry and is the x-coordinate of the vertex

Example 2

For each of the following, (i) state the transformations, and (ii) graph the parabola.

	$y = (x+2)^2 - 3$	$y = (x - 3)^2 + 1$		
(I) TRANSFORMATIONS	a=1 ~ nothing h=-2 ~ shift left K=-3 ~ shift down	a=1 → nothing h=3 → shift right k=1 → shift up		
(II) GRAPH	x	3		